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Abstract
For every n-point subset X of Euclidean space and target distortion 1+ε for 0 < ε < 1, the Sparse
Johnson Lindenstrauss Transform (SJLT) of [19] provides a linear dimensionality-reducing map
f : X → `m2 where f(x) = Πx for Π a matrix with m rows where (1) m = O(ε−2 logn), and
(2) each column of Π is sparse, having only O(εm) non-zero entries. Though the constructions
given for such Π in [19] are simple, the analyses are not, employing intricate combinatorial
arguments. We here give two simple alternative proofs of the main result of [19], involving
no delicate combinatorics. One of these proofs has already been tested pedagogically, requiring
slightly under forty minutes by the third author at a casual pace to cover all details in a blackboard
course lecture.
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1 Introduction

A widely applied technique to gain speedup and reduce memory footprint when processing
high-dimensional data is to first apply a dimensionality-reducing map which approximately
preserves the geometry of the input in a pre-processing step. One cornerstone result along
these lines is the following Johnson-Lindenstrauss (JL) lemma [16].

I Lemma 1 (JL lemma). For all 0 < ε < 1, integers n, d > 1, and X ⊂ Rd with |X| = n,
there exists f : X → Rm with m = O(ε−2 logn) such that

∀y, z ∈ X, (1− ε)‖y − z‖2 ≤ ‖f(y)− f(z)‖2 ≤ (1 + ε)‖y − z‖2. (1)
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15:2 Simple Analyses of the Sparse Johnson-Lindenstrauss Transform

The target dimension m given by the JL lemma is optimal for nearly the full range of
n, d, ε; in particular, for any n, d, ε, there exists a point set X ⊂ Rd with |X| = n such
that any (1 + ε)-distortion embedding of X into Rm under the Euclidean norm must have
m = Ω(min{n, d, ε−2 log(ε2n)}) [21, 5]. Note that an isometric embedding (i.e. ε = 0) is
always achievable into dimension m = min{n− 1, d}, and thus the lower bound is optimal
except potentially for ε close to 1/

√
n.

All known proofs of the JL lemma instantiate f as a linear map. The original proof in
[16] picked f(x) = Πx where Π ∈ Rm×d was an appropriately scaled orthogonal projection
onto a uniformly random m-dimensional subspace. It was then shown that as long as
m = Ω(ε−2 log(1/δ)),

∀x ∈ Rd such that ‖x‖2 = 1, P
Π

(|‖Πx‖22 − 1| > ε) < δ. (2)

The JL lemma then followed by setting δ < 1/
(
n
2
)
and considering x = (y − z)/‖y − z‖2 for

each pair y, z ∈ X, and adjusting ε by a constant factor. It is known that this bound of m
for attaining (2) is tight; that is, m must be Ω(min{d, ε−2 log(1/δ)}) [15, 17].

One should typically think of applying dimensionality reduction techniques for applications
as being a two-step process: first (1) one applies the dimension-reducing map f to the data,
then (2) one runs some algorithm on the lower dimensional data f(X). While reducing m
typically speeds up the second phase, in order to speed up the first phase it is necessary to
give an f which can be both found and applied to data quickly. To this end, Achlioptas
showed Π can be chosen with i.i.d. entries where Πi,j = 0 with probability 2/3, and otherwise
Πi,j is uniform in ±1/

√
m/3 [1]. This was accomplished without increasing m by even

a constant factor over previous best analyses of the JL lemma. Thus essentially a 3x
speedup in step (2) is obtained without any loss in the quality of dimensionality reduction.
Later, Ailon and Chazelle developed the FJLT [2] which uses the Fast Fourier Transform
to implement a JL map Π with m = O(ε−2 logn) supporting matrix-vector multiplication
in time O(d log d + m3). Later work of [3] gave a different construction which, for the
same m, improved the multiplication time to O(d log d+m2+γ) for arbitrarily small γ > 0.
More recently, a sequence of works give embedding time O(d log d) but with a suboptimal
embedding dimension m = O(ε−2 logn · poly(log logn)) [4, 20, 22, 6, 12].

