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—— Abstract

A railway timetable is typically planned one year in advance, but may be revised several times
prior to the time of operation in order to accommodate on-demand slot requests for inserting
additional trains and network maintenance. Revising timetables is a computationally demanding
task, given the many dependencies and details to consider. In this paper, we focus on the potential
of using optimization-based scheduling approach for revising train timetables during short term

planning, from one week to few hours before the actual operation. The approach relies on a
MILP (Mixed Integer Linear Program) model which is solved by using the commercial solver
Gurobi.

In a previous experimental study, the MILP approach was used to revise a significant part
of the annual timetable for a sub-network in Southern Sweden to insert additional trains and
allocate time slots for urgent maintenance. The results showed that the proposed MILP approach
in many cases generates feasible, good solutions rather fast. However, proving optimality was in
several cases time-consuming, especially for larger problems. Thus, there is a need to investigate
and develop strategies to improve the computational performance. In this paper, we present
results from a study, where a number of valid inequalities has been selected and applied to the
MILP model with the aim to reduce the computation time. The experimental evaluation of
the selected valid inequalities showed that although they can provide a slight improvement with
respect to computation time, they are also weakening the LP relaxation of the model.
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Digital Object Identifier 10.4230/0ASIcs. ATMOS.2017.10

1 Introduction

A railway timetable is typically planned one year in advance, we call it a master timetable,
but it often needs to be revised as the time of the operation approaches. A revision might be
necessary for various reasons including for receiving requests to plan additional trains, or to
plan for urgent maintenance before the actual time of the operation. Applying optimization
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methods for revising timetables can be very beneficial especially in highly utilized networks.
However, railway timetabling is a complex task and it is almost impossible for human brains
to schedule a timetable optimally in dense networks. Hence the need for efficient optimization
tools is evident.

A previous study by [3] showed that the applied optimization model can be slow when
solving large problems including inserting additional trains and allocating slots for urgent
maintenance. The results from [3] showed that in most of the cases, where at most two
trains are inserted simultaneously or a track should be allocated for one hour duration
maintenance, a feasible timetable can be found within the first minute of model execution
but proving optimality of the solution can be time consuming. For larger problems, i.e.
inserting more than two trains simultaneously, or longer durations for track allocation for
urgent maintenance, even finding a feasible solution can be challenging. Hence, there is a
need to investigate and develop strategies for speeding up the solution process.

The optimization-based approach applied in this paper relies on a MILP (Mixed Integer
Linear Programming) formulation which is an extension of a previous event-based model
developed by [8]. This model was, however, developed for real-time rescheduling purposes, but
it is applicable for timetable planning wherever there is a master timetable to be considered.
This model can be used for planning operational details including explicit order of trains,
explicit order of arrivals at stations where simultaneous entrance at the stations is not allowed,
explicit track allocation for bidirectional multi track lines and stations, track and platform
lengths.

In order to reduce computation time in MILP models, there exist several approaches
including reformulating the problem and developing effective search algorithms. In this
paper we focus on strengthening the formulation of the current MILP model. We develop,
implement and evaluate certain boosting methods inspired by [4], [10] and [7]. The boosting
methods are focused on generating several types of valid inequalities which are implemented
in the MILP formulation. The impact of the selected valid inequalities on model runtime is
also studied. MILP models are known to often have weak LP relaxations because of the use
of so-called disjunctive big M constraints. Therefore we also analyze the impact of the big
M constraints on our model performance.

The approach has been experimentally applied on various scenarios for Swedish timetable
instances. A railway network in the south of Sweden, including Blekinge Kustbana and the
Southern main line between Héssleholm and Malmd, has been selected for the analysis. The
master timetable of 2015 is considered. In our experiments we have used the commercial
solver Gurobi to solve the problems.

To summarize, the research presented in this paper aims to: i) develop and apply valid
inequalities for our MILP model and assess their impact on model performance, ii) analyze
the impact of having big M constraints on model performance.

In the remainder of this paper in Section 2, we describe our MILP model which we
call the basic model in the rest of the paper. In Section 3, a summary of related previous
work is presented. In Section 4, the selected boosting methods are explained. In Section 5,
details of the problems and scenarios are presented. Section 6 holds the results and Section 7
summarizes the conclusions and outlines the future research. The full model is presented in
Appendix A.
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2 Basic model

We consider a MILP model based on the model presented in [9]. The model is further
extended in [3] to solve certain timetabling problems which are also addressed in this study.

2.1 General description

In the proposed model, the train traffic is modelled as a set of train events to be allocated to
slots on the available track resources. An event represents a train i passing a section j while
occupying track q. We distinguish between train event s and section event k. To denote
a train involved in the k" event of section j, we write i(j,k) and we let s(; ) denote the
corresponding train event. Given a train ¢ and its train event s, we identify the corresponding
section as j(; ;). Basically, train and section events are two different representations of the
same event.

