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Abstract
We consider the computation of periodic timetables, which is a key task in the service design
process of public transportation companies. We propose a new approach for solving the periodic
timetable optimisation problem. It consists of a (partially) heuristic network aggregation to
reduce the problem size and make it accessible to standard mixed-integer programming (MIP)
solvers. We alternate the invocation of a MIP solver with the well-known problem specific
modulo network simplex heuristic (ModSim). This iterative approach helps the ModSim-method
to overcome local minima efficiently, and provides the MIP solver with better initial solutions.

Our computational experiments are based on the 16 railway instances of the PESPlib, which
is the only currently available collection of periodic event scheduling problem instances. For each
of these instances, we are able to reduce the objective values of previously best known solutions
by at least 10.0%, and up to 22.8% with our iterative combined method.
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1 Introduction

Railways play a central role in transportation. According to a report of the International
Union of Railways, the largest operator in Germany, Deutsche Bahn, moved over 2 billion
passengers and 79 billion passenger kilometers in 2015. However, between 2004 and 2014,
inland passenger transport grew 5% slower than the constant price gross domestic product
(GDP) in the EU-281.

One reason for this might be that not as many people as would be desirable from an
ecological point of view are considering a journey by railway sufficiently attractive to make it
their first choice. In particular in the absence of a direct trip, waiting times along transfers
usually are highly disliked. Since transfer waiting times are an immediate outcome of the
timetable, it is a major goal of railway companies to design a timetable that implies short
transfer waiting times and hereby increases the attractiveness of their service offer.

In this paper we consider one such approach to increase the attractiveness of existing
railway systems. To this end, we focus on railway networks that are operated periodically.
Such a cyclic timetable repeats after the so-called period length T ; e.g., it offers the same

1 http://ec.europa.eu/eurostat/statistics-explained/index.php/Passenger_transport_
statistics
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services within each one-hour period. From a mathematical perspective, this property
is reflected in the periodic event scheduling problem (PESP) as introduced in [14]. We
are aiming at using PESP-based optimisation models and heuristics to construct periodic
timetables with short waiting times, in particular at transfers.

Timetabling problems have been studied intensively over the last decades and much
theoretical insight has been obtained. For a general survey on timetabling problems, we
refer to [1] and to [2]. Optimised timetables have already been put into practice. In [9] it is
described how mathematical optimisation was applied successfully to the Berlin Underground
network: Keeping the very same number of trips offered, transfer times as well as dwell times
of the trains at transfer stations had been reduced, while at the same time the timetable
required one train unit less for operation. In the Netherlands, even the entire national
railway network had been the subject of mathematical optimisation. Yet, even several further
planning processes aside the actual timetable design had been included in this project, see [6].
The protagonists report an increase in both, passenger volume and punctuality, as well as
several further improvements.

While the PESP model for cyclic timetabling is very flexible in capturing real-world
constraints, see [10], it is also notoriously difficult to solve. The modulo network simplex
(ModSim) heuristic [11, 4] is currently one of the strongest methods for large problem
instances; recently, also a matching approach has been proposed [13] if the PESP does not
contain limitations on the feasibility (see also [7]).

In this paper we present a new approach for solving the periodic timetabling problem,
which includes the ModSim-method as a subroutine. It is based on the idea of a (partially)
heuristic network aggregation to reduce the problem size. This allows the usage of a mixed-
integer programming (MIP) solver in combination with ModSim. One advantage of such an
approach is that the MIP solver and the heuristic have a completely different perspective
on the problem structure, which allows to overcome local minima efficiently. Combinations
of a MIP solver and a heuristic to overcome local optima have been successfully applied to
other problems, such as the travelling tournament problem [5]. Our method considerably
outperforms the ModSim-method as a stand-alone approach. Using instances of the PESPlib
library2, we are able to improve objective values of all current best solutions by at least
10.0%, and up to 22.8%.

The remainder of the paper is structured as follows. In Section 2 we formally introduce
the periodic timetabling problem, before we present the network aggregation procedure in
Section 3. In Section 4 we describe how we combine the ModSim-method with a standard
MIP solver, based on the (heuristically) aggregated network, and report our experimental
results.