Note that the line of work beginning with the FJLT requires Ω(d log d) embedding time
per point, which is worse than the O(m · ‖x‖0) time to embed x using a dense Π if x is
sufficiently sparse. Here ‖x‖0 denotes the number of non-zero entries in x. Motivated by
speeding up dimensionality reduction further for sparse inputs, Kane and Nelson in [19],
following [10, 18, 7], introduced the SJLT with m = O(ε−2 logn), and with s = O(εm) non-
zero entries per column. This reduced the embedding time to compute Πx from O(m · ‖x‖0)
to O(s · ‖x‖0) = O(εm · ‖x‖0). The original analysis of the SJLT in [19] showed Equation (2)
for m = O(ε−2 log(1/δ)), s = O(ε−1 log(1/δ)) via the moment method. Specifically, the
analysis there for ‖x‖2 = 1 defined

Z = ‖Πx‖22 − 1 (3)

then used Markov’s inequality to yield P(|Z| > ε) < ε−q · EZq for some large even integer
q (specifically q = Θ(log(1/δ))). The bulk of the work was in bounding EZq, which was
accomplished by expanding Zq as a polynomial with exponentially many terms, grouping
terms with similar combinatorial structure, then employing intricate combinatorics to achieve
a sufficiently good bound.
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Our Main Contribution. We give two new analyses of the SJLT of [19], both of which avoid
expanding Zq into many terms and employing intricate combinatorics. As mentioned in the
abstract, one of these proofs has already been tested pedagogically, requiring slightly under
forty minutes by the third author at a casual pace to cover all details in a blackboard lecture.

2 Preliminaries

We say f(x) . g(x) if f(x) = O(g(x)), and f(x) ' g(x) denotes f(x) = Θ(g(x)). For
random variable X and q ∈ R, ‖X‖q denotes (E |X|q)1/q. Minkowski’s inequality, which we
repeatedly use, states that ‖ · ‖q is a norm for q ≥ 1. If X depends on many random sources,
e.g. X = X(a, b), we use ‖X‖Lq(a), say, to denote the q-norm over the randomness in a (and
thus the result will be a random variable depending only on b). A Bernoulli-Rademacher
random variable X = ησ with parameter p is such that η is a Bernoulli random variable
(on {0, 1}) with E η = p and σ is a Rademacher random variable, i.e. uniform in {−1, 1}.
Overloading notation, a random vector X whose coordinates are i.i.d. Bernoulli-Rademacher
with parameter p will also be called by the same name. For a square real matrix A, let A◦
be obtained by zeroing out the diagonal of A. Throughout this paper we use ‖ · ‖F to denote
Frobenius norm, and ‖ · ‖ to denote `2 → `2 operator norm.

Both our SJLT analyses in this work show Eq. (2) by analyzing tail bounds for the
random variable Z defined in Eq. (3). We continue to use the same notation, where x ∈ Rd
of unit norm is as in Eq. (3). Our first SJLT analysis uses the following moment bounds for
the binomial distribution and for quadratic forms with Rademacher random variables.

I Lemma 2 ([14]). For Y distributed as Binomial(N,α) for integer N ≥ 1 and α ∈ (0, 1),
let 1 ≤ p ≤ N and define B := p/(αN). Then

‖Y ‖p .

{
p

logB if B ≥ e
p
B if B < e

A more modern, general proof of the below Hanson-Wright inequality can be found in
[23].

I Theorem 3 (Hanson-Wright inequality [11]). For σ1, . . . , σn independent Rademachers and
A ∈ Rn×n, for all q ≥ 1

‖σTAσ − EσTAσ‖q .
√
q · ‖A‖F + q · ‖A‖.

Our second analysis uses a standard decoupling inequality; a proof is in [25, Remark
6.1.3]

I Theorem 4 (Decoupling). Let A ∈ Rn×n be arbitrary, and X1, . . . , Xn be independent and
mean zero. Then, for every convex function F : R→ R

EF (
∑
i6=jj

Ai,jXiXj) ≤ EF (4 ·
∑
i,j

Ai,jXiX
′
j)

where the X ′i are independent copies of the Xi.