We denote T as the set of trains and J is the set of sections. S; refers to the ordered set
of events for train ¢ € T', it contains all the section numbers traversed by train i. K refers to
the ordered set of events for section j € J, it contains all the train numbers that pass section
J. Cj refers to the number of tracks at each section j, while q(; s specifies the track number
assigned to train ¢ at train event s.

Each train event s, related to train 7, has two continuous variables, one for the start
time tg)s) and one for the end time tg)s) of the event and one binary variable z(; ; ,y which
takes value of one if track ¢ is allocated for train event s. Each section event k, related to
section j, has two binary variables for the precedence of trains. In single track lines, the
overlap between section events is not allowed, hence there are only two situations allowed
after rescheduling: i) either the order of two events is the same as the initial order or ii) the
order is changed. A binary variable 7(; 1) takes value one if the order between two section
events k and k + v is the same as the initial order and zero otherwise. The initial order of
trains is based on the master timetable. In one section with multiple tracks, events may
overlap if they are allocated different tracks, so there is not only a binary choice but multiple
alternative choices. In multi-track lines, two section events k and k 4 v either 1) keep their
initial order, or 2) switch the order or 3) have time overlap. Hence, a new binary variable
A(j,k,v) 18 introduced. In multi track lines, A(; ) takes value zero if the order between two
section events k and k 4 v is the same as the initial order and one if the order is swapped.
This is elaborated further in Figure 1 since understanding the concept and relations between
these variables is the key to generating some of the valid inequalities analyzed in Section 4.1.

We do not allow 7(; 1) and A(; ) take value one simultaneously, therefore we have
AGkw) F VGky < 1 (constraint 26). We also need to make sure that where on the same
track, either 7(; x.v) or A(jk,v) takes value one, therefore we have ¢ . si viv i) T
T 8G00000e) < VGkw) T AGkw) T 1 (constraint 33). By this formulation ;) and
A(j,k,v) both can take value zero simultaneously only when they are not happening on the
same track. In this situation the events k and k + v can be overlapped. Note that when the
events k and k + v do not happen on the same track, either v(; 1 ) or A(; k) can take value
one or they can both be equal to zero, however, we do not care what value they take when
not happening on the same track.

The complete model is presented in Sections A.1-A.4. The basic model covers details
including track allocation at stations considering train length and track length, restricting
simultaneous train entrances at stations where required and respecting technical minimum
headway at sections with multiple block sections.

10:3

ATMOS 2017



10:4

Analysis of a MILP Model for Revising Railway Timetables

Single Track Multi Track
3 B E )
Before Tk < giken iy < ke
rescheduling _|_____Eyg_n:c_k_ _____ l-.l_Eygp_t_&tv__l__ Track g1 _l____E_v_e_nt_h _____ J____E_\@nt_lsf\_r__|__ Trackql
__________________________________ Track g2
E ] E B
Ein < piken Tk < ke
_|_____Ey_e_n_t_k_ _____ l-.J_EY?P_t_K’f_V__l__ y=1, Sametrack g, ,L,,,,E,\{e,ntk ,,,,, J,,J,E,\{Eﬂtis’t\!,l,, y=1, k=0 , Same track q,
E B E B
After B e < k) ke <m0
rescheduling|
_|_E\gentk¢_—y__‘___1____5\1@[11}( ______ L y=0, Same track g, 7<|7E7\Lej1tjgt\ii<liiiliii7E7\¢iejj't7|;( 777777 | y=0, A=1, Sametrack g,
Time overlapis NOT allowed. | Eventk___ | Track g1 vy=0, A=0 , Differenttracks
Time overlapis allowed.
location e Track q2
E 8 E B
T_. T Eri > T e O T ey > T g

Theindices (j.k]int?;andt®} ., correspond to the train events sy and sg 4.,

Figure 1 Elaborating variables v(; x,v) and A x,v)-

2.2 Further extensions

We focus on solving problems in which a new train is to be inserted in a master timetable or
a slot to be allocated in for urgent maintenance. [3] further developed the model to insert
additional trains, the details are presented in the Appendix, Section A.5. Allocating slots for
maintenance can be handled as inserting a virtual train in which the minimum travel time
equals to the duration of maintenance.

3 Related research

To improve model runtime one can develop efficient algorithms, e.g. based on heuristics
and Lagrangian relaxation. However, before developing algorithms we should first try to
strengthen the model formulation. An overview of the studies related to applying different
modelling and solving algorithms in railway timetabling problems, can be found in [5] and [1].
Applying Integer Programming (IP) and MILP formulations in general timetabling problems
as well as in train timetabling problems are very common. In IP formulations the number
of variables and constraints grow rapidly if the precision for time variables changes from
minutes to seconds. In train timetabling problems IP formulations have been applied for
calculating a timetable in minute precision. However, during short term planning, typically
we have a large number of variables and constraints and also the time precision should be in
seconds. Hence, the use of IP formulation is less practical and MILP formulations are more
common. On the other hand, the LP relaxation of MILP formulations including so-called
disjunctive big M constraints is known to often be rather weak and solving larger problems
with existing powerful commercial MIP solvers can be very difficult and time-consuming.
The focus of this research is on reformulation and the reviewed literature here is focused on
methods to strengthen MILP formulations.

