
LearnJS - A JavaScript Learning Playground
Ricardo Queirós
CRACS & INESC-Porto LA & DI/ESMAD/P.PORTO, Porto, Portugal
ricardoqueiros@esmad.ipp.pt

https://orcid.org/0000-0002-1985-6285

Abstract
The JavaScript ecosystem is evolving dramatically. Nowadays, the language is no longer con-
fined to the boundaries of the browser and is now running in both sides of the Web stack. At
the same time, JavaScript it’s starting to play also an important role in desktop and mobile
applications development. These facts are leading companies to massively adopt JavaScript in
their Web/mobile projects and schools to augment the language spectrum among their courses
curricula.

Several platforms appeared in recent years aiming to foster the learning of the JavaScript
language. Those platforms are mainly characterized with sophisticated UI which allow users to
learn JavaScript in a playful and interactive way. Despite its apparent success, these environments
are not suitable to be integrated in existent educational platforms. Beyond these interoperability
issues, most of these platforms are rigid not allowing teachers to contribute with new exercises,
organize the existent exercises in more suitable and modular activities to be deployed in their
courses, neither keep track of student’s progress.

This paper presents LearnJS as a simple and flexible platform to teach and learn JavaScript.
In this platform, instructors can contribute with new exercises and combine them with expositive
resources (e.g videos) to define specific course activities. These activities can be gamified with the
injection of dynamic attributes to reward the most successful attempts. Finally, instructors can
deploy activities in their educational platforms. On the other hand, learners can solve exercises
and receive immediate feedback on their solutions through static and dynamic analyzers. Since
we are in the early stages of implementation, the paper focus on the presentation of the LearnJS
architecture, their main components and their data and integration models. Nevertheless, a
prototype of the platform is available in a GitHub repository.

2012 ACM Subject Classification Software and its engineering → General programming lan-
guages, Applied computing → Interactive learning environments

Keywords and phrases Web development, programming, e-learning, automatic evaluation

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.2

Category Short Paper

Funding FourEyes is a Research Line within project “TEC4Growth – Pervasive Intelligence,
Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER-000020” fin-
anced by the North Portugal Regional Operational Programme (NORTE 2020), under the POR-
TUGAL 2020 Partnership Agreement, and through the European Regional Development Fund
(ERDF).

1 Introduction

Nowadays, the JavaScript (JS) language is no longer seen as a browser scripting language
to validate forms and make AJAX calls to Web servers. In fact, the language has evolved
in a consistent way and can already be used to create applications on the most popular

© Ricardo Queirós;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 2; pp. 2:1–2:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ricardoqueiros@esmad.ipp.pt
https://orcid.org/0000-0002-1985-6285
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


2:2 LearnJS - A JavaScript Learning Playground

platforms. One of the great impulses for this growth was the appearance of Node.js, which
allows developers to use JS throughout the stack (front and backend) of a Web application.
But it’s not just on the Web domain that JS is having a huge success. In fact, JS can already
be used to create native/hybrid mobile (e.g. React Native, Ionic) and desktop applications
(e.g. Electron, WinJS, NW.js). Last but not least, several game engines based on JavaScript
can be used for making HTML5 games for desktop and mobile web browsers, supporting
Canvas and WebGL rendering (e.g Phaser, Cocos2d).

Obviously, the rise of JS and its corresponding omnipresence led companies to start
adopting the language since it allows their development teams the need to master a single
language for the cross-platform development of their products. This growth has also re-
activated the JavaScript community, being nowadays considered one of the most popular
languages according to several studies1. At the same time, there is a concern from Schools
to adjust their courses curricula to teach these skills not only at the language level, but also
to adopt the most popular frameworks and tools that are now gravitating on the Web.

In this context, several online platforms have appeared in recent years aiming to foster the
learning of JavaScript. These platforms, typically coupled in online learning platforms (e.g
Udemy, Udacity), provide sophisticated UI and a very strong level of interaction, facilitating
the progress of students through creative examples. Regardless of their popularity, these
platforms have issues regarding interoperability with educational systems and flexibility in
content management. For instance, teachers can only advise the use of such tools for training
purposes and cannot use them to define specific learning activities and keep track on the
evolution of students.