Before describing the SJLT, we describe the related CountSketch of [8], which was shown to
satisfy Eq. (3) in [24]. In this construction for Π, one picks a hash function h : [d]→ [m] from
a pairwise independent family, and a function σ : [d]→ {−1, 1} from a 4-wise independent
family. Then for each i ∈ [d], Πh(i),i = σ(i), and the rest of the ith column is 0. It was shown

SOSA 2018
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Figure 1 Both distributions have s non-zeroes per column, with each non-zero being independent
in ±1/

√
s. In (i), they are in random locations, without replacement. (ii) is the CountSketch (with

s > 1), whose rows are grouped into s blocks of size m/s each, with one non-zero per block per
column in a uniformly random location, independent of other blocks; in this example, m = 8, s = 4.

in [24] that this distribution satisfies Eq. (3) for m = Ω(1/(ε2δ)). Note that the column
sparsity s equals 1. The analysis is simply via Chebyshev’s inequality, i.e. bounding the
second moment of Z.

The reason for the poor dependence in m on the failure probability δ is that we use
Chebyshev’s inequality. This is avoided by bounding a higher moment (as in [19], or our first
analysis in this work), or by analyzing the moment generating function (MGF) (as in our
second analysis in this work). To improve the dependence of m on 1/δ, we allow ourselves to
increase s.

Now we describe the SJLT. This is a JL distribution over Π having exactly s non-zero
entries per column where each entry is a scaled Bernoulli-Rademacher. Specifically, in the
SJLT, the random Π ∈ Rm×d satisfies Πr,i = ηr,iσr,i/

√
s for some integer 1 ≤ s ≤ m. The

σr,i are independent Rademachers and jointly independent of the Bernoulli random variables
ηr,i satisfying:
(a) For any i ∈ [d],

∑m
r=1 ηr,i = s. That is, each column of Π has exactly s non-zero entries.

(b) For all r ∈ [m], i ∈ [d], E ηr,i = s/m.
(c) The ηr,i are negatively correlated: ∀ S ⊂ [d] × [n], E

∏
(r,i)∈S ηr,i ≤

∏
(r,i)∈S E ηr,i =

(s/m)|S|.
See Figure 1 for at least two natural distributions satisfying the above requirements. Thus

‖Πx‖22 = 1
s

m∑
r=1

d∑
i,j=1

ηr,iηr,jσr,iσr,jxixj .

Using (a) above we have (1/s) ·
∑
r

∑
i ηr,ix

2
i = ‖x‖22 = 1, so that

Z = ‖Πx‖22 − 1 = 1
s

m∑
r=1

∑
i 6=j

ηr,iηr,jσr,iσr,jxixj . (4)

I Remark. In both our analyses, item (a) above is only used to remove the diagonal i = j

terms from eq. (4). Thenceforth, it turns out in both analyses of SJLT that (b) and (c) imply
we can assume the ηr,i are fully independent, i.e., the entries of Π are fully independent. This
is not the same as saying we can replace the sketch matrix Π with fully independent entries
because then part (a) would be violated and it is important for only the “cross” terms in the
quadratic form representing Z to be present. In the analysis we justify this assumption by
considering the integer moments of Z which we show here cannot decrease by replacement
with fully independent entries. For each integer q, each monomial in the expansion of
Zq has expectation equal to s−qxd1

α1
· · ·xdt

αt
· (E

∏
(r,i)∈S ηr,i) whenever all the dj are even,
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and S contains all the distinct (r, i) such that ηr,i appears in the monomial; otherwise the
expectation equals 0. Now, s−qxd1

α1
· · ·xdt

αt
is nonnegative, and E

∏
(r,i)∈S ηr,i ≤ (s/m)|S|.