2 The Periodic Timetabling Problem

We now briefly introduce the periodic event scheduling problem. We assume a so-called
event-activity network (EAN) N = (E ,A) to be given. Each node i ∈ E corresponds to
an event occurring with periodicity T ∈ N, while an arc a = (i, j) ∈ A models an activity
between two events. In the case of the periodic timetabling problem, nodes correspond to
arrival and departure events of trains at stations. Arcs model driving (from departure to
arrival) or waiting (from arrival to departure) activities of trains. Additional activities are
used to model, e.g., transfers of passengers, waiting times of trains or security (headway)

2 http://num.math.uni-goettingen.de/~m.goerigk/pesplib/

http://num.math.uni-goettingen.de/~m.goerigk/pesplib/
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Figure 1 Example event-activity network.

constraints, see [10] for some further modelling features. We present an example EAN with
three trains in Figure 1.

For each activity a ∈ A, we are given an interval [`a, ua] reflecting a lower and upper
bound on its duration. We call ua − `a the span of activity a. The aim is to assign a time to
each event, such that the durations of activities are within the desired time interval. Let πi

denote the time event i ∈ E takes place. Due to the periodicity, this means that it also takes
place at the time points . . . , πi − 2T, πi − T, πi + T, πi + 2T, . . .. To reflect this periodicity,
each activity a = (i, j) corresponds to a constraint of the form

((πj − πi) mod T ) ∈ [`a, ua] .

The modulo operator is linearised by introducing new integer variables za, the so-called
modulo parameters.

In the original definition of the PESP, no objective function was used. In this paper we
follow the widely used approach of minimising slack times. To this end, we assume a weight
wa for each arc to be given, which reflects the penalty that is to be applied to any time
unit of slack. In the case of a transfer arc a, wa might represent the expected number of
passengers that desire to use the activity. The resulting node potential formulation then
reads as follows.

min
∑

a=(i,j)∈A

wa(πj − πi + Tza − `a) (1)

s.t. `a ≤ πj − πi + Tza ≤ ua ∀a = (i, j) ∈ A (2)
0 ≤ πi ≤ T − 1 ∀i ∈ E (3)
za ∈ {0, 1, 2} ∀a ∈ A (4)

Note that without loss of generality we may assume here that `a ∈ [0, T ). Yet, we may
restrict za to the values {0, 1} only in the case of a constraint where ua ≤ T .

An alternative model for this problem is to use variables xa to express the duration of
every activity. In this case, one needs to fulfil that∑

a∈C+

xa −
∑

a∈C−

xa ≡ 0 mod T

ATMOS 2017
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for every oriented cycle (C+, C−). It is sufficient to use an integral cycle basis for this
purpose, e.g., the fundamental cycles C induced by some spanning tree T . The resulting
cycle-basis formulation is then given as follows.

min
∑
a∈A

wa(xa − `a) (5)

s.t. `a ≤ xa ≤ ua ∀(i, j) ∈ A (6)∑
a∈C+

xa −
∑

a∈C−

xa = TpC ∀C ∈ C (7)

pC ∈ Z ∀C ∈ C (8)

This formulation can be further strengthened by constraints on pC , which are known as
the Odijk cuts (see [12]). Finding a feasible solution to the PESP is already NP-hard, and
finding an optimal solution is considered notoriously difficult.

3 An Iterative Solution Approach

We now describe a new heuristic to find feasible solutions to the periodic timetabling
problem with good objective values. It is based on the idea of combining two subprocedures
that describe solutions differently. By running both methods alternately, we can find an
improvement with one approach when the other approach has become stuck. The first
subprocedure uses a heuristic network aggregation that makes use of a standard MIP solver
viable. The second subprocedure is the modulo network simplex approach (ModSim). In the
following, we describe both of these steps.

