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Abstract
ZooKeeper is a crash-tolerant system that offers fundamental services to Internet-scale applica-
tions, thereby reducing the development and hosting of the latter. It consists of N ≥ 3 servers
that form a replicated state machine. Maintaining these replicas in a mutually consistent state
requires executing an Atomic Broadcast Protocol, Zab, so that concurrent requests for state
changes are serialised identically at all replicas before being acted upon. Thus, ZooKeeper per-
formance for update operations is determined by Zab performance. We contribute by presenting
two easy-to-implement Zab variants, called ZabAC and ZabAA. They are designed to offer small
atomic-broadcast latencies and to reduce the processing load on the primary node that plays a
leading role in Zab. The former improves ZooKeeper performance and the latter enables Zoo-
Keeper to face more challenging load conditions.
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1 Introduction

Apache ZooKeeper [5] is a high-availability system that is designed to offer several fundamental
services to Internet-scale distributed applications. It is a widely used, industrial-strength
system because it relieves large-scale applications from having to build fundamental services
themselves. Some of the services offered by ZooKeeper include: leader election (used by
Apache Hadoop [9]) and failure-detection and group membership configuration (by HBase
[3]).

ZooKeeper is built as a replicated system using N, N ≥ 3, fail-independent servers. At
most f = bN−1

2 c of these N servers can crash which means that ZooKeeper can continue to
provide uninterrupted services to applications as long as crashed servers are replaced and at
least f + 1 servers are operative at any given time.

ZooKeeper uses the atomic broadcast protocol, Zab [5], to ensure that ZooKeeper servers’
states and its clients are kept in a consistent state. Zab is typically composed of three to
seven machines which are used for replicating data in order to achieve high availability. In
ZooKeeper, one of the nodes has a leader role and the rest have follower roles. The leader is
responsible for accepting all incoming state changes (write requests) from the clients and
replicating them to all servers in the ensemble through Zab.
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However, many leader-based protocols, including Zab, have problems associated with
overloading, weak writes as well as scalability and bottleneck that occur under write-intensive
workloads [2, 7, 10]. In Zab, write requests always take longer to process, as they must go
through the Zab and the leader replica, which requires extra tasks to propagate the requests
to all followers since three communication steps are needed to broadcast a single write request.
Consequently, this can add more latency to the requests and decrease performance.

In this paper, we present two atomic broadcast protocols, ZabAC and ZabAA. ZabAC
accomplishes write request in two-rounds of communication, namely the proposal and
acknowledgement-commit rounds. ZabAC is similar to the Zab protocol, the different is
that ZabAC executes a write in two communication steps rather than three. However,
ZabAC works only in a three server ensemble. ZabAA can also accomplish a write in two
communication steps, and moreover unlike ZabAC, it can utilise any ensemble size, N. We
discuss these two approaches in more detail in section 3.

The remainder of the paper is structured as follows. Section 2 describes the design of Zab,
an atomic broadcast protocol for the ZooKeeper coordination service. Section 3 describes the
protocols we developed. Section 4 provides a thorough performance evaluation of the ZabAC
and ZabAA model compared to the existing Zab approach. Section 5 discusses related work.
Finally, section 6 concludes the paper and the outlook for our future research.

2 ZooKeeper Atomic Broadcast Protocol

ZooKeeper is implemented using an ensemble of N , N ≥ 3, fail-independent and fully-
connected servers. In practice, N is an odd number, typically 3-7 servers [4]. The following
assumptions are made by ZooKeeper.

A1 – Crash Tolerance.

Servers can crash and at least N+1
2 servers are operational at any time. Thus, up to f ,

f = bN−1
2 c, server crashes are tolerated.

A2 – Reliable and Source-Ordered Communication.

Servers are connected by a reliable communication subsystem in which messages are never
lost and are received in the order in which there are sent. More precisely, if a server sends a
message m then all operative destinations receive m within some finite time; if a server sends
m1 followed by m2, any common destination for m1 and m2 will receive m1 before m2.

ZooKeeper servers are basically replicas of each other and each maintains a copy of the
application state. A Zookeeper client can submit its request or signal an event to any server.
If the processing of requests or events from clients does not involve modifying the application
state, then the server will respond directly to the client without involving the other servers.