Thus monomials’ expectations are term-by-term dominated by the case that all ηr,i are i.i.d.
Bernoulli with expectation s/m.

3 Proof Overview

Hanson-Wright analysis. Note Z can be written as the quadratic form σTAx,ησ, where
Ax,η is block diagonal with m blocks, where the rth block is (1/s)x(r)(x(r))T but with the
diagonal zeroed out. Here x(r) is the vector with (x(r))i = ηr,ixi. To apply Hanson-Wright,
we must then bound ‖‖Ax,η‖F ‖p and ‖‖Ax,η‖‖p, over the randomness of η. This was done
in [19], but suboptimally, leading to a simple proof there but of a weaker result (namely, the
bound on s proven there was suboptimal by a

√
log(1/ε) factor). As already observed in [19],

a simple calculation shows ‖Ax,η‖ ≤ 1/s with probability 1. In this work we improve the
analysis of ‖‖Ax,η‖F ‖p by a simple combination of the triangle and Bernstein inequalities to
yield a tight analysis.

MGF analysis. We apply the Chernoff-Rubin bound P(|Z| > ε) ≤ 2e−tε E cosh(tZ), so that
we must bound E cosh(tZ) (for t in some bounded range) then optimize the choice of t. We
accomplish our analysis by writing Z = XTA◦X for an appropriate matrix A where X is
a Bernoulli-Rademacher vector, by Taylor expansion of cosh and considerations similar to
Remark 2. We then bound E cosh(tXTA◦X) using decoupling followed by arguments similar
to [13, 23]. We note one can also recover an MGF-based analysis by specializing the analysis
of [9] for analyzing sparse oblivious subspace embeddings to the case of “1-dimensional
subspaces”, though the resulting proof would be quite different from the one presented here.
We believe the MGF-based analysis we give in this work appeals to more standard arguments,
although the analysis in [9] does provide the advantage that it yields tradeoff bounds for
s,m.

4 Our SJLT analyses

4.1 A first analysis: via the Hanson-Wright inequality
I Theorem 5. For Π coming from an SJLT distribution, as long as m ' ε−2 log(1/δ) and
s ' εm,

∀x : ‖x‖2 = 1, P
Π

(|‖Πx‖22 − 1| > ε) < δ.

Proof. As noted, we can write Z as a quadratic form

Z = ‖Πx‖22 − 1 = 1
s

m∑
r=1

∑
i6=j

ηr,iηr,jσr,iσr,jxixj
def= σTAx,ησ,

Set q = Θ(log(1/δ)) = Θ(s2/m). By Hanson-Wright and the triangle inequality,

‖Z‖q ≤ ‖
√
q · ‖Ax,η‖F + q · ‖Ax,η‖‖q ≤

√
q · ‖‖Ax,η‖F ‖q + q · ‖‖Ax,η‖‖q,

where Ax,η is defined in Section 3. Since Ax,η is block-diagonal, its operator norm is the
largest operator norm of any block. The eigenvalue of the rth block is at most (1/s) ·

SOSA 2018
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max{‖x(r)‖22, ‖x(r)‖2∞} ≤ 1/s, and thus ‖Ax,η‖ ≤ 1/s with probability 1. Next, define
Qi,j =

∑m
r=1 ηr,iηr,j so that

‖Ax,η‖2F = 1
s2

∑
i6=j

x2
ix

2
j ·Qi,j .

Suppose ηr1,i, . . . , ηrs,i = 1 for distinct rt and write Qi,j =
∑s
t=1 Yt, where Yt is an indicator

random variable for the event ηrt,j = 1. By Remark 2 we may assume the Yt are independent,
in which case Qi,j is distributed as Binomial(s, s/m). Then by Lemma 2, ‖Qi,j‖q . q. Thus,

‖‖Ax,η‖F ‖q = ‖‖Ax,η‖2F ‖
1/2
q/2

≤ ‖ 1
s2

∑
i 6=j

x2
ix

2
j ·Qi,j‖1/2q

≤ 1
s

∑
i 6=j

x2
ix

2
j · ‖Qi,j‖q

1/2

(triangle inequality)

≤ 1√
m

Then by Markov’s inequality and the settings of q, s,m,

P(|‖Πx‖22 − 1| > ε) = P(|σTAx,ησ| > ε) < ε−q · Cq(m−q/2 + s−q) < δ. J

I Remark. Less general bounds than Lemma 2 would have still sufficed for our purposes. For
example, Bernstein’s inequality and the triangle inequality together imply ‖Y ‖p . αN + p

for any p ≥ 1, which suffices for our application since we were interested in the case p = αN .

