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—— Abstract

Although there are tools for some the most common natural language processing tasks in Por-
tuguese, there is a lack of available cross-platform tools specifically targeted for Portuguese, from
end to end, namely for integration in projects developed in Java. To address this issue, we have
developed and tweaked, over the last half-dozen years, NLPPORT, a set of tools that can be
used in a pipelined fashion, which we have made publicly available. In this paper, we present the
major features of such set of tools.
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1 Introduction

Many high-level natural language processing (NLP) tasks rely heavily on some kind of
language-specific pre-processing. Texts must be split into sentences and sentences into tokens
(words and punctuation), and words often have to be further analysed. For instance, when
searching for specific words, as happens in information retrieval (IR), their inflections must
be considered to broaden the results. Likewise, for information extraction (IE), tools are
also required for processing text and classifying its contents. Each of these tasks must be
addressed, mostly in a sequential way, with the output of one tool serving as the input of the
next, keeping them modular and easy to adapt and maintain.

Around 2010, in the early development stages of a question-answering system [10], in
Java, we felt the need for such kind of tools for Portuguese. Although at the time there were
not so many tools as those currently available, some did exist, but with several limitations,
specifically when it came to language-specific knowledge. We originally relied on OpenNLP,
but soon noticed that some of the tools underperformed when specific constructs of the
Portuguese language were not addressed, as is the case of contractions and clitics, that
conceal part of their constituents. Also missing were some essentials, like the lemmatizer.
Since then, we have been developing NLPPort, with OpenNLP being used as a starting
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point for some of the tools — however with new models trained and other tweaks added,
some of which based on the manual compilation of language-specific knowledge —, alongside
MaltParser, and including other tools developed from scratch.

After a brief overview on related work, the next section present the tools of the NLPPORT
suite, where key features and settings are described, together with some examples.

2 Related Work

Though some include other tasks, NLP suites of tools typically address: tokenization, part-
of-speech (POS) tagging, chunking, and named entity recognition (NER) or classification.
Well-established open suites, include Apache OpenNLP,! Stanford CoreNLP [7],2 NLTK [6],3
FreeLing [9],4 spaCy,? and LinguaKit [3].5 Most of them have a pipeline including the most
common NLP tasks. Still, although most of these suites support or can be trained for many
languages, available models do not fully support Portuguese, missing some essential tools (for
instance, OpenNLP and NLTK don’t include a lemmatizer for Portuguese), or are limited
when it comes to using language-specific knowledge, that is not always available or is harder
to compile without human intervention.

As for the application programming interfaces (API), LinguaKit uses Perl, NLTK and
spaCy use Python, FreeLing uses C++, and OpenNLP uses Java. Moreover, LinguaKit and
spaCy are recent — at least in the sense that when our work started, they were not available.
All things considered, even though it could be possible to develop an interface between APIs
in different programming languages, there was still a need for a suite of NLP tools in Java
for a more streamlined integration process.

Besides the tools commonly expected in a NLP pipeline, a tool that is increasingly
important is a fact extractor. Although there are some reference tools, mainly for English
(e.g., ReVerb, OLLIE, ExtrHech, ClauslE) [2], for Portuguese, the scenario is still mostly
barren, with the exception of LinguaKit.

That led to a decision to develop a set of tools in Java, although borrowing from already
proven tools whenever possible, as is the case of the OpenNLP suite, and the MaltParser”
dependency parser.

3 Tools

NLPPORT includes a set of tools for Portuguese NLP that are either tweaked versions of
OpenNLP’s tools and MaltParser (including the creation of new models and compilation of
rules) or tools entirely developed by us. These go from a sentence splitter to a fact extractor
and can be used in a pipeline. In Figure 1, we can observe an overview of the pipeline of
tools and how they interact.

Apache OpenNLP: http://opennlp.apache.org/ [Accessed: April 2018].
Stanford CoreNLP: http://stanfordnlp.github.io/ [Accessed: April 2018].
NLTK: http://www.nltk.org/ [Accessed: April 2018].

FreeLing: http://nlp.1lsi.upc.edu/ [Accessed: April 2018].

spaCy: http://www.spacy.io/ [Accessed: April 2018].

LinguaKit: http://linguakit.com/ [Accessed: April 2018].

MaltParser: http://www.maltparser.org/ [Accessed: April 2018].
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Figure 1 NLPPORT’s Pipeline Overview.

<replacement target="q.b."></replacement>
<replacement target="q.e.d."></replacement>
<replacement target="q.g."></replacement>

Figure 2 Examples of abbreviations used in the sentence splitter.