This paper presents LearnJS as a learning environment for the teaching-learning process
of the JavaScript programming language. The platform allows two main use cases: teachers
can contribute with new resources, combine existing resources into activities and distribute
activities in learning management systems; students can access activities, solve exercises and
receive automatic feedback. Both use cases have important points that should be emphasized.
In the case of teachers, the activities created can include expository resources (e.g. PDF,
videos) and evaluative resources (e.g. exercises). Also, gamification attributes (e.g. levels,
hints, achievements, leaderboards, unlock levels and code skeletons) can be assigned to
provide playful and engaged activities to students. In the case of the students the feedback
returned by the platform is not only produced by dynamic evaluation (tests cases), but also
by static code analysis through the use of linters which are responsible for the inspection of
potential buggy code.

The remainder of this paper is organized as follows: Section 2 reviews the existing
environments to learn JavaScript and focuses its attention on Web platforms. In this context
several platforms are compared according to several criteria: interoperability, flexibility. In
Section 3, the LearnJS architecture and its main components are presented. In this context,
we expose the data and interoperability models. In Finally, we conclude with a summary of
the main contributions and perspectives of future work.

2 Related Work

Learning computer programming can be a lonely, complex, and demotivating process [1, 3, 5].
These issues have been addressed in the last years, with the appearance of several on-line
learning environments trying to leverage coding education and make it accessible to everyone,

1 https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/


R. Queirós 2:3

Table 1 MOOCs features comparison.

Path Resources (expositives) Resources (evaluation) Social

EdX Yes Videos Quiz F/D
Coursera Yes Videos Quiz/Puz UP/F/D
Udacity Yes Videos Quiz Forum
CodePlayer No Videos No Com/Rec
CodeAcademy Yes ICE ICE Ach/Badges
Code.org Yes Videos ICE/Puz Levels
TreeHouse Yes Videos ICE/Puz Badges
CodeSchool Yes Videos ICE F/Badges

even those with absolutely no coding experience or knowledge [7, 4]. These environments
come in various formats ranging from non-interactive approaches (e.g. YouTube channels,
blogs, books) to integrated and interactive solutions (e.g. intelligent tutors, online coding
environments).

Nowadays, there is an enormous demand on the technology sector to be up to date
with the latest frameworks and languages. Regardless whether you are a coding newbie
or a mature developer, you have several options, besides a computer science degree, to
improve your programming skills. In this realm, MOOCs (Massive Open Online Courses)
and Online Coding Bootcamps are two increasingly popular options for learners to improve
their development skills and find work within a relatively short amount of time. While
these two are excellent alternative learning contexts, the two options still have very distinct
differences [2].

A MOOC is an online course, usually available without charge, where learners can choose
their own learning pace and direction. MOOCs are free educational courses often delivered by
renowned university professors that typically feature a mix of downloadable readings, quizzes,
discussion boards, video content and peer-to-peer assessment. The goal of MOOCs is to reach
a much larger audience than traditional courses can accommodate. Often, MOOCs offer
certificates for a fee which are awarded on successful completion of a course, and transferable
college credit.

An Online Coding Bootcamp, on the other hand, is an intensive and paid course, usually
eight to twelve weeks in duration, which offers hands-on training, career guidance and job
assistance. These types of platforms involve a greater time commitment for the learner and
are more suitable for those who wants to quickly master a specific language (or stack) and
get a technical job.

Table 1 compares a few of the most popular online learning platforms/MOOCs on a set
of features and tools.

Most of the MOOCs offer learning paths with a list of courses to work through. This
feature is very important, especially for those new to programming. Despite the existence of
paths, the studied MOOCs don’t offer a very rigid structure allowing learners to choose several
learning paths during the course. The materials of the courses come in several flavors and
are organized in two types: 1) expository resources, such as videos (the most popular format)
and HTML/PDF tutorials and 2) evaluation resources, such as interactive code exercises,
quizzes and puzzles. Almost all platforms offer videos as a way to disseminate knowledge.
These videos include the resolution step-by-step of exercises. This way, learners gain some
theoretical/practical skills that can be later consolidated and applied in coding challenges.

SLATE 2018



2:4 LearnJS - A JavaScript Learning Playground

Figure 1 LearnJS component diagram.

