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—— Abstract

Quizzes are a widely used form of assessment, supported in many e-learning systems. Mooshak
is a web system which supports automated assessment in computer science. This paper presents
Moozz, a quiz assessment environment for Mooshak 2.0, with its own XML definition for de-
scribing quizzes. This definition is used for: interoperability with different e-learning systems,
generating HTML-based forms, storing student answers, marking final submissions and generat-
ing feedback. Furthermore, Moozz also includes an authoring tool for creating quizzes. The paper
describes Moozz, its quiz definition language and architecture, and details its implementation.
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1 Introduction

Mooshak [5] is a web system that supports automated assessment in computer science.
It evolved from a programming contest management system, supporting different contest
models, to a pedagogical tool used in introductory computer science courses. Although
Mooshak was initially targeted for text-based computer programming languages, it was later
extended to support visual languages, such as EER (Extended Entity-Relationship) and
UML (Unified Modeling Language).

Quizzes are a widely used form of assessment, not only in computer science, and they are
widely supported among e-learning systems. Quizzes can also be used in computer science
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contests, in particular in those targeted to younger students, to develop their computational
thinking skill, as is the case of Bebras [2]. Hence, a system supporting automated assessment
in computer science, both in competitive and pedagogical settings, should also have a quiz
assessment environment.

In fact, the previous version of Mooshak already has an incipient form of quiz assessment.
Nevertheless, it lacks support for several types of questions, standard quiz interoperability
languages, and integration with other assessment modes. Meanwhile, version 2.0 has a
pedagogical environment, named Enki [6], that integrates different kinds of assessment in a
single course, including code and diagram assessment.

This paper presents Moozz, an assessment environment for quizzes integrated into Mooshak
2.0. Moozz supports all the standard question types, including multiple choice (select one or
multiple), gap filling, matching, short answer, and essay, as well as questions with media files
(e.g, images, sounds, and videos). Moozz uses its own XML definition for describing quizzes,
named Moo, providing eXtensible Stylesheet Language Transformations (XSLT) to convert
to and from other quiz formats, such as IMS Question and Test Interoperability specification
(QTI) [8] and the GIFT format!.

An authoring tool is also included in Moozz to facilitate the creation of quizzes. This tool
allows to import and export quizzes in the supported formats, insert multimedia content,
and add questions, answers and feedback messages.

The remainder of this paper is organized as follows. Section 2 presents Mooshak 2.0,
and the formats and standards supported by Moozz. Section 3 describes the architecture of
Moozz and details its implementation. Finally, Section 4 summarizes the contributions of
this work and identifies opportunities for future developments.

2 Background

This paper presents Moozz, a quiz assessment environment that aims to integrate in the
pedagogical tool of Mooshak 2.0, named Enki [6]. This environment has several features,
such as the compatibility with IMS QTTI specification and the GIFT format, and the support
for Bebras quiz competitions. This section aims to provide some background on Mooshak,
particularly on the tool in which Moozz integrates, and to describe the supported formats.

2.1 Mooshak 2.0

Mooshak [5] is a system for managing programming contests on the web, which provides
automatic judging of submitted programs, submission of clarification requests, reevaluation
of programs, tracking of printouts, among many other features. It supports a wide range of
programming languages, such as Java, C, VB, and Prolog.

Even if Mooshak was initially designed to be a programming contest management system
for ICPC contests, educators rapidly found its ability to assist them in programming courses [3]
to give instant feedback on practical classes, evaluate and mark assignments, among other
uses. This has motivated the development of several extensions specifically for learning, such
as a plagiarism checker and an exam policy.

Recently, Mooshak was completely reimplemented in Java with Graphic User Interfaces
(GUIs) in Google Web Toolkit (GWT). Besides the changes in the codebase, Mooshak 2.0
gives special attention to computer science learning, providing a specialized computer science
languages learning environment — Enki [6] —, which not only supports exercises using typical
programming languages, but also diagramming exercises.

! nttps://docs.moodle.org/25/en/GIFT_format
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Enki blends assessment and learning, integrating with several external tools to engage
students in learning activities. Furthermore, Enki’s GUI mimics the aspect of an IDE, and
attempts to achieve their powerful extensibility. As a typical IDE, such as Eclipse and
NetBeans, the GUI of Enki is divided into regions, each one containing several overlapping
windows, organized using tabs. These regions are resizable, and their windows can be moved
among different regions. A window holds a unique component, capable of communicating
with other components. Therefore, it is possible to add any number of components required
by a specific assessment environment and link them to the evaluation engine with relative
ease. This has already been done for the diagram assessment.

2.2 Question and Test Interoperability (QTI)

The IMS Question and Test Interoperability (QTI) specification describes a data model for
representing question and test data, as well as their corresponding results. This specification
enables authoring and delivering systems, question banks, and Learning Management Systems
(LMSs) to exchange question and test data [8]. Among other things, this common format can
facilitate populating question banks, transmitting results and information about the learner
between the various components of an e-learning ecosystem, and incorporating questions
designed by several IMS QTTI users into a single assessment.