3.1 SenPORT

SENPORT splits text into sentences, enabling their individual processing by other tools. It
is based on OpenNLP’s sentence detector, the SentenceDetectorME class,® with two major
tweaks on its input and output:
A list of abbreviations is used for avoiding splitting sentences on periods that commonly
occur in abbreviations. It is applied after sentence splitting: whenever a sentence ends
with an abbreviation, it is reattached to the following sentence, if any. Figure 2° shows a
few examples from the compiled abbreviation list.
An option for line breaks always resulting in a new sentence — arguably true for many
corpora. It is performed before applying OpenNLP’s sentence detector and is addressed
with a regular expression for the purpose: (\n\r?)|(\r\n?).

For sentence splitting, OpenNLP’s sentence detection model available for Portuguese
(pt-sent.bin) is used!®. This model was trained on CoNLL-X Bosque 8.0 [1] data.

3.2 TokPORT

TokPORT is our tokenizer, which relies on OpenNLP’s TokenizerME class, the pre-trained
model for Portuguese (pt-token.bin), but includes some tweaks for considering contractions
and clitics when pre-processing the sentences, and for considering abbreviations in post-
processing. More precisely, after sentences are tokenized, tokens are optionally checked for
the presence of contractions and clitics, in order to better address POS tagging later, as
expanding clitics in tokens, clearly separating the verb from the personal pronouns, makes it
easier to identify the latter. For example, using one of the rules in Figure 3, we get the form

8 The ME suffix in some of OpenNLP’s classes denotes the use of a maximum entropy model.

9 In this figure and in others that follow, excerpts of an XML based format are shown, where all “rules”
are defined by means of a target, used to find matches in text, and of an eventual replacement, that,
depending on the task at hand, may be optional.

10This and other OpenNLP’s pre-trained models used in this suite of tools can be downloaded from
http://opennlp.sourceforge.net/models-1.5/ [Accessed: April 2018].
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<replacement target="-me-emos">emos a mim</replacement>
<replacement target="-me-ia">ia a mim</replacement>
<replacement target="-me"> a mim</replacement>

Figure 3 Examples of clitics processed by the tokenizer.

<replacement target="&">a a</replacement>
<replacement target="ao">a o</replacement>
<replacement target="aos">a os</replacement>

Figure 4 Examples of contractions processed by the tokenizer.

<replacement target="em abono de"></replacement>
<replacement target="em bloco"></replacement>
<replacement target="em breve"></replacement>

Figure 5 Examples of token groups used in the tokenizer.

dar-me-ia — in English, “/it] would give me” —, that would be POS tagged just as a verb, to
daria a mim (even if not strictly in line with the structure of Portuguese), yielding as tags
a verb, a preposition and a pronoun, respectively for the three resulting tokens. The use
of one option over the other may also have implications in the classifications of the other
tokens by the POS tagger, by changing the entropy.

The reason for processing contractions is similar to that of clitics. In this case, prepositions
and pronouns are broken apart, as shown in Figure 4. For example, aos (preposition) is
changed into a os (preposition and pronoun).

Again, the abbreviation list is used for coupling the period with the respective abbreviation
(and classified together) instead of being addressed as punctuation and leading to incorrect
POS tags. For abbreviation examples, please refer back to Figure 2. Abbreviations with
multiple periods that may have been split by the tokenizer are also put back together (e.g.,
q. b. back to ¢.b.).

We have also opted for grouping tokens during the tokenization process: proper nouns
are combined in an “unbreakable” token, to be processed together (feeding back the resulting
entities from NER to the tokenizer); and adverbial expressions have their elements grouped
together, with some examples presented in Figure 5.

3.3 EntPORT

The named entity (NE) recognizer, ENTPORT), is based on OpenNLP’s NameFinderME class,
and is used straight out-of-the box. Yet, as there was no pre-trained model for Portuguese
available among the OpenNLP models, one had to be trained, for which we used the Floresta
Virgem [1] treebank in the format drvores deitadas. Entities are thus classified as one of the
following: abstract, artprod (article or product), event, numeric, organization, person, place,
thing, or time. The trained model achieves a precision of 81.9%, a recall of 76.%8 and an
F-measure of 79.3% over the same treebank.

As stated before, the entities recognized by this tool are fed back to TOKPORT in order
to bundle together the tokens that compose the entities, so that they can be identified and
processed as such. This way, when the tokens of a multiword NE get to the POS tagger, they
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get tagged together — for instance, as a proper noun in the case of the name of a person (e.g.,
{José da Silva} for {José} {da} {Silva}) — instead of being individually tagged, with benefits
in the POS tagging process itself and later in other tasks that depend on it.