If however a client request requires modifying the application state, this will be handled by
all servers in a mutually consistent manner; that is, it will be identically ordered against any
concurrent requests/events received at other servers before it is processed. Ensuring identical
order on concurrent requests and events is accomplished through Zab, the ZooKeeper atomic
broadcast protocol.

Zab is an asymmetric protocol in its structure: it designates one of the ZooKeeper servers
as the leader and the rest as followers. As with the well-known 2-Phase commit protocol
in database transactions [1], atomic broadcasting can be initiated only by the leader and
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Figure 1 Write Operations in ZooKeeper.

followers respond to what they receive. Figure 1 depicts how requests and events requiring
state modification are handled by ZooKeeper.

When a follower receives a write request from a client (shown in blue in Figure 1),
it forwards it to the leader. Whenever the leader receives a write request that has been
forwarded to it by a follower or sent to it directly by a client, it initiates a Zab execution
for that request. The execution ensures that the request is delivered to all servers in the
same order and only the server that received the request directly from the client returns a
response.

2.1 Zab Protocol

It consists of the following steps.
L1: Leader initiates proposal(m) (state change request) by proposing a sequence number
m.c for m and by broadcasting its proposal(m) to all processes, including itself;
F1: A follower, on receiving proposal(m), logs m and then sends an acknowledgement,
ack(m), to the leader;
L2: Leader sends ack(m) to itself after logging m. On receiving ack(m) from a quorum,
it broadcasts commit(m) before commit(m′: m′.c = m.c + 1) is broadcast;
F2: A follower, on receiving commit(m), delivers m.
L3: Leader, on receiving commit(m) (from itself), delivers m.

2.2 Crash-Tolerance Invariant

Let Π be the set of ZooKeeper servers: Π ={p1, p2, ...., pN}. Let Q be the set of all majority
subsets or quorums of Π: Q = {Q : Q ⊆ Π ∧ |Q| > f = bN−1

2 c}.
For example, when N = 3, Q = {{p1, p2}, {p2, p3}, {p3, p1}, {p1, p2, p3}}.

The invariant is as follows: If any server delivers mi, then all servers in some Q ∈ Q have
logged mi locally.

To see informally that this invariant is a requirement for crash-tolerance provisions,
suppose that the leader delivers mi and then crashes, possibly before broadcasting the
commit message for mi. Some quorum of servers, say Q′, will elect the new leader and inform
it of all messages proposed by leader that crashed. Suppose that the invariant holds and
there is a quorum Q of servers that have logged mi. By definition, Q and Q′ must intersect.
Q′ cannot contain the leader that crashed. Thus, Q and Q′ must have at least one server
in common that is not the crashed leader. That server will instruct the new leader of the
existence of mi and of the need to complete the delivery of mi by all followers.
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3 Zab Alternatives

In this section, we present two protocols that also preserve the crash-tolerance invariant (see
section 2.2). The first protocol, called ZabAC, works only when N = 3 and the second, called
ZabAA, is developed for when N > 3.

3.1 ZabAC
The design of ZabAC is based on the observation that when N = 3, the crash-tolerance
invariant is satisfied as soon as a follower locally logs the proposal received from the leader.
This is because when N = 3, any two servers constitute a quorum and, given that the leader
broadcasts its proposal only after logging it locally, the follower can deliver a proposal as
soon as it logs it locally; that is, a follower does not have to wait for an explicit commit
message from the leader. The letters AC in ZabAC stand for the optimisation that followers
can acknowledge and commit, without having to wait for an explicit commit message from
the leader.

The key stages of the ZabAC protocol are detailed below. Note that v stands for a write
request.
1. Leader Logs and Sends Atomic Broadcast – Process a proposal 〈v, zxid〉 and broad-

cast it to all processes in Π.
2. Follower Delivers a Proposal – Receive, log a proposal 〈v, zxid〉, send an acknowledge-

ment for 〈zxid〉 to the leader and deliver a proposal 〈v, zxid〉.
3. Leader Delivers a Proposal – Receive an acknowledgement for 〈zxid〉, compute a ma-

jority of ACK (acknowledgement) and deliver a proposal 〈v, zxid〉.

3.1.1 ZabAC Implementation Details
We explore the inner workings of each step of the ZabAC protocol. We describe each step in
the order in which they are executed by the protocol.

