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—— Abstract

Here, we present a family of complete interleaving depth-first search strategies for embedded,
domain-specific logic languages. We derive our search family from a stream-based implement-
ation of incomplete depth-first search. The DSL’s programs’ texts induce particular strategies
guaranteed to be complete.
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1 Introduction

A common logic language implementation technique is the shallowly-embedded, internal
domain-specific language (DSL) [12, 8, 4]. In this technique, the logic-language programmer
writes in the syntax of the underlying host language and the DSL’s operators’ behavior are
described in terms of the host’s semantics. Designers need implement only behaviors not
supported natively by the host. For logic languages implemented in functional hosts, these
may include backtracking and search, among others.

Here, we present a family of complete interleaving depth-first search strategies induced
by an embedding. Each logic program’s text induces a particular search strategy. Unlike
most other embeddings, our operators provide a complete search without the performance
penalties associated with, for example, breadth-first search [12, 8]. We improve on earlier
efforts [5] by combining the hand-off of control with relation definition, and in doing so
decrease the amount of interleaving while maintaining a complete search. We achieve a
minimal placement of interleaving points for arbitrary relation definitions.

We host our embedding in Racket [3], but any eager language with functions as values is
equally suited. We deliberately restrict ourselves to a small host language feature set. We
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rely chiefly on cons and lambda (A). The data-structure interpolation operators
are a shorthand for explicit conses, and the promise and force operators we use are shallow

wrappers over function creation and application.
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Program

A program consists of zero or more relations (predicates, in Prolog parlance) and an initial
goal. Invoking the first goal may require a call to some relation, which may itself require a
call to another relation or relations, etc.

Goals

Goals are implemented as functions that take a state and return a stream of states. They
consist of primitive constraints such as equality (==), relation invocations like (peano q), and
their closure under operators that perform conjunction, disjunction, and variable introduction.

State

We execute a program p by attempting an initial goal in the context of zero or more relations.
The program proceeds by executing a goal in a state. The state contains a substitution and a
counter for generating fresh variables. Every program’s execution begins with an initial state
devoid of any constraint information and a variable count 0.

Streams

Executing a goal in a state s/c¢ (connoting a substitution and counter pair) yields a stream.
A stream takes one of three shapes. The stream may be empty, indicating the goal cannot
be achieved in s/c. A stream may contain one or more resultant states. In this case, each
element of the stream is a different (in terms of control flow (i.e., disjunctions); the same
state may occur many times in a single stream) way to achieve that goal from s/c. Our
streams are not necessarily infinite; there may be finitely many ways to achieve a goal in a
given state. We call these first two shapes mature, whereas an immature stream is a delayed
computation that will return a stream when forced.

The final step of running a program is to continually force the resultant stream until it
yields a list of answers. Our programs are not guaranteed to terminate. The stream we get
from invoking the initial goal may be unproductive: repeated applications of force will never
produce an answer [11]. This is the only potential cause of non-termination; all of the other
core operations in our implementation are total.

2 Implementing Depth-first Search

We now implement our interleaving search operators: disj, conj, define-relation, and
call/initial-state. We omit here the syntactic equality constraint == and call/fresh
(which scopes new logic variables). Interested readers should consult an extended version of
this work [6].

The binary operators disj and conj act as goal combinators, and they let us to write
composite goals representing the disjunction or conjunction of their arguments.

#| Goal X Goal — Goal |#
(define ((disj gl g2) s/c) ($append (gl s/c) (g2 s/c)))

#| Goal X Goal — Goal |#
(define ((conj gl g2) s/c) ($append-map g2 (gl s/c)))

We define disj and conj in terms of $append and $append-map. If we define these
functions as aliases for the finite-list append and append-map functions standard to many
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languages [10], our streams will always be empty or answer-bearing; in fact, they will be fully
computed. The result of attempting an == goal must be a finite list, of length 0 or 1. If both
of disj’s arguments are goals that produce finite lists, then the result of invoking append on
those lists is itself a finite list. If both of conj’s arguments are goals that produce finite lists,
then the result of invoking append-map with a goal and a finite list must itself be a finite
list. Invoking a goal constructed from these operators in the initial state returns a list of
all successful computations, computed in a depth-first, preorder traversal of the search tree
generated by the program.