3.1 Aggregation Procedure
We describe preprocessing mechanisms to aggregate and simplify the event-activity network
to create a reduced instance, which is smaller and – hopefully – easier to solve. Some of
these techniques do not preserve equivalence in the sense that an optimal (partial) solution
of the reduced instance can be extended to an optimal (full) solution of the original instance.
However, we never affect feasibility, i.e., there is a surjection from all feasible solutions of the
original network to the feasible solutions of the reduced network.

Contraction. There are three ways in which we reduce the initial EAN (see [8]). We
illustrate these ideas in Figure 2 where we apply the different variants subsequently to the
very same network.

The first two operations are standard graph contractions for which we are able to keep
the set of optimal solutions. In the special case of a node i with degree one, we simply
remove the only arc a that is incident to i, together with i itself. In the reverse operation, we
derive the value for πi simply such that xa = `a. Observe that doing so, there is a bijection
between the optimum solutions of the initial network and of the reduced network.

The same holds for the second type of contractions: For a fixed arc a = (i, j), i.e. where
`a = ua, we remove a and j. Any arc b that had been incident with j gets “deviated” to i,
where we add or subtract `a to `b and ub in the case of b formerly leaving or entering j,
respectively. In Figure 2c we contract arc 481 and modify arc 482 by changing its starting
node from 500 to 499 and add the value four of the contracted arc to both, its lower and upper
bounds. For the reverse operation, we disaggregate node j by simply setting πj = πi + `a.
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(d) After (heuristic) degree-two contraction.

Figure 2 Examples for graph contraction in event-activity networks.

The third case in which we apply contractions is a node j with precisely one incoming
arc a = (i, j) as well as one outgoing arc b. In this case, we replace j in a with the endpoint
of b. Regarding the time constraints, we preserve the set of feasible solutions by adding `b

and ub to `a and ua, respectively, see Figure 2d. Yet, with respect to the objective function,
there is a (slight) imprecision, because along the modified arc, for the first units of slack
there should apply min{wa, wb}, whereas max{wa, wb} had to apply to the last units of
slack. This cannot be expressed in any linear objective function on the modified arc in the
reduced network. In our experiments, we heuristically select min{wa, wb} as the weight of
the modified arc.

Ignoring Light Arcs. Observe that none of the above steps reduces the cyclomatic num-
ber |A| − |E|+ 1 of the constraint graph. Yet, it is commonly assumed that this correlates
with the computational complexity of PESP instances. Hence we are trying to remove arcs
from the constraint graph. Doing so, we must be cautious: If the reduced graph has any
feasible solution which can not be translated into a solution of the initial network, then the
entire consideration of the reduced network would be useless.

Since infeasibility may only arise on an arc a with span ua − `a < T − 1, we focus
exclusively on free arcs with span ua − `a ≥ T − 1. These are arcs which model just waiting
times (e.g. of passengers at transfers, of trains during turnarounds, of both during stops) but
do not model any strict operational requirement. Thus, such arcs can simply be omitted
without affecting the set of feasible solutions.

ATMOS 2017
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Figure 3 Distribution of the weights wa of the free arcs in R1L1.

For instances of the PESPlib, the constraint graph even decomposes into cycle-free
connected components, which are trivial to solve optimally, when omitting all the free arcs.
This is due to the absence of headway or single track constraints in these instances.

Obviously, there is a trade-off: The more free arcs are ignored, the easier becomes
the resulting instance to solve. However, solutions to the simplified instance become less
significant for the initial problem, because they may induce large waiting times along the
ignored arcs.

Hence, we finally investigate how the weights of these free arcs are distributed. The plot
in Figure 3 shows that for example the R1L1-instance follows the so-called “Pareto principle”:
When removing, e.g., 77.5% of the free arcs (abscissa) we are ignoring just 25% of the initial
total weight W :=

∑
a∈A:a is free wa of the free arcs (ordinate). Thus, we may significantly

simplify an instance while only losing a limited amount of information (i.e., weight).
Our network aggregation procedure is used to generate an instance that is sufficiently

small to allow a mixed-integer programming solver to be applied. This is then combined
with the ModSim-method as in a ball game, i.e., by giving the solution of one approach as
input for the other. The ModSim-method is briefly summarised in the following section.