In [4] possible situations that might arise when solving common MIP formulations with
state-of-the-art optimization solvers are described and explained. Recommendations on how
to analyze the model properties based on the solver output and potential strategies for model
improvements, are also presented.

[10] also proposed several methods for improving MILP formulations and their runtime.
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Among them, hybrid Big M formulation, incremental formulation (effective branching) and
large formulations (decomposition) can be mentioned. The hybrid Big M formulation is
described in more detail in Section 4.2.

For a general scheduling problem, [6] introduced four different time representations for
MILP formulations and proposed the corresponding mathematical formulations for each
type of the representations. The proposed time representations are based on defining some
priority slots and are as follows: i) if several operations can be done in each priority slot or
not, ii) if the overlapping of the operations is allowed or not, and iii) if the start time of the
operations are synchronized or iv) fixed. They introduced various valid inequalities based on
the structure of the data and the type of the formulation and they focused on generating a
matrix for non-priority slots. When translating their method for railway scheduling problems,
it is applicable only for single track problems. However it can be developed further for double
tracks.

In studies related to railway scheduling, [11] applied preprocessing methods to reduced
the problem size for routing problems in railway stations in a Dutch network. They also
generated some clique inequalities based on the structure of their model. [7] studied several
boosting methods for their proposed MILP model. They tested ten different methods and
their combinations, and studied the runtime of their proposed model. They reported that for
all instances except one, their proposed boosting methods did not have a significant effect
on model runtime. Their interpretation of the results is that the initial model is already

well-formulated and CPLEX branching strategy is already very good for this kind of problem.

However, these results are related to the properties of their model and its specific context.

4 Testing selected boosting methods
We focus on evaluating three sets of valid inequalities. Furthermore we analyze the effects of

having constraints with big M.

4.1 Evaluating selected valid inequalities

We develop three sets of valid inequalities and evaluate their impact on model runtime. VIE1
is developed based on some logical relations between variables and is model specific. We

think that VIE1 can strengthen the bounds since it can remove undesired MIP solutions.

VIE2 is based on the idea of having explicit constraints for transitivity relations between the

events in the model. VIE2 is inspired by [7] since their model structure is similar to ours.

However, their presented transitivity valid inequalities need to be developed further to be

applicable for our model. VIE3 is also based on a logical relation between different variables.

We think that it can improve the model runtime although it cannot remove undesired MIP
solutions.

4.1.1 Enforcing v and A\ to zero when they are not on the same track
(VIE1)

On line sections with multiple tracks (C; > 2), non-zero v and A are only relevant when
their corresponding event is scheduled on the same track. If their corresponding event is not
scheduled on the same track then both v and A can be set to zero. The following constraints
impose that when ;1 s i0)a) OF T(igs 0 s.00.0) (O0Ly one of them) is equal to one then
both -y and A should equal to zero. For j € J,s € S;,k € {1...|K;|—1},v € {1...|Kj| —k},q €

10:5
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{1CJ}
Tty 3G sd) — Ll sGaa) = 1~ VGko) — ) (1)
Ligr),8G,0),0) L, ktv)sS(G k+v)10) <1- V(kw) — )\(j7kvlu) (2)

Valid inequalities are commonly defined as constraints which can cut a fractional part of a
solution from a relaxed solution and they never cut a MIP solution. On the other hand, valid
inequalities VIE1 can cut undesired MIP solutions (they remove those solutions in which
variables A(; k) and 7(; x,v) take value 1 when events k and %k + v do not happen on the same
track), hence they do not fit in the traditional definition of valid inequalities even though
they never cut an optimal solution if there is only one unique optimal solution. However, if
there are several degenerate optimal solutions, those in which the value of variables A(; . .)
and v(; k) is one, when not on the same track, will be cut.

4.1.2 Transitivity (VIE2)

The second set of valid inequalities are inspired from a study done by [7]. These valid
inequalities enforce the implicit relations between events in an explicit way. Given three
successive events on the same track, this set of valid inequalities imposes that if A x 1)
between the first event and the second event is 1 and also A(; x+1,1) between second event
and third event is 1 then the A(; ;o) between the first event and the third event should also
be 1. The same relation is relevant for v as well.

In single track sections (C; = 1), for j € J,s € S;,k € {1...|K;| — 2}:

Y6k T YGR+1,1) S TG k2 (3)
2 =Gk T VGR+L) S 27 V(Gk,2) (4)

In multiple tracks sections (C; > 2), for j € J,s € S;,k € {1...|K;| — 2}:

AGk1) T AGR+11) ST+ AGR2) (5)
Y6k 1) T YGRALD) < 1 +HY6,k2) - (6)
As explained before, in the basic model 7(; .,y and A(; ) can take value of one even though
events k and k + v are not happening on the same track, in these cases the above valid

inequalities can cut an undesirable MIP solution and are not cutting only fractional parts of
a relaxed solution.