The IMS QTT uses XML to store information about assessments. Its data model can
be seen as a hierarchy of elements whose contents and attributes are XML tags [7]. There
are three key elements in this model: assessment, section and item. The assessment
element contains a set of questions, which can be organized using section elements. The
section element indicates a group of questions, enabling authors to separate each subtopic
and calculate the score obtained for each section as well as the overall score. An item is a
question with all the associated data, such as score, answers, layout and feedback.

The results of the IMS QTT are specific to a participant, but can contain data of more
than one assessment. The core data structures for reporting results are the summary, which
contains global statistics of the assessment, such as the number of attempts, and the results
of the internal tree of the assessment, section and item elements.

2.3 Bebras

Bebras is a community building model for concept-based learning of informatics [2]. It
is designed to promote informatics learning in school through short tasks about simple
concepts [1]. These tasks are the main component of Bebras. They are generally accompanied
by a story or media element, to attract the attention of the children, and try to teach one or
more concepts of informatics. Besides covering a wide range of topics, these tasks can be
designed to help in the development of core computational thinking skills, such as abstraction,
decomposition, evaluation and generalization.

From the practical point of view, Bebras tasks are just quiz questions with multimedia

elements. The Bebras model can be used both in competitive and learning environments.

Furthermore, it has already been used in several individual and team competitions across
the globe.
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2.4 General Import Format Template (GIFT)

The General Import Format Template (GIFT)? is a format created by the Moodle community
to import quiz questions from a text file using markup language [4]. It supports multiple-
choice, true-false, short answer, matching, fill in the blank and numerical questions.

The markup language of GIFT uses blank lines to delimit questions. Questions are
written with the following syntax ::title:: question { answers }. The syntax of the
answers depends on the type of question. For instance, in multiple choice questions the
correct answer(s) are prefixed with an equal sign (=) and the wrong answers with a tilde. To
add feedback, an hash (#) can be used after each answer followed by the feedback message.
Comments are preceded by double slashes (//) and are not imported. A full description of
the language can be found on the Moodle page dedicated to the format.

3 Moozz

Moozz is an assessment environment for quizzes. It supports multiple choice (select one or
multiple), gap filling, matching, short answer, and essay questions, as well as questions with
media files. Moozz has its own XML language, named Moo, for storing and interchanging
quizzes. Moo can be converted to and from different formats, such as GIFT and IMS QTT.
Hence, the questions present in assessments can be saved in a question bank and reused
in other assessments. It also contains an authoring tool for creating quizzes complying
with Moo.

3.1 Authoring Tool

Moozz provides an authoring tool for quizzes. This tool can import and export quizzes
in one of the following formats: Moo (XML), GIFT (plain text), IMS QTI (XML), and
JSON. Besides that, it allows to create question groups, and add, edit, and remove questions.
Questions can also have notes for each possible choice, question, or group. The quizzes are
stored in Moo XML in Mooshak.

The GIFT format was extended to support the concept of groups in Moozz. Each group
starts with $name :numberQuestion. name is the name of group whereas numberQuestion is
the number of questions in the group to be selected for the exam. Two blank lines must be
used to separate two groups of questions and one blank line must be left to separate each
question from the next one.

Moozz supports several kinds of questions, such as: single-select answer, multiple-select
answers, short answer, numerical, fill in the blank, matching, and essay questions. In
single-select answer questions only one alternative can be marked as right and erroneous
responses can be scored negatively. By default, a wrong answer has score zero and the
correct answer scores one, but this can be modified in the Quiz Editor. A multiple-select
answer question is used when two or more answers must be selected in order to obtain full
credit. The multiple-select answer option is enabled by assigning partial answer weight to
multiple answers, while allowing no single answer to receive full credit. The rating of each
option can be defined and by default, a wrong answer has score zero. In short answer
type, all the possible answers must be written, and it will be 100% credited if it matches
exactly any of the correct responses, or zero, otherwise. A numerical question is similar
to a short answer question, but the answer is a number. Numerical answers can include an

2 https://docs.moodle.org/25/en/GIFT_format
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Choose File | No file chosen Remove Download Cancel OK

Progam file name: l quiz.xm
Name sss
Duration |33
Revision Shuffle Score |1 New Group Export Choaose File | No file chosen
Group Name |superquiz Score|1 Number Question |0 Shuffie New QA X

Question Name |Question 1 Single Y| pts |1 . X

Question
What's between orange and green in the spectrum?

Answer
Possible Answer yellow £ right; good! Z  pts |1

Possible Answer red £ wurong, it's yellow < pts |0

Possible Answer blue £ wrong, it's yellow 4 pis |0 -

Figure 1 Screenshot of the Moozz authoring tool.

error margin, an interval and a precision for a correct answer. A £ill in blank question is
like a short answer question, but the answers are presented in an HTML element select.
In the boolean question type, the answer indicates whether the statement is true or false.
There can be one or two feedback strings. The first is shown if the student gives the wrong
answer, and the second if the student gives the right answer. In matching questions, there
are two arrays. One array with the keys and another with the values. Each key matches one
and only one value. These questions do not support feedback messages. Finally, an essay
question allows any text response, and is graded manually.