These challenges can be run inside of interactive coding exercises components (ICE) giving
feedback and support to the learner during the resolution of the exercise (e.g. CodeAcademy,
Treehouse). Most of these components are based on cloud IDEs (e.g. Cloud9, Codeanywhere)
and integrate some tools like resources sequence, chat and video visualization. Regarding
gamification and social features, most platforms adhere to the same components, such as
forums (F), learning dashboards (D), user profiles (UP), comments (COM), recommendation
(REC), levels and badges. For instance, CodePlayer offers a different approach to learning
code by playing code like a video, helping people to learn front-end technologies quickly and
interactively. The platform also includes a commenting tool and links to related walkthroughs.
CodeAcademy includes a user progress dashboard informing of the current state of the learner
regarding its progress in the courses. This platform enhances the participation in the courses
by also including achievements (ACH) that are rewarded with badges and users are also able
to share completed projects with the rest of the site community and potentially showcase
their skills to employers. Except for Code.org, all the platforms have a strong presence in
the mobile world, with app versions for Android and iOS.

3 LearnJS

In this section we present LearnJS, a simple and flexible online playground for the teaching
and learning of the JavaScript language. The architecture of learnJS is depicted in Figure 1.

At its core, LearnJS is composed by two components used by the two system user profiles:
Teachers: use the LearnJS Management Tool to create/select resources to/from the
Learning Resources Repository in order to compose a learning activity. Next, they deploy
the activity in a Learning Management System.
Students: launch the activity in the LMS and solve it using the LearnJS Playground.
Beyond the internal gamification features, the playground can benefit from other Gami-
fication Services to foster student’s competitiveness and engagement.

The purpose of LearnJS is also to integrate an e-learning ecosystem based on an LMS
(e.g. Moodle, Sakai, BlackBoard). For this, it benefits from the interoperability mechanisms
to provide authentication directly from the LMS and to submit exercises grades back to the
LMS, using the Learning Tools Interoperability (LTI) specification.

In the following sections we detail these two main components in the LearnJS ecosystem:
the management tool and the playground.



R. Queirós 2:5

3.1 LearnJS Management Tool
The LearnJS Management Tool is a Web-based component which will be used by teacher-
s/instructors to submit resources and aggregate them to obtain a composite learning activity.
The next section will detail the main aspects of this management tool, more precisely, the
GUI component and the resource and activity schemata.

3.1.1 GUI component
The LearnJS Management Tool is a Web-based component based on HTML5 Canvas. Its
main purpose is to provide a flexible way for teachers to contribute with new learning
resources and allow their aggregation and gamification to define playful learning activities.
The final result of this aggregation is a LearnJS manifest with all the necessary information
for the correct functioning of the activity in the student’s playground.

Another feature of this tool is the capacity for sharing and grading activities. This feature
will allow a teacher to share a previously created learning activity in the public space of the
LearnJS community. With the grade feature, instructors could score a given activity taken
into account the experience that they have with it. This grading will influence the results
list after searching.

3.1.2 The resources schema
Teachers can use the LearnJS Management Tool to contribute with new resources. The
supported resources in LearnJS follow Sweller and Cooper [6] paradigm based on a learner-
centered approach to define a constructivist learning model. This model foster the learning
by viewing and learning by doing approaches where educational resources, either expository
or evaluative, play a pivotal role. Thus, in LearnJS, resources have two flavours:

Evaluative: JavaScript challenges to be solved by coding;
Expositive: Videos or PDF files showing how to master a specific topic.

In this moment, we do not have yet the GUI component finalized. Thus, the submission of
a new learning resource should be made through the upload of a JSON file which should
comply with the LearnJS official resource schema formalized by a public JSON Schema2.
The example on Listing 1 shows an evaluative resource for the calculation of a number’s
factorial.

The JSON document has a simple structure. It contains basic properties for identification
and metadata purposes. One of the most important properties is the type property. It can
assume one of two values: document or exercise. The former requires the url property to be
set. In this case, the system will load the resource located in that URL. The later requires
filling the exercise property. This property is composes by the following sub-properties:

statement: the exercise statement formatted in plain text or HTML;
hint: a set of hints to help students to overcome the challenge. By default, they are
blocked;
code/skeleton: code skeleton defined by the teacher. Only available by gamification;
code/solution: solution of the challenge submitted by the teacher. Used for input tests
injection. Only available after success completion of the exercise by the student;
code/tests: test cases. The input tests are inject in the student’s solution and the
outputs compared with the provided output tests or with the output generated by the
teacher solution.