4.1.3 Balance between number of section events and track occupancy
(VIE3)

The third set of valid inequalities emphasizes that the sum of track occupancy (x(; s,q)) Over
all track events (k) and all tracks (¢) in each section (j) equals to the number of section
events (|K|). These constraints only apply to sections with multiple tracks (C; > 2).

Cigi,0) 1K5]

DD Tgmsoma =Kl €T (7)

qg=1 k=1

4.2 Hybrid Big M

This method is inspired by [10]. Basically for each big M constraint we attempt to find the
smallest value for M which is sufficiently large. In [10] it is referred to as sharp M. We
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Figure 2 Location of the case study (red line).

categorize constraints by analyzing their left hand side. According to [10], those constraints
that have similar left hand side can take the same value for big M. In the basic model the
value of M is 24 % 60 x 60 = 86400 seconds, since the time window in our tested problems
is always shorter than 24 hours. For testing the impact of having hybrid M, we define six
categories for big M. In each category the value of the big M varies per section j. Category 1
includes equation 23. Category 2 includes equations 24 and 25. Category 3 includes equations
27 and 34. Category 4 includes equation 28. Category 5 includes equations 29 and 35 and
category 6 includes equation 30. We take the sharp M values from the obtained optimal
solutions when applying the basic model and we solve the problems again and compare the
model performance.

5 The studied corridor and timetable instances

The experiments are performed on a timetable instance from Sweden. The timetable instance
is extracted from the corridor Karlskrona to Malmo, see Figure 2. A part of the line is single
track (from Karlskrona to Héssleholm) and the other part of the line is double track (from
Héssleholm to Malmd). The instance is a time window between 16:00 and 23:00 on October
15, 2015. The selected corridor consists of 85 stations. The published daily timetables from
Swedish Transport Administrations (Trafikverket) are not always completely feasible and

may contain minor violations depending on how e.g. minimum headway values are applied.

The selected timetable instance has therefore been calibrated prior to our experiments, in
order to ensure feasibility under the assumptions we have made. The studied corridor is
highly utilized. The total number of trains running within the time window (16:00-23:00) in
the studied network is 295. The peak hours happen between 18:00-20:00 with 27 trains run
per track.

5.1 Problem types and scenarios

We test the selected boosting methods on three types of problems:

Inserting one single train: We select 6 additional trains to be inserted in a master
timetable. The selected trains have different minimum travel times, they run on different
parts of the corridor and in different directions. We generate random insertion time for
each additional train. The random insertion time is the departure time from the first
section. Each of the 6 trains are assigned 8 random insertion times which sums to 48
scenarios in total.

10:7
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Allocating slots for urgent maintenance, fixed hour, different sections: One hour main-
tenance between 21:00-22:00 is to be allocated for all line sections with double tracks.
This hour is selected since maintenance is preferred to be done after the rush hours. In
the studied corridor we have 20 line sections with double tracks that means we have 20
scenarios.

Allocating slots for urgent maintenance, variable hour, fixed section: For section TO-HO
one hour is randomly selected from the time window (16:00-23:00). To be consistent
when comparing the results for maintenance problems, here we test 20 scenarios as well.
This section is selected since TO-HO is located in the middle of the double track segment
of the line and has an equally distributed traffic in both direction.

6 Results

This section holds the main results from the studied scenarios described in Section 5. The
model is implemented in Java and solved using Gurobi 6.5 on a PC i7-5600U at 2.60 GHz, 8
GB of RAM, running with windows 7-64.

6.1 Results of the experiments for the selected valid inequalities

We test the selected valid inequalities on scenarios from all three types of problems. We
solve each scenario four times, first with applying the basic model, then applying each of
the mentioned valid inequalities. The objective function when inserting a single train is to
minimize the time deviation from the master timetable for arrival and departure times for
all the train events at all sections, plus total travel time of the additional train, plus track
deviations from the master timetable for all trains. However, in the Swedish context, the
scheduled departure and arrival times of the existing trains are not to be changed by the
infrastructure manager. Furthermore, in our scenarios the assigned tracks for pre-planned
stops at stations, should remain unchanged. For the maintenance problems, the objective
function is the same as before, but the weight for track deviations is set to 300 (seconds).
From a minimization problem perspective, this means that a track change would be equivalent
to a 5 minute time deviation for one train. In maintenance problems arrival/departure times
and track allocations for the existing trains are flexible.

6.1.1 VIEs defined as main constraints

The influencing factors and the performance indicators that we consider when analyzing the
model performance are: size of problems, number of simplex iterations, time for presolve,
normalized objective value and gap over model runtime and the time for finding the first
feasible solution.