3 Recursion and define-relation

We must enrich our implementation to allow recursive relations. DFS is incomplete for
computations with infinite branches. Consider the following stylized Prolog definition of the
predicate peano that generates Peano numbers.

peano(N) :- N = z ; [s R], peano(R).

At present there are several obstacles to writing relations like peano that refer to themselves
or one another in their definitions in our embedding. Suppose we’d used define to build a
function that we hope would behave like a relation:

(define (peano n)
(disj (== n ’z)
(call/fresh (A (r) (conj (==mn ‘(s ,r))
(peano 1))))))

When we use the peano relation in the following program, we hope to generate some Peano
numbers. We invoke (call/fresh ...) with an initial state. Invoking that goal creates
and lexically binds a new fresh variable over the body. The body, (peano n), evaluates to
a goal that we pass the state (() . 1). This goal is the disjunction of two subgoals. To
evaluate the disj, we evaluate its two subgoals, and then call $append on the result. The
first evaluates to (((0 . z)) . 1), a list of one state.

> ((call/fresh (A (n) (peano n)))
(O . 0))

Invoking the second of the disj’s subgoals however is troublesome. We again lexically

scope a new variable, and invoke the goal in body with a new state, this time (() . 2).

The conj goal has two subgoals. To evaluate these, we run the first in the current state,
which results in a stream. We then run the second of conj’s goals over each element of the
resulting stream and return the result. Running this second goal begins the whole process
over again. In a call-by-value host, this execution won’t terminate. Simply using define in
this manner will not suffice.

We instead introduce the define-relation operator. This allows us to write recursive
relations; with a sequence of uses of define-relation, we can create mutually recursive
relations. Unlike the other operators, define-relation is a macro.

(define-syntax-rule (define-relation (defname . args) g)
(define ((defname . args) s/c) (delay/mame (g s/c))))

Racket’s define-syntax-rule gives a simple way to construct non-recursive macros.

The first argument is a pattern that specifies how to invoke the macro. The macro’s first
symbol, define-relation, is the name of the macro we define. The second argument is
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a template to be filled in with the appropriate pieces from the pattern. We do implement
define-relation in terms of Racket’s define.

This macro expands a name, arguments, and a goal expression to a define expression
with the same name and number of arguments and whose body is a goal. It takes a state
and returns a stream, but unlike the others we’ve seen before, this goal returns an immature
stream. When given a state s/c, this goal returns a promise that evaluates the original goal
g in the state s/c when forced, returning a stream. A promise that returns a stream is itself
an immature stream.

define-relation does two useful things for us: it adds the relation name to the current
namespace, and it ensures that the function implementing our relation is total. It turns
out that we will never re-evaluate an immature stream. Unlike delay, delay/name doesn’t
memoize the result of forcing the promise, so it is like a “by name” variant of delay. In
languages without macros, the programmer could explicitly add a delay at the top of each
relation; though this has the unfortunate consequence of exposing the implementation of
streams.

We implement define-relation as a macro, since it is critical that the expression g not
be evaluated prematurely: we need to delay the invocation of g in s/c. Under call-by-value,
a function would (prematurely) evaluate its argument and would not delay the computation.

This solves the non-termination of relation invocations. When peano is defined by
define-relation, the goal (peano n) immediately returns an immature stream when
invoked. We can also write recursive relations whose goals quite clearly will never produce
answers.

(define-relation (unproductive n)
(unproductive n))

We now redefine $append and $append-map, augmenting them with support for immature
streams.
(define ($append $1 $2)
(cond
((null? $1) $2)
((promise? $1) (delay/name ($append (force $1) $2)))
(else (cons (car $1) ($append (cdr $1) $2)))))

If the recursive argument to $append is an immature stream, we return an immature
stream, which, when forced, continues appending the second to the first. Likewise, in
$append-map, when $ is an immature stream, we return an immature stream that will
continue the computation but still forcing the immature stream. Rather than delay/name,
force, and promise?, we could have used (A () ...), procedure invocation, and procedure?.
Using A to construct a procedure delays evaluation, and procedure? would be our test for
an immature stream.