2 https://github.com/rqueiros/learnJS

SLATE 2018

https://github.com/rqueiros/learnJS


2:6 LearnJS - A JavaScript Learning Playground

Listing 1 Resource JSON instance template file.
{

"id ":" http :// learnJS / resources /125412" ,
"title ": " Calculate factorial of a number ",
"url ": "",
"type ": " exercise ",
" metadata ": {

" author ": " Ricardo Queiros ",
"date ": "19 -04 -2018" ,
"level ": " intermediate ",
"tags ": [" recursivity "," math "]

},
" exercise ": {

" statement ": " Create a function that receives one number and
returns its factorial ",

"hint ": [" Verify special cases like 0 that should return 1"],
"code ": {

" skeleton ": " function factorial (x){ return ;}",
" solution ": " function factorial (x){if(x ===0){ return 1;}

return x* factorial (x -1);}" ,
"tests ": [{" in": "4" ," out ": "24"} ,{" in": "0" ," out ": "1"}]

} } }

.

3.1.3 The activity schema

Teachers can also perform other operations in the management tool, such as the creation of
activities.

An activity combines a set of resources of several types (evaluative, expositive) with
gamification attributes. Listings 2 shows an activity JSON instance for learning JavaScript
arrays.

An activity JSON file is composed by several properties. We highlight two:
levels: can be considered as sub-activities composed by a set of resources identified in
the resources sub-property. Students should see and solved the respective resources
of the level. The completion of the level and the respective unlock of the next level is
granted after the student solved a specific percentage of evaluative resources defined in
the perc property of the level.
gamify: a set of attributes that can be assigned to resources. After a success completion
of an evaluative resource, students can be awarded in multiple forms. Hence, the award
property can have one of the following values:

HintExtra: gives an extra point to the learner. The learner can spend the hint points
on any exercise by unhiding the hint associated;
ShowNextSkeleton|ShowAllSkeleton: gives the learner the ability to unhide the
code skeleton associated to the next (or all) gamified resources;
UnlockLevel|UnlockAllLevels: gives the learner the ability to unlock the next (or
all) level.



R. Queirós 2:7

Listing 2 Learning activity JSON instance.
{

"id": "http :// learnJS / activities /129387" ,
"title ": "Learn the basics of Arrays ",
" metadata ": {

" author ":" Ricardo Queiros ",
"date ":"19 -04 -1975" ,
"level ":" basic",
"tags ":[" arrays "]

},
" levels ": [

{"id ":"1" , "name ":" Basic operations ", "perc ":"75" ,
" resources ": ["... resources /125412" , "..."]} ,

{"id ":"2" , "name ":" Sort", "perc ":"50" , " resources ":["..."]}
],
" gamify ": [

{" resource ": ".../ resources /125412" , "award ":" HintExtra "},
{" resource ": ".../ resources /225232" , "award ":" ShowNextSkeleton "}

]
}

3.2 LearnJS Playground
The LearnJS Playground is a Web-based component which will be used by students/learners
to browse learning activities and interact with the compound resources. Here students can
see videos of specific topics and solve exercises related with those topics with automatic
feedback on their resolutions. The architecture of the playground is shown in Figure 2.

The playground is composed by three main components:
1. Editor: allows students to code their solutions in a interactive environment;
2. Evaluator: assess the student’s solution based on static and dynamic analyzers;
3. Gamification Engine: gamifies the learning activity with the management of levels

and several awards.

For the Editor component, the playground uses Ace (maintained as the primary editor
for Cloud9 IDE) which can be easily embedded in any web page and JavaScript application.
The editor is properly configured for the JavaScript language and supports the Emmet toolkit
for the inclusion of dynamic JavaScript snippets.

Ace editor can display errors on the editor itself but does not handle language dependencies.
A parser needs to be used to detect errors and determine their positions on the source file.
There are several tools that can improve code quality. One of such cases is code linters.
Linters (e.g JSLint, JSHint) can detect potential bugs, as well as code that is difficult to
maintain. These static code analysis tools come into play and help developers spot several
issues such as a syntax error, an unused variable, a bug due to an implicit type conversion,
or even (if properly configured) coding style issues. LearnJS uses JSHint to accomplish this
behavior. While static code analysis tools can spot many different kinds of mistakes, they
can not detect if your program is correct, fast or has memory leaks. For that particularly
reason, LearnJS combines JSHint with functional tests (based on test cases). For this kind
of tests, and since the code is written in JS and the context is the browser, we use a simple
approach by iterating all the case tests and applying the eval function for tests injection.