3.2 Description of the Modulo Network Simplex

We now briefly describe the ModSim-method, and refer to [4] for details. It is based on the
observation that there exists an optimal solution to the periodic timetabling problem that is
induced by a spanning tree structure T = (T`, Tu) in N . This means that we set xa = `a for
all edges in Tl, and xa = ua for all edges in Tu. The duration of all other activities and their
modulo parameters are then uniquely determined.

The method performs a local search over the set of spanning tree structures, until it finds
a local optimum (i.e., all spanning tree structures that can be reached by exchanging a single
arc do not provide a feasible solution with better objective value). This is called the inner
loop. It then tries to escape the local optimum using modifications that are not based on a
spanning tree structure; e.g., single node cuts or multi node cuts. If an improved solution
can be found, a new spanning tree structure is calculated and the method is repeated from
the beginning. This is called the outer loop. A schematic description of this method is given
in Figure 4.
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Figure 4 The modulo network simplex procedure (see [4]).

Table 1 Properties of PESPlib instances.

name nodes arcs fixed arcs other arcs free arcs
R1L1 3,664 6,385 646 2,912 2,827
R1L2 3,668 6,543 632 2,928 2,983
R1L3 4,184 7,031 758 3,302 2,971
R1L4 4,760 8,528 830 3,788 3,910
R2L1 4,156 7,361 819 3,210 3,332
R2L2 4,204 7,563 822 3,252 3,489
R2L3 5,048 8,286 971 3,918 3,397
R2L4 7,660 13,173 1,501 5,932 5,740
R3L1 4,516 9,145 799 3,576 4,770
R3L2 4,452 9,251 776 3,538 4,937
R3L3 5,724 11,169 1,042 4,496 5,631
R3L4 8,180 15,657 1,480 6,462 7,715
R4L1 4,932 10,262 996 3,764 5,502
R4L2 5,048 10,735 986 3,886 5,863
R4L3 6,368 13,238 1,242 4,898 7,098
R4L4 8,384 17,754 1,573 6,546 9,635

For the purpose of this paper, two characteristics of the ModSim are particularly relevant:
Firstly, the use of spanning tree structures means that solutions are encoded in a different way
than in the MIP formulation. Secondly, the method can be run for a (practically) arbitrary
amount of time, as the search space for the outer loop is too large to be fully explored.

4 Experimental Results

4.1 Setting and Instances
We use the 16 periodic railway timetabling instances from the PESPlib3, created by the
public transport planning software LinTim4, see also [3]. The size of the event activity
networks and the numbers of fixed, free and other arcs is given in Table 1.

To assess the quality of our aggregation method, we performed two different sets of
experiments. In the first experiment, we discuss the impact of the aggregation for different

3 http://num.math.uni-goettingen.de/~m.goerigk/pesplib/
4 https://lintim.math.uni-goettingen.de/
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Table 2 Graph aggregation statistics for R1L1.

nodes arcs eliminated heuristic?
original 3,664 6,385 – –
contract deg one 3,216 5,937 448 no
contract fixed 2,677 5,398 539 no
contract deg two 1,228 3,949 1,449 (yes)
ignore 25% 1,228 1,756 2,193 yes
contract deg one 863 1,391 365 no
contract deg two 501 1,029 362 (yes)

settings on a single instance (R1L1). In the second experiment, we run our iterative method
and compare the objective values we find to using only the ModSim approach. Whenever
a MIP is solved for PESP, we used a formulation that combines both the node potential
variables (π) and the periodic tension variables (x). We consider the modulo parameters (z)
on the arcs and exploit the fact that if a ∈ T , then we may set za = 0, while losing the initial
property that za ∈ {0, 1, 2}.

4.2 Results of our Preprocessing Method
For our first set of experiments, we used an Intel core i5 2.20GHz with 8GB RAM, and CPLEX
12.7 with memory limit 2GB. We start by summarising the impact of each aggregation step
on the instance R1L1 in Table 2. Starting with an initial problem size of 3,664 nodes and
6,385 arcs, we finally come up with a similar instance with only 501 nodes and 1,029 arcs.