#| Goal X Stream — Stream |#
(define ($append-map g $)
(cond
((qull? $) > O)

((promise? $) (delay/name ($append-map g (force $))))
(else ($append (g (car $)) ($append-map g (cdr $))))))

After these changes, we must do something special when we invoke a goal in the initial
state, as this can now produce an immature stream instead of an empty or answer-bearing
stream such as in the following example.

> ((call/fresh (A (n) (peano n)))
(O . 0))

#<promise>
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4 call/initial-state

At the very least, we would like to know if our programs are satisfiable or not. That is, we
would hope to get at least one answer if one exists, and the empty list if there are none. The
call/initial-state operator ensures that if we return, we return with a list of answers.

#| Maybe Nat® x Goal— Mature |#
(define (call/initial-state n g) (take n (pull (g (O . 0)))))

call/initial-state takes an argument n which represents the number of answers to
retrieve. n may just be a positive natural number, in which case we return at most that many
answers. Otherwise, we provide #£, indicating our embedding should return all answers. It
also takes a goal as an argument. The function pull takes a stream as argument, and if
pull terminates, it returns a mature stream. As streams may be unproductive, it is not
always possible to produce a mature stream. As a result, pull, and consequently take and
call/initial-state, are partial functions. These are the only partial functions in our
implementation.

#| Stream — Mature |#
(define (pull $) (if (promise? $) (pull (force $)) $))

take receives the mature stream that is the result of pull and, n, the argument dictating
whether to return all, or just the first n elements of the stream.

#| Maybe Nat® x Mature — List |#
(define (take n $)
(cond
((null? $) > 0)
((and n (zero? (- n 1))) (1list (car $)))
(else (cons (car $) (take (and n (- n 1)) (pull (cdr $)))))))

Our embedding is now capable of creating, combining, and searching for answers in infinite
streams.

> (call/initial-state 2
(call/fresh (A (n) (peano n))))
(0 . Z)) L) (1 .=z 0. (s D)) .2)

Rather than always returning a list implementation of non-deterministic choice, we either
have no values, a value now (possibly more than one), or something we can search later for
a value. pull, since it forces an actual value out of a promise, is akin to run in the delay
monad. take bears a similar relationship to run in the list monad.

5 Interleaving, Completeness, and Search

Although we can now create and manage infinite streams, we cannot manage them as well as
we’d like. Consider what happens in the following program execution:

> (call/initial-state 1
(call/fresh (A (n) (disj (unproductive n)
(peano n)))))

We wish the program to return a stream containing the ns for which peano holds and in
addition the ns for which unproductive holds. We know from Section 3 that there are no ns
for which unproductive holds, but infinitely many for peano. The stream should contain
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only ns for which peano holds. It’s perhaps surprising, then, to learn that this program loops
infinitely.

Streams that result from using unproductive will always be, as the name suggests,
unproductive. When executing the program above, such an unproductive stream will be
the recursive argument $1 to $append. Unproductive streams are necessarily immature.
According to our definition of $append, we always return the immature stream. When we
force this immature stream, it calls $append on the forced stream value of (the delayed) $1
and $2. Since unproductive is unproductive, this process continues without ever returning
any of the results from peano.

Such surprising results are not solely the consequence of goals with unproductive streams.
Consider the definition of church.

(define-relation (church n)
(call/fresh (A (b) (conj (==mn ‘(A (s) (A (2) ,b)))
(peano b)))))

The relation church holds for Church numerals. Using a newly created variable b, it
constructs a list resembling a lambda-calculus expression whose body is the variable b. It
uses peano to generate the body of the numeral. We can thus use it to generate Church
numerals in a manner analogous to our use of peano. But consider the following program,
wherein the resulting stream is productive, but only contains elements for which peano holds.