4.2 A second analysis: bounding the MGF
In this analysis we show the following bound on the symmetrized MGF of the error:

E cosh(tZ) ≤ exp
(
K2t2

m

)
, for |t| ≤ s

K , where K = 4
√

2 (5)

Using the above, we obtain tail estimates in a standard manner. By the generic Chernoff-
Rubin bound:

P(|Z| > ε) ≤ 2e−tε E cosh(tZ) ≤ 2 exp
(
K2t2

m − tε
)
, for all 0 ≤ t ≤ s

K

Optimizing over the choice of t, we obtain the tail bound:

P(|Z| > ε) ≤ 2 max
{

exp(−C2ε2m), exp(−Cεs)
}
, where C = 1

8
√

2

I Remark. The cross-over point for the two bounds is when s
m = Θ(ε). To obtain a failure

probability of δ, this yields the desired s = O
( 1
ε log

( 1
δ

))
and m = O

( 1
ε2 log

( 1
δ

))
.

Our goal now is to prove eq. (5) for t satisfying |t| ≤ s
K . Now by Taylor expansion, we

have E cosh(tZ) =
∑

even q
|t|q
q! · EZ

q. Therefore, by section 2, we may assume that the ηr,i
are fully independent to bound E cosh(tZ) from above. Now E cosh(tZ) = 1

2 (E exp(tZ) +
E exp(−tZ)) ≤ max

{
E exp(tZ),E exp(−tZ)

}
, for all t ∈ R. Let B def= 1

sxx
T. Let Π = 1

sH

and let Y1, Y2, . . . , Ym denote the rows of H. Then Z =
∑m
r=1 Y

T
r B
◦Yr. By the independence
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assumption, Yi are i.i.d. Bernoulli-Rademacher vectors. Letting Y denote an identical copy
of a single row of H,

E exp(±tZ) =
∏
r

E exp(±tY T
r B
◦Yr) =

(
E exp(±tY TB◦Y )

)m
, for all t ∈ R (6)

Let Y ′ be an independent copy of Y . By decoupling (Theorem 4),

E exp(tY TB◦Y ) ≤ E exp(4tY TBY ′) = E exp(Y TB̃Y ′), for all t ∈ R, where B̃ def= 4tB (7)

We show below that

E exp(Y TB̃Y ′) ≤ 1 + K2t2

m2 , provided |t| ≤ s
K , where K = 4

√
2 (8)

Substituting this bound in eq. (7) and combining with eq. (6), we obtain:

E exp(±tZ) ≤
(
1 + K2t2

m2

)m ≤ exp
(
K2t2

m

)
, provided |t| ≤ s

K , where K = 4
√

2,

which completes the proof of (5) as desired. It remains to prove eq. (8).

Bilinear forms of Bernoulli-Rademacher random variables.
The MGF of a Bernoulli-Rademacher random variable X = ησ with parameter p equals
E exp(tX) = 1− p+ pE exp(tσ) ≤ 1− p+ p exp(t2/2), for all t ∈ R.

Let λ(z) def= exp(z) − 1. Rewriting the above, we have E λ(tX) ≤ p λ(t2/2) = pE λ(tg),
where g ∼ N (0, 1). We show an analogous replacement inequality for Bernoulli-Rademacher
vectors.