Recall that the cyclomatic number is only reduced in the step where we – heuristically –
ignore the lightest arcs. In this particular setting, we continue until the weights of the ignored
arcs sums up to 25% of the initial total free weight W . Notice that by ignoring the lightest
arcs, some of the nodes end up with degree one. This is why we apply the corresponding
contraction steps anew.

Next we want to identify good ignore ratios by trading simplification (and thus MIP
performance) against significance, i.e. reinterpretability. To this end, we simplify the R1L1
PESPlib-instance by ignoring 10% to 70% of the total free weight and apply CPLEX 12.6
for 15 minutes at default parameter settings. By growing the ignore ratio the size of the
resulting simplified network decreases – and so does the optimality gap of the CPLEX run
on this simplified network, see the column “gap” in Table 3.

But when reinterpreting the solution that CPLEX obtained for the reduced network,
back on the initial network, the trade-off becomes obvious: by ignoring more than 20% of
the initial total free weight W , the solution for the actual instance R1L1 is getting worse (cf.
column “objective”).

Let us annotate that the improvement from the 2013 PESPlib benchmark (37,338,904)
down to 36,213,298 (cf. the 30%-row in Table 3) is not just due to a version improvement
inside the MIP solver: When applying the 2012 version (CPLEX 12.3) with the same
parameter setting to the very same reduced MIP file, already this yields a disaggregated
solution of value 35,903,663 for the R1L1-instance of the PESPlib. Unfortunately, this
computation had only been possible on a machine with an Intel Xeon 3.7GHz and 16GB
RAM.

In one further run we spent one hour with CPLEX and set the ignore ratio right between
the two best ones of our initial series, thus 25%. The solver is able to find a significantly
better solution (33,711,523). In this solution, 29,763,908 units of weighted slack arise along
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Table 3 Objective values found for R1L1 by applying different ignore ratios for the free arcs.

ignore nodes arcs Odijk time CPLEX gap objective
10% 772 1,828 yes 900 6.89% 37,918,546
20% 572 1,230 yes 900 5.69% 35,433,189
30% 438 862 yes 900 4.73% 36,213,298
40% 346 610 yes 900 3.36% 36,720,735
50% 257 406 yes 900 1.77% 40,814,013
60% 189 251 yes 900 0.75% 41,843,259
70% 129 136 yes 900 0.00% 46,010,226
25% 501 1,029 no 3,600 4.22% 33,711,523

free arcs (e.g. transfers), the rest appears on arcs with smaller span (e.g. dwell arcs). All
the free arcs together show a weighted average slack of 25% of the period time. This is
composed of a weighted average slack time of 46% of the period time when restricted to the
2, 193 ignored light arcs – but only 17% of the period time when restricted to the 634 heavier5
arcs that our heuristic kept for the simplified core problem. Yet, with our combined iterated
method we are able to report even better solutions in the next subsection.

4.3 Results of our Iterative Solution Method
For our second set of experiments, we used a 16-core Intel Xeon E5-2670 processor, running
at 2.60 GHz with 20MB cache. Processes were pinned to one core. We used CPLEX v.12.6
to solve MIPs, choosing the MIPemphasis parameter so that the solver focus is on improving
the primal bound.

The aim of this experiment is to compare the ModSim-method as a stand-alone approach
with our iterative method. To this end, we allow both methods 8 hours of computation time
for each instance, using the same starting solution found through a constraint propagation
procedure. In our iterative method, we begin with the network aggregation step and allow
CPLEX up to 15 minutes of computation time. We then use the ModSim for 45 minutes
and repeat. For the first network aggregation, we ignore 50% of total free weight W . This
number is multiplied by 0.6 in each iteration (i.e., in the second iteration, 30% is ignored,
then 18%, and so on). This means that the models CPLEX has to solve become larger and
harder to solve, but also more detailed and closer to the actual problem.