1. Leader Sends Atomic Broadcast (Proposal Stage)

Prior to commencing the broadcast, a leader places a client’s write operation in its Broadcast
Request Pool (BRP), which holds all client write operations until they are broadcast. When
BRP contains operations, a single thread, called send thread, is utilised for retrieving the
operations from the BRP and broadcasting them to all processes in Π. Operations are
retrieved from the BRP in the order in which they were originally received (FIFO). Upon
retrieving an operation, the send thread creates a proposal message which includes a tuple
〈v, zxid〉 that uniquely identifies the broadcast.

Note that, before broadcasting a proposal message, the send thread places it in a
list called pending until it receives acknowledgements from a quorum of processes. The
pending list contains the proposals. Each proposal waits for a quorum of processes to send
acknowledgements to the leader. In parallel, the send thread stores the proposal in logging
list and periodically logs the list contents in persistent storage for recovery purpose.

2. Follower Delivers a Proposal (Acknowledgment and Commit Stage)

A follower, on receiving the proposal, first places it in a logging list and periodically logs the
list’s contents on a disk. After this, the follower must certify that the proposal has the highest
zxid that has been received and precedes the last committed zxid. Since the ZabAC uses
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reliable communication and FIFO when exchanging messages and the leader sends a proposal
in the order according to its zxid, the proposal can always be certified, except when a crash
occurs before has been certified the proposal. Once a proposal is certified, the follower, in
parallel, sends an ACK message to the leader and commits the proposal, delivering it to
the memory. Upon certifying a proposal, the followers deliver the proposal due to receiving
ACKs from quorum of processes: a follower receives one ACK from the leader, piggybacked
with the proposal, and one from itself when it acknowledges the proposal.

3. Leader Delivers a Proposal

Upon receiving an ACK, the leader delivers the proposal as it receives ACKs from a quorum
of processes: it receives one from itself and one from any followers. Note that each process
has a delivered list which stores all delivered proposals for future read requests by clients.
Unlike Zab, ZabAC’s leader does not need to send a commit message to the followers as each
follower commits the change locally as soon as it receives ACKs from a quorum of processes.
As a result we save one-third of the communication steps compared to Zab.

Moreover, there are similarities between Zab and ZabAC in the way that proposals are
delivered from the perspective of the leader replica. In Zab and ZabAC, a proposal 〈v, zxid〉
is delivered as soon as the leader receives an ACK from any follower. However, ZabAC’s
leader does not need to process and send a commit message to Π. One major difference
between Zab and ZabAC is that the followers in ZabAC always deliver a proposal before the
leader does, while it is the other way round in Zab.

3.2 ZabAA
ZabAA is developed for any N and as with ZabAC it has been designed so that the leader
does not have to broadcast commit messages to its followers. This is achieved by having
followers broadcast acknowledgements to every server in the system (AA in ZabAA stands
for Acknowledge All). A follower commits a proposal after it (i) receives that proposal from
the leader and (ii) knows that at least f followers have acknowledged that proposal. Note
that (i) and (ii) ensure that the crash-tolerance invariant is preserved: committing a proposal
by a follower occurs only after the leader and at least f followers have logged that proposal
locally, and when any subset of f + 1 servers constitute a quorum in Π.

Like ZabAC, ZabAA requires two communication steps: Proposal and Acknowledgement-
Commit rounds. Proposal and Commit stages remind unchanged (They are similar to
ZabAC implementation). However, the number of acknowledgement messages sent between
followers increases quadratically with N . Note that ZabAA does not increase the number of
acknowledgements that are sent to the leader. ZabAA thus trades-off against higher message
overhead for followers. The quadratic increase in follower message overhead may off-set the
gain from reduced follower latencies as N increases. Yet, it is worth investigating ZabAA to
study the effect of this trade-off for small values of N , particularly for N = 5 which is the
second most typically value (after N = 3).

4 Experiments and Performance Evaluation

In this section, we present a comparative evaluation of Zab, ZabAC and ZabAA. We study
different performance metrics: namely latency and throughput.

We used 250 simultaneous clients executed on 10 machines; with each machine operating
up to 25 clients. Up to 5 machines were dedicated to run evaluated protocols, typical
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ZooKeeper installations use 3-7 servers, so 5 is just smaller compared to a typical setting [5].
All machines in the experiment utilised commodity PCs of 2.80GHz Intel Core i7 CPU and
8GB of RAM, running Fedora 21 and communicating over 100 Mbps Switched Ethernet.