Size of problems. When implementing valid inequalities, the number of variables remains
the same but the number of constraints increases and this might lead to tighter bounds and
improve the performance of the model which should be tested. In the current experiments
for all three types of problems, the number of constraints doubled approximately after
implementing VIE1 (e.g. from approximately 2,800,000 in the basic model to approximately
5,700,000 when implementing VIE1 for inserting a single train). For VIE2 and VIE3 the
number of constraints increased slightly (less than 500,000 for the same example).
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Simplex iterations. Having fewer number of simplex iterations is not an indication of a
better performance. However, comparing the number of simplex iterations can show how the
model behaves when implementing certain valid inequalities. Experiments shows that the
number of simplex iterations was at least doubled when implementing VIE1. The changes in
the number of iterations for the other set of valid inequalities were not considerable.

Time for presolve. Time for presolve when implementing valid inequalities either increased
or remained almost the same as the time for presolve in the basic model. For VIE1, time for
presolve increased by 2 to 3 times.

Normalized objective value and gap over model runtime and the time for finding the first
feasible solution. Figure 3 shows the results from one scenario (1 out of 48) for inserting a
single train. On the left we have the normalized objective value and on the right we have gap
over model runtime. For this instance we can see that VIE2 and VIE3 perform almost the
same as the basic model while VIE1 changes the performance. It is obvious that in the basic
model and VIE2 and VIE3 the heuristics performed better, the first solution is found earlier.
Later and close to the optimal solution, the heuristics find the optimal solution. In VIE1 the
first solution is found later (compared to the basic model and other VIEs) and then there is
a steady computation over several iterations to find the optimal solution. Figure 4 shows the
normalized objective values and gap for 48 scenarios when applying VIE1. The dotted lines
are the results from applying VIE1 and the solid lines are the results from the basic model.
We can see that in almost all of the scenarios applying VIE1 makes the model slower often
because of not finding a good first feasible solution fast. We have also done some experiments
with providing the first feasible solution, still VIE1 does not perform better than the basic
model and the other two VIEs. From the gap results from the same set of experiments, it
is obvious that the first feasible solution is found later, compared to the basic model, and
the found solutions by heuristics are less frequent. When applying VIE1 proving optimality
takes more time compared to the other scenarios and the basic model.

» Remark. Based on the evidences we can conclude that VIE1 causes weaker LP relaxations.
In Table 1, for single train insertion problem, when applying VIE1, none of the scenarios had
a shorter computation time compared to the basic model. When applying VIE2, in 30 out of
48 scenarios (62% of the scenarios) the computation time was shorter (with maximum 436
seconds and average 43 seconds, on average 28%, improvements). When applying VIE3, in 24
out of 48 scenarios (50% of the scenarios) the computation time was shorter (with maximum
155 seconds and average 25 seconds, on average 25% improvements). When implementing all
sets of valid inequalities at the same time, VIE1 have a large influence on the results and
the results have the same properties as implementing VIE1 only. In Table 2, the results for
maintenance problems are presented. In most of the scenarios a feasible solution is found
within the time limit but the gap can be large. We can observe that VIE2 and VIE3 could
reduce the average computation time in scenarios with random one hour maintenance while
VIEL increased the average runtime in all maintenance scenarios.

6.1.2 VIEs defined as user-defined cuts

We test whether applying VIEs as user cuts (instead of main constraints) can reduce the
computation time since user cuts are generated only if some user defined criteria are valid. In
our method we define the criterion where the gap is below 20%. However, VIE1 and VIE2 are
not pure valid inequalities and they indeed can cut feasible MIP solution in some scenarios,
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Table 1 Results of the scenarios for testing the impact of valid inequalities on inserting a single
train problem, 48 scenarios (min,avg,max).

Non-

Insertin Computation . . . Improve in
a singleg Timep Gap Objective optimal cori)lputation

. (%) value solutions |,
train (mm:ss) (#) time (%)
Basic (00:07,02:13,-)  (0,2,22) (1587,3802,7734) 6 NA
VIE1 (01:38,08:10,-)  (0,9,32) (1587,3986,7751) 31 0
VIE2 (00:07,02:04,-)  (0,2,22) (1587,3802,7734) 6 28% of 62% of scen.
VIE3 (00:07,02:07,-)  (0,2,22) (1587,3802,7734) 6 25% of 50% of scen.

Gap tolerance: 0.03(%), Time limit: 10 min. '~ Terminated by time limit. All values are rounded.
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Table 2 Results of the scenarios for testing the impact of valid inequalities on allocating urgent
maintenance problems, 20 scenarios, (min,avg,max).

Computation
time
(mm:ss)

Gap
(%)

Closing VIE Maintenance

. Objective value
section

time window

(1998,9725,60900)
1 non-opt.

2 infeasible
(1998,10354,72220)
1 non-opt.

2 infeasible
(1998,9830,62777)
1 non-opt.