We present the final objective value of the ModSim approach and the best objective
value of our iterative method in Table 4. Our approach outperforms the pure ModSim on
each of the 16 instances, by an average of 15.7% (min: 5.3%, max: 22.8%). We improve all
current best solutions from PESPlib by at least 10%, in particular on R1L1, which has been
approached with other methods.

We give a more detailed view on the progress of the solution methods in Figure 5. Here
we compare the current objective value over the 8 hours time horizon between the ModSim-
method and our approach. Detailed results for the other instances can be found in the
appendix.

In particular for the smaller instances, using CPLEX on the aggregated network can lead
to solutions which have a higher objective value than before. As we reduce the number of
ignored activities in every iteration, these errors (visible as bumps in the objective value
curve) become smaller over time.

5 Recall that since we apply contractions again after we ignored 2, 193 light free arcs, in the end there are
only 623 free arcs remaining in the simplified problem.

ATMOS 2017
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Table 4 Objective values

impr. to impr. to
Instance PESPlib obj. start obj. ModSim obj. iterative obj. ModSim PESPlib

R1L1 37,338,904 44,486,347 38,523,096 31,194,961 19.0% 16.5%
R1L2 38,248,408 49,197,598 40,616,172 31,682,263 22.0% 17.2%
R1L3 38,612,098 51,614,049 39,308,815 30,535,261 22.3% 20.9%
R1L4 35,955,823 47,185,054 34,350,087 27,893,098 18.8% 22.4%
R2L1 53,708,802 66,714,782 48,822,627 42,502,069 12.9% 20.9%
R2L2 47,836,571 65,925,364 47,003,096 43,068,782 8.4% 10.0%
R2L3 46,530,294 62,152,599 42,179,765 39,942,656 5.3% 14.2%
R2L4 42,848,107 60,588,717 42,811,532 33,063,475 22.8% 22.8%
R3L1 53,299,647 72,124,479 52,936,675 45,483,668 14.1% 14.7%
R3L2 53,441,333 72,434,508 53,680,036 46,228,200 13.9% 13.5%
R3L3 48,707,212 68,215,489 47,014,354 43,039,089 8.5% 11.6%
R3L4 40,597,536 59,064,577 46,044,547 35,547,064 22.8% 12.4%
R4L1 59,225,243 81,570,976 56,935,920 51,650,471 9.3% 12.8%
R4L2 59,292,152 82,131,250 57,892,642 51,965,758 10.2% 12.4%
R4L3 54,975,374 78,797,377 58,075,575 45,881,499 21.0% 16.5%
R4L4 47,140,800 63,464,363 51,128,274 41,163,954 19.5% 12.7%
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Figure 5 Objective value over time for R1L1.

5 Conclusions

Finding good periodic timetables that offer short travel times for passengers and respect
security constraints is a highly relevant public transport planning problem worldwide, but
existing solution methods still show an unsatisfactory performance on real-world sized
instances. In this paper we presented a new approach to this problem that combines one of
the most successful current heuristics, the modulo network simplex method, with a network
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aggregation step that allows to use a mixed-integer programming solver (CPLEX in our
case). As the modulo network simplex method and CPLEX describe solutions differently, it
is possible to escape from a local optimum by switching methods. This leads to a significantly
improved overall performance. Our approach found solutions that perform on average over
15% better than using the modulo network simplex alone, and improve all current best results
that can be found in the PESPlib dataset.

In further research more possibilities to combine the network aggregation with the modulo
network simplex heuristic will be explored, including ways to avoid a repetition of solutions
between the two methods. Additionally, lower bounds for periodic timetabling problems
tend to be weak when a mixed-integer programming solver is used, which leads to a large
optimality gap. We will investigate to what extent the network aggregation procedure can
be used to produce stronger lower bounds.

Acknowledgment. The authors thank Michel Le (IBM) and Ralf Borndörfer for recently
providing us with the CPLEX version of the year 2012 (12.3).
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A Objective value comparison for each instance

Detailed results for each instance comparing the objective value over time when using ModSim
only, and our approach can be found in Figures 6 and 7.
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Figure 6 Objective value over time for ModSim and our iterative method.
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Figure 7 Objective value over time for ModSim and our iterative method.
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