> (call/initial-state 3
(call/fresh (A (n) (disj (peano n)
(church n)))))
(0 . 2)) . 1) (1 .2z) (0. (s1))) .2
(2.2 1. (2) . 1)) .3)

[

Under the default Racket printing convention, “.” is suppressed when it precedes a “(”.
We retain the “.” for legibility — Racket’s current-print parameter controls this behavior.

Our implementation of $append in Section 3 induces a depth-first search. Depth-first
search is the traditional search strategy of Prolog and can be implemented quite efficiently.
As we’ve seen though, depth-first search is an incomplete search strategy: answers can be
buried infinitely deep in a stream. The stream that results from a disj goal produces
elements of the stream from the second goal only after exhausting the elements of the stream
from the first.

#| Stream X Stream — Stream |#
(define ($append $1 $2)
(cond

kkéromise? $1) (delay/name ($append (force $1) $2)))))

As a result, even if answers exist microKanren may fail to produce them. We will remedy
this weakness in $append, and provide microKanren with a simple complete search. We want
microKanren to guarantee each and every answer should occur at a finite position in the
stream. Fortunately, this doesn’t require a significant change.

#| Stream X Stream —> Stream |#
(define ($append $1 $2)
(cond
kkbromise? $1) (delay/name ($append $2 (force $1))))))

That’s it. This one change to the promise? line of $append is sufficient to make disj fair
and to transform our search from an incomplete, depth-first search to a complete one.
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Interestingly, we haven’t reconstructed a particular, single complete search strategy.
Instead, the search strategy of microKanren programs is program- and query-specific. The
particular definitions of a program’s relations, together with the goal from which it’s executed,
dictates the order we explore the search tree. By contrast, Spivey and Seres implement
breadth-first search, also a complete search, in a language similar to microKanren [12].

Relying on non-strict evaluation simplifies their implementation; manually managing
delays would make the call-by-value version less elegant than their implementation. Even
excepting that, their implementation requires a somewhat more sophisticated transformation
than does ours. Kiselyov et al. describe a different mechanism to achieve a complete search,
but they too rely on non-strict evaluation [9]. We achieve a simpler implementation of a
complete search by using the delays as markers for interleaving our streams.

6 Conclusion and Related Work

There has been extensive research on logic programming implementation [1]. Spivey and
Seres’s [12] present a Haskell embedding of a language quite similar to microKanren. They
begin with depth-first search language, and through transformations derive an implementation
of breadth-first search.

Hinze [7, 8] and Kiselyov et al. [9] implement backtracking with asymptotic performance
improvements over stream-based approaches like that used in microKanren and the works
cited above. These context-passing implementations are also more complicated to understand
and to implement. We chose to use streams in part to more easily communicate ideas.

The fair search operators in Kiselyov et al’s LogicT monad provide the basis of the
interleaving search in earlier miniKanren implementations. The LogicT transformer augments
an arbitrary monad with backtracking and control operators similar to those we use. We
have access to the whole logic program in our embedding and carefully control interleaving
in recursions; therefore we can use less frequent interleaving and maintain a complete search.

Our development led us to a number of interesting, still-open problems. Hinze [7]
shows list-based implementations of nondeterminism to be asymptotically slower than a
continuation-based “context-passing” implementation. We would like to combine our manual
control of delays with a context-passing implementation & la Hinze and Kiselyov et al. [9].
Earlier work by Wand [13] and Danvy et al. [2] in relating models of backtracking has
provided a starting point.

While define-relation is sufficient to ensure our search is complete, it in general causes
more interleaving than necessary. For instance, mutually-recursive relations only need one
interleaving point between them, and we don’t need to interleave at all deterministic relations.
We could statically “push down” the delays into the body of a relation, reducing the amount of
interleaving we perform while retaining a complete search. We would also like to mechanically
prove the correctness of our search with a dependently-typed implementation whose types
encode our fairness properties.
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or position of the Department of Defense or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon.
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