Basic ~ 21-22 (00:03,00:47,)  (0,4,66)

Random VIEl 21-22 (00:07,01:13,-)  (0,4,75)

VIE2 21-22 (00:03,00:49,-) (0,4,69)
2 infeasible
(1998,9873,63549)
1 non-opt.

2 infeasible
(9053,25296,41783)
2 non-opt.

6 infeasible
(9053,25505,42465)
2 non-opt.

6 infeasible
(9053,25294,41783)
2 non-opt.

6 infeasible
(9053,25292,41783)
2 non-opt.

6 infeasible

VIE3  21-22 (00:03,00:47,-)  (0,4,67)

Basic  1h random (00:12,02:59,-)  (0,1,10)

TO-HO  VIEL 1h random (00:29,03:01,-)  (0,4,30)

VIE2 1h random (00:10,02:00,-)  (0,1,10)

VIE3  1h random (00:09,01:49,)  (0,1,11)

Gap tolerance: 0.03(%), Time limit: 10 min. ™~ Terminated by time limit. All values are rounded.

therefore they cannot be implemented as user-defined cuts by definitions in Gurobi [2]. On

the other hand, VIE3 can be implemented as user-defined cuts instead of main constraints.

By doing so, unlike what we expected, the average of model runtime increased from 127 s to
156 s and 9 solutions out of 48 scenarios were non-optimal after 10 min model execution,
compared to 6 in the basic model. One reason might be because of having too many Gurobi
call-backs during the optimization process.

Updating VIE2. Notice that in VIE2 we did not include the condition of "when happening
on the same track’. We can apply VIE1l and VIE2 together to make sure that VIE2
is enforced when on the same track. In this case, as mentioned before, the results are
affected very much by VIE1. However, we can also reformulate VIE2 such that it will be
enforced only when events are happening on the same track. We tested whether we can
transform VIE2 to pure valid inequality by applying some changes. Hence, we include track
allocation in the constraints 5 and 6 and update them, in multi tracks sections (C; > 2), for
jeJ,se S ke{l.|K;|—2},qe{l.C;}:

)‘(j,k,l) + /\(j,kJrl,l) + L(i51)+80, 1)) + L (i, m41)>8(5,k+1)>a) + L(ij 142),50,k+2):2)

<4+ AGk2) (8)
Ve T VG R T L(i(j,1)25(5,k) ) + L(i 5, 041)5(5,k+1)9) + L(i (5 012)>5(5,k+2)0)
<4+ 94k2) (9)
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The above constraints narrow VIE2 to those events that happen on the same track q. We
call constraints 8 and 9 Updated-VIE2. The results shows that when inserting one single
train, still the Updated-VIE2 can cut MIP solutions, meaning that they are not pure valid
inequalities and they cannot be implemented as user cuts. However, when implemented as
additional main constraints, in 33% of scenarios (16 out of 48) we had improvements in
runtime with average 18% and maximum 70%. The average runtime became 118 s (compared
to 124 s). For maintenance problems, in the scenarios that we tested, Updated-VIE2 never
cut a MIP solution and hence could be implemented as user cuts. The results show that for
random section scenarios only in 2 scenarios (out of 20) the model runtime decreased (with
max 2%). In all the scenarios for random one hour in section TO-HO the model runtime
increased (compared to the basic scenario).

6.2 Results of the experiments for hybrid big M

Applying the hybrid big M method shows the impact of the big M value on the computation
time. In real practice big M can be bounded to the time window of the timetable. The results
show that the computation time is very sensitive to sharp values for M. The computation
time for those scenarios which took 1 minute approximately (in all three types of problems),
dropped to 1 or 2 seconds. However, in real practice it is not easy to estimate the sharp
value of big M since if M is not big enough it might change the solution space. On the other
hand having very small values for big M might cause confusion in Gurobi because of the
scaling problem. Hence, when the sharp value is unknown, it is better to have relatively
large big M values and let the solver deal with the scaling problem itself.

6.3 Other influencing factors

We use solver Gurobi with default parameter setting. However, Gurobi has an option for
parameter tuning and we can let the parameter tuning option select the best values for
parameters and analyze the effects on model runtime. When inserting a single train, following
the tuning option recommendations we could decrease model runtime for an instance from 115
s to 18 s. Following the recommendation from the parameter tuning option for maintenance
problem, model runtime decreased from 6:06 to 4:43 (mm:ss) for an instance. Although the
tuning option can help decreasing the model runtime, it is difficult to find a tuning pattern
for different types of problems. This means that to have relatively good results, the set of
tuning parameters needs to be optimized for each separate problem.