The evaluated protocols were implemented in Java (JDK 1.8.0) on the top of the JGroups
framework; JGroups is a toolkit for reliable communication and it is used to establish a
group membership where members can send messages to each other. All messages were
transmitted using JGroups’ reliable UDP. As well as using a reliable UDP, the JGroups’
UNICAST3 protocol is used to provide node-to-node ordering as the default for each message
sent. Utilising a UNICAST3 protocol provides FIFO ordering similar to a TCP protocol.

Each request consists of a read or write with 1000 bytes of maximum payload, which
represents a typical request size [5]. In our experiment, 1 million requests were sent. Each
client was responsible for sending ( 106

10machines )
25clients requests. To distribute the load equally on the

server protocols, the clients sent the requests to the protocol in a round robin manner. Our
benchmark client used the synchronous JGroups client API.

Experiments are run in failure-free scenarios. Furthermore, servers do not log a proposal
message in disk (as ideally required) but only record the proposal in main-memory. Thus
the performance figures we present here do not include disk write delays, but only network
delays. This kind of evaluations corresponds to the ’Net-Only’ category of the evaluations in
[5] where several ways of logging have been considered. Since Zab and proposed protocols
require logging of the proposal message exactly at the same point in the execution for every
broadcast, ignoring delays due to disk writes cannot invalidate the integrity of observations
made and conclusions drawn from the performance figures.

Note that the latency is defined here as t1 − t0 where t0 is the time at which a client
sends a request to a protocol’s server and t1 is the time at which the client receives a replay
message from the server. So, the final latency is an average of the computed latencies for
all clients. We compute the average of 1000000 such latencies and repeat the experiment
10 times for a confidence interval of 95%. Throughput is defined as the number of requests
made by all servers per unit time and is computed, like latencies, with a 95% confidence
interval.

4.1 Zab vs ZabAC

In this experiment, we deployed Zab and ZabAC in a three-server ensemble since ZabAC
works only when N = 3. Figure 2a shows the latency in milliseconds (ms) of the mixed
workload (the ratio of writes to reads) as the percentage of writes was increased. The figure
shows that increasing the number of writes has a negative impact on the performance of
Zab and ZabAC. The reason the performance is affected is because write requests must go
through atomic broadcast, which requires additional processing and adds more latency to
requests whereas read requests require the server to only read data from the local replica’s
state.

The graph also shows that the latency for ZabAC is lower than for Zab in all writes
to reads ratios. For example, with a 100% writes, ZabAC’s latency is approximately 37
ms whereas Zab’s latency is 44 ms. This finding was expected because ZabAC has lower
overheads as a result of fewer messages being broadcast generally and more specifically
because it dispenses with the leader having to send commit messages to its followers.

Figure 2b shows a throughput comparison between Zab and ZabAC. Throughout the
figure, ZabAC has a higher throughput compared to Zab in all cases, with the maximum
difference being 846 operations per second (ops/sec) (operations size is 1000 bytes) when
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Figure 2 Performance comparison, varying the ratio of writes to reads.

the number of writes is 100%. This is due to the fact that in ZabAC there are fewer
communication patterns and less network traffic than in Zab. In other words, reducing the
number of communication steps results in less computation being performed by the leader,
which creates a significant throughput advantage for ZabAC.

4.2 Zab vs ZabAA
In this section, we investigate the effect of ensemble size in Zab and ZabAA.

Figures 3a and 3b show how latency varies according to the size of the ensemble and
the workload (the ratio of writes to reads requests). Each figure corresponds to a different
ensemble size. We can see that the larger the ensemble size, the higher latency there is
in both Zab and ZabAA. This is because the leader needs to synchronize its state with a
quorum of replicas, that is, the larger the ensemble size, the longer the leader has to wait
before delivering a proposal (for instance, with an ensemble size of three (N = 3), only two
acknowledgements are needed whereas with an ensemble size of five (N = 5) the leader must
wait until it receives an acknowledgement from three replicas). Thus, increasing the ensemble
size has an impact on both latency and throughput.

Moreover, each figure shows that latency increases when the workload includes more
writes than reads. This could be due to the fact that write requests must go through atomic
broadcast and this requires additional processing which, in turn, causes further delay, thus
increasing latency.