SLATE 2018



2:8 LearnJS - A JavaScript Learning Playground

Figure 2 LearnJS Playground component diagram.

Both analyzers (linter and Test Case runner) are subcomponents of the LearnJS evalu-
ator component that runs exclusively on the client side. This approach avoids successive
round-trips to the server which affects negatively the user experience.

Lastly, the Gamification Engine component is responsible for loading/parsing the
LearnJS manifest and fetching resources from the learning resources store. If levels are
defined, the engine sequences and organizes the resources properly. Upon completion of
evaluative resources from students, the engine deals with all the logic associated with the
respective awards by unhiding/unlocking features of next challenges. Finally, the component
send the results back to the server.

At this moment, we have a simple running prototype. The source code is available at a
GitHub repository. Figure 3 shows the frontend GUI of the playground.

4 Conclusions

In this paper we present LearnJS as a flexible playground for JavaScript learning. Since we
are in the beginning of implementation, the paper stresses the design of the platform divided
in two main components: the management tool and the playground. In the former, teachers
can contribute with new exercises and bundle related exercises in learning activities. All
these entities were formalized using JSON schemata. The later, allows students through a
sophisticated and interactive UI, to see and solve educational resources (mostly, videos and
exercises). In order to engage students, the platform can be configured to gamify resources
through the subgrouping of activities in levels, the assignment of awards and the exhibition
of a global leaderboard.

The main contributions of this work is the design of a platform with interoperability
concerns in mind and the respective schemata for the simple concepts of educational resources
and activities.

As future work we intend to create a more mature prototype by creating a introductory
course for novice students to learn JavaScript. Then, for validation purposes, we intend to



R. Queirós 2:9

Figure 3 LearnJS Playground UI.

use the platform in real classes and receive student’s feedback. After this process, our idea is
to work on the management tool. Regarding the playground, our intentions is to maintain it
very simple, avoid at maximum the communication with the server and improve the game
mechanics of the engine.

References
1 Kirsti M. Ala-Mutka. A survey of automated assessment approaches for program-

ming assignments. Computer Science Education, 15(2):83–102, 2005. doi:10.1080/
08993400500150747.

2 Gemma Church. MOOCs versus coding bootcamps. https://www.class-central.com/
report/moocs-versus-coding-bootcamps/, 2016. [Online; accessed april 19th, 2018].

3 Jackie O’Kelly and J. Paul Gibson. Robocode & problem-based learning: A non-
prescriptive approach to teaching programming. SIGCSE Bulletin, 38(3):217–221, 2006.
doi:10.1145/1140123.1140182.

4 Pedro Xavier Pacheco and António Coelho. Computer-based assessment system for e-
learning applied to programming education. In 4th International Conference of Education,
Research and Innovation, pages 3738–3747, 2011.

5 Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and teaching pro-
gramming: A review and discussion. Computer Science Education, 13(2):137–172, 2003.
doi:10.1076/csed.13.2.137.14200.

6 John Sweller and Graham Cooper. The use of worked examples as a substitute for problem
solving in learning algebra. Cognition and Instruction, 2(1):59–89, 1985. doi:10.1207/
s1532690xci0201_3.

7 Elena Verdú, Luisa M. Regueras, María J. Verdú, José P. Leal, Juan P. de Castro, and
Ricardo Queirós. A distributed system for learning programming on-line. Computers and
Education, 58(1):1–10, 2012. doi:10.1016/j.compedu.2011.08.015.

SLATE 2018

http://dx.doi.org/10.1080/08993400500150747
http://dx.doi.org/10.1080/08993400500150747
https://www.class-central.com/report/moocs-versus-coding-bootcamps/
https://www.class-central.com/report/moocs-versus-coding-bootcamps/
http://dx.doi.org/10.1145/1140123.1140182
http://dx.doi.org/10.1076/csed.13.2.137.14200
http://dx.doi.org/10.1207/s1532690xci0201_3
http://dx.doi.org/10.1207/s1532690xci0201_3
http://dx.doi.org/10.1016/j.compedu.2011.08.015

	Introduction
	Related Work
	LearnJS
	LearnJS Management Tool
	GUI component
	The resources schema
	The activity schema

	LearnJS Playground

	Conclusions