7 Conclusions and future research

The strengths and weaknesses of a MILP model are analyzed for certain practical timetabling
problems. To decrease the computation time, three different groups of valid inequalities were
tested on a rather limited set of scenarios and their impact on computation was studied.
Results show that valid inequalities VIE2 (transitivity) and VIE3 (section balance) for some
scenarios can improve model performance but they did not have a significant effect on the
computation time. Valid inequalities VIE1 (enforcing values for v and \), caused weak
relaxation and they did not improve model performance for the limited number of scenarios
we evaluated. The reason behind is that this set of valid inequalities can cut degenerate
MIP solutions. Therefore, they make the model tighter and remove some feasible MIP
solutions which have a negative impact on LP relaxation and the embedded heuristics in
Gurobi. Valid inequalities can be implemented as user defined cuts in Gurobi only if the
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VIEs do not cut any feasible MIP solutions. In our scenarios this method is therefore possible
only for VIE3 (section balance). However, after implementing VIE3 as user-cuts the model
runtime increased slightly. This might be because of having too many call-backs during the
optimization process. The parameter tuning option in Gurobi is strong but it is scenario
specific and the optimal parameter setting for one scenario cannot be extended to the other
scenarios. Furthermore, this tool is only useful if optimality can be reached in a reasonable
time. Providing sharp big M values for the studied scenarios, improved model performance
which can indicate that the model is sensitive to big M values.

In this research only those boosting methods related to improving model formulation were
explored. Introducing auxiliary variables to improve LP relaxations and boosting methods
related to providing search algorithms can be investigated in future studies.
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A Appendix: The applied timetabling model

In this appendix a complete description of the used optimization model is given. The model
is a mixed integer linear program (MILP) and an event-based description of railway traffic.
An event represents a train ¢ passing a section j while occupying track q. We distinguish
between train event s and section event k. To denote a train involved in the k*" event of
section j, we write 4 ) and we let s(; 1) denote the corresponding train event. Given a train
i and its train event s, we identify the corresponding section as j; -

Sets and parameters. T set of trains. J: set of sections. S;: ordered set of events for train
i € T, it contains all the section numbers traversed by train ¢. Kj: ordered set of events for
section j € J, it contains all the train numbers that pass section j. C;: number of tracks at
each station j. tAgS): initial start time of train ¢ € T at event s € 5. 1?5_’3): initial end time
of i € T at event s € S;. t5: clearance time at section j. t?;’:; minimum time required for
train ¢ to pass event s. q(; 5): track number assigned to train ¢ at train event s. I;: Length
for train 4. L; 4): Length for track ¢ in section j. M: sufficiently large constant, here 86400
seconds. h;: technical minimum headway time between any two consecutive trains ¢ and i+1
on a section. p(; sy is 1 if train 7 has a scheduled stop at train event s and 0 otherwise. d(; )
is 1 if event s for train 7 is on a line section and 0 if event s for train 7 is at a station section.
gy is 1 if section j is a line section and 0 if section j is a station section. ¢;) is 1 if direction
for train ¢ is southbound and 0 if direction for train i is northbound. ;) is 1 if simultaneous
arrival at station j is allowed and is 0 if simultaneous arrival at station j is not allowed.
Variables. tﬁ,s) > (: start time of train ¢ € T at event s € S;. t{is) > 0: end time of train
i €T at event s € ;. d(; 5) > 0: absolute deviation between the new calculated departure
time and the initial departure time for train 7 at event s. a(; ) > 0: absolute deviation
between the new calculated arrival time and the initial arrival time for train 7 at event s.
T(i,s,q) 18 1 if track ¢ is assigned to train 7 at event s and 0 otherwise. 7(; ) is 1 if event k
occurs before event k+v, as in the initial timetable (k<k+v) and is 0 otherwise. Aj .,y is 1
if event k is changed to occur after event k+v (k<k+v & C; > 2), and 0 otherwise. w(; j.o)
is 1 if event k is on a station and occurs before event k+v and (k<k+v,5(i(j,k),s(jvk)) =0,
5(i(j,k+v)7s(j,k+v)) =0, C; > 2). It takes value 0 if event k is on a station and occurs after
event k+v. y(; ) > 0is 1, if the allocated track number is different from the allocated track
number in the master timetable, 0 otherwise.

Objective function

min[z Z ((d(i,s) + a(i75)) -w1) + Z Z (y(ivs) . 'LUQ)} (10)

i€T s€S; i€T s€S;

Constraints

tho —tGyl <dus , G€T,sES (11)
166 o) — 10| < agivs) ; ieT,s€sS; (12)

T(i,s,q") < Y(i,s) ) 1€ Ta ERS Siv Cj(i,s) > 2 & qu,s) 7é q(i,s) (13)
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Yei,s) <1 =254 ; i €T,5€8,C), 22 & qg = s (14)
Yi,s) <0 , i€T,s€85;,C5, ., =1 (15)
tho =thsiy » G€T,s€S; (16)
th >l s ieTses; (17)
iy 2iGy i€l (18)
tho =t , i€T,s€8;:pus =1 (19)
Tis,q0.0) = 1 , i€T,s€8;:035,5=1 (20)
thy="thy , i€T:if,)<Th (21)

T(id,qu0) = 1 , 1eT:C;

B
FICRY) > z’t(i,l) <Tp (22)

When event k happens before event k + v, as it is in the initial plan then: j € J & k €
{1"'(|KJ| - 1)} & vE {1"‘(|KJ| - k)} : qsi(jyk) # qbi(jyk_,_v)

B E c
t(i(j,k+v)7s(j,k+v)) o t(i(j,k),s(j,k)) Z Yk b~ M- (1- 'Y(j,k,v)) (23)

When event k happens after event k + v, the order is reversed compared to the initial plan.