I Lemma 6. Let Y be a Bernoulli-Rademacher vector with parameter p. Then:

E λ(bTY ) ≤ p λ(‖b‖2/2) = pE λ(bTg) for all vectors b, where g ∼ N (0, In)

Proof. By stability of Gaussians, E exp(bTg) = exp(‖b‖22/2), demonstrating the last equality
above. Let g(t) def=

∑
S 6=∅ t

|S|−1∏
i∈S λ(b2i /2) for t ≥ 0. We have

∏
i

(
1+ t λ(b2i /2)

)
= 1 + tg(t).

Now:

E exp(bTY ) =
∏
i

E exp(biYi) =
∏
i

(
1 + E λ(biYi)

)
≤
∏
i

(
1 + p λ(b2i /2)

)
= 1 + pg(p)

Thus, E λ(bTY ) ≤ pg(p) ≤ pg(1), since g(t)↑. To conclude, we claim that g(1) = λ(‖b‖22/2).
Indeed:

1 + g(1) =
∏
i

(1 + λ(b2i /2)) =
∏
i

exp(b2i /2) = exp
(∑
i

b2i /2
)

= 1 + λ
(
‖b‖22/2

)
J

Let p def= s
m . In the left side of eq. (8), we have E exp(Y TB̃Y ′) = 1 + E λ(Y TB̃Y ′). By

the law of total expectation:

E
Y,Y ′

λ(Y TB̃Y ′) = E
Y
E
Y ′

[λ((Y TB̃)Y ′) | Y ] ≤ p · E
Y
E
g′

[λ((Y TB̃)g′) | Y ]

(by lemma 6, applied to Y ′)

Exchange the order of expectations of Y and g′ via Fubini-Tonelli’s theorem. Now apply
lemma 6, this time to Y . Finish using the law of total expectation which yields an upper
bound of p2 · E λ(gTB̃g′). Thus:

E exp(Y TB̃Y ′) ≤ 1 + p2 · E λ(gTB̃g′) (9)

SOSA 2018
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In order to be self-contained we include a standard proof of the following lemma, though
note that the lemma itself is equivalent to the Hanson-Wright inequality for gaussian random
variables since it gives a bound on the MGF of decoupled quadratic forms in gaussian random
variables.

I Lemma 7. E exp(gTQg′) ≤ exp
(
‖Q‖2F

)
for independent g, g′ ∼ N (0, In), provided ‖Q‖ ≤

1√
2 .

Proof. Let Q = UΣV T, where Σ = diag(s1, . . . , sn). So E exp(gTQg′) = E exp(gTUΣV Tg′).
Since U is orthonormal, by rotational invariance, UTg ∼ N (0, In) and is independent
of V Tg′ ∼ N (0, In). Therefore, E exp(gTQg′) = E exp(gTΣg′). Now gTΣg′ =

∑
i sigig

′
i,

therefore:

E exp(gTΣg′) =
∏
i

EE[exp(sigig′i) | gi] =
∏
i

E exp(s2
i g

2
i /2) =

∏
i

1√
1−s2

i

Now s2
i ≤ ‖Q‖2 ≤ 1

2 for each i. Use the bound e−x ≤
√

1− x for x ≤ 1
2 so that:

E exp(gTQg′) ≤
∏
i

exp(s2
i ) = exp(

∑
i

s2
i ) = exp

(
‖Q‖2F

)
J

Note that ‖B̃‖F = 4t‖B‖F and ‖B̃‖ = 4t‖B‖. Now B = 1
sxx

T, so that ‖B‖F = ‖B‖ = 1
s .

Using the above proposition in the right side of eq. (9) with Q = B̃, we obtain:

E exp(Y TB̃Y ′) ≤ 1 + p2 · λ
(
K2t2

2s2

)
, provided |t| ≤ s

K , where K = 4
√

2

In the right side above, use the bound λ(x) ≤ 2x, which holds for x ≤ 1
2 , and substitute

p = s
m so that

E exp(Y TB̃Y ′) ≤ 1 + K2t2

m2 , provided |t| ≤ s
K , where K = 4

√
2

This yields the desired bound stated in eq. (8).
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