Comparing ZabAA with Zab, we observe that ZabAA experiences lower latency than
Zab for all types of workload and ensemble size. Moreover, the difference becomes more
significant when the percentage of write requests increases. For example, with 100% writes
and an ensemble size of three, latency is approximately 37 ms for ZabAA and 44 ms for Zab.
Likewise, with 100% writes and an ensemble size of five, latency is approximately 95 ms
for ZabAA and 103 ms for Zab. This difference in latency between ZabAA and Zab stems
from the fact that in ZabAA only two communication steps are required to deliver a request
whereas in Zab three communication stages are needed.
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Unsurprisingly, when the percentage of read requests increases, small differences were
found between Zab and ZabAA in term of latency, although ZabAA experiences slightly
lower latency than Zab. This small difference in latency could be due to the fact that, as
previously stated in section 2, reads are in-memory operations and are serviced from the
local replica which means no agreement protocol needs to be run and therefore, latency are
decreased and becomes less significant when comparing ZabAA with Zab.

Figure 4a and 4b shows how throughput varies with the number of servers and a mixed
workload. The figures indicate that since the leader propagates a proposal to all followers,
the throughput must drop as the number of servers increases. Another possible explanation
for a decrease in the throughput is that as we scale the number of servers (from three to
five), we saturate the network card of the leader. Therefore, the throughput of the evaluated
protocols depends on the number of servers connected to the leader as well as write ratio.

Comparing the two protocols, it can be seen that at 100% writes, ZabAA’s through-
put is higher than that of Zab, with the maximum difference being relatively significant,
approximately 520 ops/sec for N = 3 and 278 ops/sec for N = 5. There are two possible
explanations for this result. First, ZabAA’s leader does not process and broadcast the commit
message, unlike in Zab. Second, ZabAA only requires two communication steps to complete
write request whereas Zab requires three communication steps. However, the difference in
throughput becomes less noticeable as the number of reads increases; the reason being once
again that, no additional CPU processing or network load when servicing read requests (in
both ZabAA and Zab), which in turn makes the difference between ZabAA and Zab in terms
of throughput of less significant. In fact, an increase in the number of reads to writes leads
to better overall performance in both protocols.

One interesting observation that has arisen from this experiment is that the ZabAA
protocol has a better performance than Zab in terms of latency and throughput at 100%
write when N = 3 and 5. We observe that broadcasting an acknowledgement to all servers
in the ensemble does not seem to impair the overall performance, but it might impact on
the performance if N increases to 7 or more as the number of acknowledgment broadcast
increases.

5 Related Work

Leader based protocols tend to overload the leader and several authors [2, 7, 10, 6] have
sought to remedy this drawback. S-Paxos [2] relieves the leader from broadcasting client
requests by separating the roles of request dissemination and request ordering. Each process
directly broadcasts client requests to others and request ordering is done using only request
identifiers. Chain replication [10] reduces the leader load by distributing the role between
two servers called the head and the tail but involves sequential transmission of message which
tends to increase latencies for large N .

The benefit of sending an acknowledgement as a broadcast instead of a unicast is explored
in the algorithm described in [8]. More importantly, to our knowledge, although the approach
of ZabAA (changing from unicast to broadcast) is relatively simple, no previous study has
evaluated it or exposed the trend, particularly in leader and quorum-based protocols.

6 Conclusion

We have presented ZabAC and ZabAA as atomic broadcast protocols that follow a leader-
based approach, similar to Zab. ZabAC and ZabAA guarantee the delivery and order of
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requests which means that each process has an equal opportunity of having its messages
delivered in the same order. ZabAA is an alternative to ZabAC when N > 3.

Performance benchmarks showed that ZabAC had low latency and high throughput.
Furthermore, by increasing the number of replicas, the ZabAA protocol not only becomes
more fault tolerant but also achieves higher throughput and lower latency than the Zab
protocol.

Further investigation needs to be accomplished. We plan to evaluate ZabAA using
N = 7 and 9 to measure latency and throughput. Moreover, our research is currently
being carried out to reduce the ZabAA’s message overhead by conditioning the sending of
acknowledgements on the outcomes of coin tosses.
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A Source Code

The source code for the evaluated protocols and the benchmarks are publicly available at
https://github.com/ibrahimshbat/JGroups.
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B Performance Compression for Zab and ZabAA
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Figure 3 Zab and ZabAA latency comparison, varying the ratio of writes to reads.
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Figure 4 Zab and ZabAA throughput comparison, varying the ratio of writes to reads.
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