B E :
iy 50) ™ HG ety 5Gkt)) 2 (L =G k) 15 = M -G k) (24)

When the order of trains is reversed compared to the initial order; this constraint is only
necessary for double tracks.

B E c
t(iu,kau,k)) N t(iu,kw)ﬁu,kﬂ)) 2 Aty — M- (1= AGk0) (25)
AGikw) T VGkw) <1 , C;>2 (26)

For single and double track keeping the initial order: j € J & k € {1...(|K;| - 1)} & v €
(L (BG [ =R)} : Gigy s = Piggps

B B
b sgirn) ~ Higamsgr) = Mt — M- (=G k0) (27)
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A t > he = M- (1 =5 k) (28)

b arrsGaen) ~ Higmsem) 2
For double tracks with reverse order: j € J & k € {1...(|K;| — 1)} & v € {1...(|K;| — k)} :

Pigay = Piggnsw)

B B
iy s0) ™ Higasaysiaie) = e =M (= AGkw) (29)

E E
t(i(:‘,kw%‘k)) - t(i(j,k+v)15(j,k+u)) > hy— M- (1- )‘(jyk,v)) (30)
Citi,s)
> Tsguy =1 , G€T,sE€S8;,Ch,, =2 (31)
q=1

L(i,s,q0:,5)) = L(i,5+1,q(,5+1)) ) i€T,s€8;: Cj(i,s) > 2, Cj(i,s) = Oj(i,s+1)

(32)

For j € J,s € 85,1 € T,k € {1 K| — 1v € {1 K| — k} : iy, ,, = 0&C; > 285y = 0

L (i (5 k40)8G, ko) A(i,s)) + L5 1),5(i, k) A(i,5)) < Vi k) T )‘(j,k,v) +1 (33)
B B c
t(i(j,k+1))73(.7“k=+v)) - t(i(g,k),s(j,k)) > tj "W(G k) T M - (1 - W(j,k,v)) (34>

B B c

t(i(J,k)vs(j,k)) - t(i(j,k+v)7‘9(j,k+v)) 2 j (1 - w(ij/)) — M- W(j,k,v) (35)
VGkw) S Wikw) (36)
AGokw) T WGkw) <1 (37)

ForieT,s € S;,q€ {1|CJ|} TG = 0&/71‘75 = O&CJ ) > 2&l; > L(j,q)

(i,s

tho —ths SM-(1—2(isq) (38)

A.1 Adjustments in the extended model

The model is extended to solve problems of inserting additional trains and allocating slots
for urgent maintenance (defined as virtual additional trains). All the additional trains should
respect all the previous constraints. Therefore the additional trains are added to the set of
trains T" but they can be distinguished by their train number.
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Additional sets and parameters. n: Number of new trains to be inserted. m;: Train
numbers for train i. The list of trains also include the train numbers for the additional
trains. o.: Train numbers for additional train e. p(; .y: Minimum travel time for train ¢ when
m; = 0.. r: Start time of the time window in seconds. Here it is equal to 16*60*60. «: End
time of the time window in seconds. Here it is equal to 23*60*60. g.: Random Start Time
of additional train e. d;: Last event for train ¢ at its destination.

Additional variables. z(; ): Travel time for train ¢ when m; = oc. It is a continuous variable.
Y@i,s) = 0: 1, if the allocated track number is different from the allocated track number in
the master timetable, 0 otherwise.

Adjusted objective function. When inserting additional trains, since the existing trains
are fixed then the time deviation from the master timetable for the existing trains will be
zero. The part for track deviation can be separated for the existing and the additional trains.
wy and wy are some weights.

min[z Z (Yi,s) - w1) + Z Z (2(ie) - w2)] (39)

€T seS; i€T e=1

Additional constraints. For the travel time of the additional trains: For € T,e € {1...n} :

mg; = Oe¢
tian ~ i) < Zie) (40)
For respecting the insertion time window: For i€ T,e € {l..n}: m; =0,
thy <7 (42)
tﬁl) < ge+0.5-60-60 (43)
t1) = ge —0.5-60-60 (44)

The arrival and departure times for the existing trains are fixed according to their corres-
ponding values in the master timetable. For fixing the arrival and departure times for the
existing trains: For i€ T,ee€ {l..n}: m; # o,

B __ B
i) = tas) (45)
E — )
tis) = His) (46)

For the maintenance problems, constraints 45 and 46 are relaxed.
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