3.4 TagPORT

Given that the previous processing in TOKPORT already addressed most of the issues
that could affect the outcome of the tagging process, OpenNLP’s POS tagger was also used
straight out-of-the-box. Specifically, we use the POSTaggerVME class with the available model
for Portuguese (pt-pos-maxent.bin). Only a wrapper was created to ease the integration
with the other NLPORT tools, yielding TAGPORT. For reference, the available POS tags
are “adjectivo,” preposi¢ao” and
“verbo” — and, if considered as such, “pontuacdo

W W RRENAY

artigo,” “nome,” “numeral,” “nome préprio,
»11

W

advérbio,

3.5 LemPORT

For lemmatization, we have developed LEMPORT), extensively described elsewhere [11].

Briefly, it allows for manner, number, superlative, augmentative, diminutive, gender and

verb normalization of words, using two complementary approaches: a lexicon and rules.

Among other data, the lexicon contains word inflections, their dictionary form and respective

morphological classification, and is used first for attempting normalization of a given word.

When that is not possible, the rules, including transformations and classes to which the
transformations should be applied to, are introduced iteratively until a match in the lexicon
is found or the rules are exhausted. LEMPORT currently achieves an accuracy over 98%
against Bosque 8.0.

3.6 ChkPORT

CHKPORT uses OpenNLP’s phrase chunker, the class ChunkerVME, out-of-the-box. Yet, as
it happens for NER, no prebuilt model for Portuguese was available. Once more, we have
used Bosque 8.0, both for training and testing the model, yielding an accuracy of 95%, recall
of 96%, and F-measure of 95%. The inputs of CHKPORT are the tokens, their POS tags,
and the lemmas. Chunks can be classified as nominal (NP), verbal (VP), prepositional (PP),
adjectival (ADJP) or adverbial (ADVP) phrases. Again, except for minor aspects related to
the presentation of results (e.g., including the use of the lemmas in the description of the
chunks), addressed by a wrapper, the results are used directly in the pipeline.

3.7 DepPORT

For dependency parsing, we have resorted to MaltParser as the basis of both our dependency
parser and, inherently, dependency chunker, bundled together as DEPPORT. Instead of
using just the dependencies per se, they are used for aggregating tokens from a sentence in
chunks. For example, we want to group all the tokens related to the noun identified as the
subject of the sentence, rather than just get the noun itself.

The model for MaltParser was also trained with Bosque 8.0, after conversion to the
CoNLL-X format. Resulting from the application of that model, a token can be assigned

U English: adjective, adverd, article, noun, numeral, proper noun, preposition, verb, and punctuation,
respectively.

18:5

SLATE 2018



18:6 NLPPort: A Pipeline for Portuguese NLP

[tokens]

7d form lLemma pos head dependency
1 Mel_Blanc mel_blanc prop 21 SUBJ
2 era ser v-fin 0 ROOT
3 alérgico adj adj 21 SC
4 a a pPrp 22 A<

5 cenouras cenoura n 23 P<

6 punc 21 PUNC
—

[chunks]

id head function tokens

1 2 SUBJ [ Mel_Blanc ]

2 0 ROOT [ era ]

3 2 sC [ alérgico a cenouras ]

Figure 6 Dependency parsing and chunking example.

one of many grammatical functions. Of those, only the following can be selected as direct
dependents of the root token in the next processing step (except for the root token itself and
punctuation tokens):

(Predicate) Auxiliary Verb (PAUX); Passive Adjunct (PASS);
(Predicate) Main Verb (PMV); Predicator (P);

Adjunct Adverbial (ADVL); Prepositional Object (PIV);
Adjunct Predicative (PRED); Punctuation (PUNC);

Auxiliary Verb (AUX); Root (ROOT);

Complementizer Dependent (>S); Statement Predicative (S<);
Dative Object (DAT); Subject (SUBJ);

Direct Object (ACC); Subject Complement (SC);
Focus Marker (FOC); Subject Related Arg. Adverbial (ADVS);
Main Verb (MV); Top Node Noun Phrase (NPHR);
Object Complement (0C); Topic Constituent (TOP);
Object Related Arg. Adverbial (ADVO); Vocative Adjunct (VOC).

Once a sentence is processed by the dependency parser, tokens are grouped in what we
call dependency chunks. These chunks are formed by selecting the tokens whose head is
the root of the sentence, and then by aggregating each of those tokens together with all of
their dependents. Please refer to Figure 6 for an example of dependency chunking. In the
same figure, we can observe the results of the tokenizer, the lemmatizer and the POS tagger,
alongside dependency parsing and chunking.

3.8 FacPORT

For fact extraction, FACPORT uses NEs and phrase or dependency chunks, combined with
a set of rules. Facts are, for all purposes, triples with extra information or metadata, which
are composed of:

an identifier — a unique identifier of a fact in relation to each sentence, auto-incremented;

a subject — the subject of the fact, usually a NE or some thing related to the object;

a predicate — the predicate of the fact, typically a verb;



R. Rodrigues, H. Goncalo Oliveira, and P. Gomes

<replacement target="[NP] [NP]">is a</replacement>
<replacement target="[NP] [em:PP]">is in</replacement>
<replacement target="[NP] [de:PP]">is part of</replacement>

Figure 7 Examples of rules for extracting facts of adjacent phrase chunks.

an object — the object of the fact, usually something related to the subject or a NE,
reverse mirroring the contents of the subject;

a sentence identifier — a unique identifier of a sentence in relation to each document,
auto-incremented;

a document identifier — a unique identifier for each document (e.g., its filename).

Rules for fact extraction from sentences are only used in the case of adjacent phrase
chunks. For dependency chunks, we use directly the dependency classification of the chunks, as
in SUBJ + ROOT + OBJ — subject + predicate + object!?. Figure 7 shows some rules
for extracting facts from adjacent phrase chunks.

When using phrase chunks, the fact extractor checks them for the presence of NEs. When
a match occurs, adjacency relations between chunks are used to extract facts. For instance,
if a NP chunk contains a person NE and is immediately followed by another NP chunk, it is
highly probable that the second chunk is a definition or specification of the first, thus yielding
the fact NP, 4s a NP, ;1. The rules specify the classification of the adjacent chunks and
also some elements that the chunks may or must contain, appended using a prefix or a suffix
with a colon (:).

For dependency chunks, the subject and object chunks are checked for the presence of
entities, and a triple is built using the corresponding predicates and objects or subjects,
accordingly. Subject, predicate, and object chunks are then transposed into the corresponding
fields of a newly created fact.

Fact extraction is currently limited to the presence of NEs (or proper nouns, when no
NEs are available or recognized as such) in both the phrase and dependency chunks. It does
not have to be like that, but it is a form of reducing the extraction of spurious facts. We do
intend to revise this option, devising a way of selecting facts that may be meaningful even
without NEs or proper nouns in them.

In Figure 8, we present examples of facts extracted from a sentence, including an erroneous
fact identified with an asterisk. Nevertheless, it can be easily acknowledged that facts do
summarize the key information bits in the sentence.

4  Conclusions and Future Work

We have presented NLPPORT, a set of tools that provide cross-platform (using Java) end-
to-end Portuguese NLP. It borrows from OpenNLP and MaltParser, but includes multiple
tweaks and compiled knowledge that allow for improving the output of its tools, considering
constructs such as clitics and contractions.

The tools can be used individually or in a pipeline, where the output of one is the input
of the next. A major feature is their modularity, allowing for changes and improvements
individually in each of them (eventually improving the overall results of the pipeline). As a

12 Actually, objects (0BJ) are defined, for instance, as dative objects (DAT) or direct objects (ACC), or are
not objects at all, as is the case of subject complements (SC), but the structure maintains.
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Mel Blanc, o homem que deu a sua voz a o coelho mais famoso de o mundo, Bugs
Bunny, era alérgico a cenouras.

—

Fact: {subject=[Bugs_Bunny], predicate=[ser], object=[a sua voz a o coelho
mais famoso de o mundo] }*

+

Fact: {subject=[Mel_Blanc o homem que deu a sua voz a o coelho mais famoso de
o mundo Bugs_Bunny], predicate=[ser], object=[alérgico a cenouras]}

—+

Fact: {subject=[Mel_Blanc], predicate=[ser], object=[o homem que deu a sua voz
a o coelho mais famoso de o mundo Bugs_Bunny]}

_|_
Fact: {[subject=[Mel_Blanc], predicate=[ser], object=[o homem]}
_|_

Fact: {[subject=[Mel_Blanc], predicate=[ser], object=[alérgico a cenouras]}

Figure 8 Example of facts extracted from a sentence.

whole or individually, some of these tools have been used in the past both inside our research
group (e.g., [4, 10, 5, 8]) and outside (e.g., [12]).

Although some of the tools have a only narrow margin for improvement, namely the
dependent from external ones, others can greatly benefit from increased interest and use, as
is the case of FACPORT, which remains to be properly evaluated against existing solutions.

Finally, a missing tool that is being considered for future development and integration in
the suite is one for coreference resolution, which could be easily exploited by FACPORT.

The NLPPORT suite of tools is freely available for download, as a whole or each of the
tools individually, at GitHub'3.
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