Figure 1 presents the first version of the authoring tool embedded in Mooshak adminis-
trator GUL

3.2 Architecture

There are four types of XML files stored in Moozz which are Moo-compliant: QuizDb, Exam,
Answers, and CorrectedExam. QuizDb is the question bank XML file containing all the
questions used in assessments, which is created in the authoring tool of Moozz or imported
in one of the supported formats. Exam is the XML file that contains the subset of questions
of an actual exam. Answers has the answers of a student to an exam. CorrectedExam has
the exam with feedback, classification and grade for each question.

Some of these files are generated from each other during the quiz assessment workflow
(e.g., Exanm is generated from an XSL Transformation applied to QuizDb). The Exam and
CorrectedExam are also transformed into an user-friendly format to be displayed to the
student using XSLT. Therefore, most of the work in Moozz consists of XML manipulations.
Figure 2 presents the architecture of Moozz, particularly the transformations conducted in
its core.

When the user request for a new exam, a transformation QuizDbToExam is applied on
QuizDb, which is present on the problem directory. This transformation aims to select
randomly N questions from the whole question bank. The outcome of this transformation
is an Exam XML file, which is stored in the submission directory reserved to the current
participant for subsequent requests. Before being sent to user, this XML is transformed into
HTML through an ExamToHTML transformation. After solving the exam, answers are sent to
Moozz in JSON and converted to XML in a Java class JSONHandler. The result is an Answers
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ExamToHTML
<<XSL>>

3 Submission

Exam
<<XSL Processor>> >
<<XML>>
Answers
QuizDbToExam <<XML>>
<<XSL>>

Problem

QuizDb
<<XML>>

<<XSL Processor>>

ExamHTML
D
<<HTML>>

<<XSL Processor>>

Corrector
>
<<XSL>>

A
CorrectedExam
<<XML>>

<<XSL Processor>>

CorrectedExamHTML
<<HTML>>
CorrectedExamToHTML
<<XSL>>

Figure 2 Diagram of the architecture of Moozz, highlighting the XSL Transformations carried
internally.

XML file, which is also stored in the submission directory. The quiz evaluation is then
executed. The evaluation consists of applying a Corrector transformation to Answers XML.
This transformation outputs a CorrectedExam, which is saved in the same directory. Finally,
CorrectedExam XML is converted to CorrectedExamHTML through CorrectedExamToHTML
to present the feedback to the student.

3.3 User Interface

The client-side of Moozz follows the Model-View-Presenter (MVP) design pattern, integrating
seamlessly in Enki within a single window. Since Enki uses GWT, the Viewer is also
implemented with it. In this sense, the component defines a Java interface MoozzView
with methods to update the view, such as setQuiz(String html), and a class named
MoozzViewImpl that implements the interface and displays the quiz. The presenter part is
implemented in MoozzPresenter. This class receives the commands inputted by the user in
the view, and invokes the necessary methods on the RPC interface of the Moozz service.

The data received from the server is either an ExamHTML, if the exam is not solved, or
a CorrectedExamHTML, if the exam was already submitted. These HTML files are just an
excerpt of an HTML, not a complete HTML page, containing the formatted elements to be
displayed to the user. The excerpt is inserted into the container reserved for the quiz, after
some Javascript pre-processing steps and CSS styling to make it more user-friendly. The
answers submitted by the students are sent in an XML-formatted string complying with the
Moo language.

On multiple choice questions, feedback is displayed only for the selected answer. For
true-false questions, there can be one or two feedback strings. The first is shown if the
student gives the wrong answer. The second if the student gives the right answer. Figure 3
presents an example of feedback in Moozz.
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Q 2 : Which flower is watered first?

t t t
1X [ Even if the first bow is full of water,there is a barrier

that doesn't let water flow down. Eventually, the pipe will leak
water to the 2nd pipe and water the 2nd flower |

2
3

Figure 3 Example of feedback presented in Moozz.

Config

-name: String
1| -description:String

-duration: Integer
-shuffle: Boolean -
Quiz -revision: Boolean Question
-score: Float 1. -
- config:Config -id: Nl;m_hel Choice
g -text: String
 group:Group -missWord: String -id: Number
Group -sel d:Boolean
) -shuffle: Boolean
_&?rgter:in%gmng A -rows:integer
+ | “duration: o | -id: Number 1. -cols:Integer
L. j;;'{,?ﬁ'g."gl,”;;%ﬂ L. -type:Integer -mapKey: String
T E -shuffle: Boolean A -mapValue: String
-mark: Float nswer f
_score: Float- -score: Float 0.4 -value:String o
nuimberQuestion: Integer -mark: Fioat -id: Number -marginOfErrar: String
-description: Strin ~choice: Choice -finalinterval:String
ption: g -accuracy: String
-feedback: String

Figure 4 Data model of the Moo language.

3.4 Moo Language

Moozz is able to import quizzes in different formats, therefore it is required a common quiz
format, capable of storing the quiz and its configurations (e.g., time and number of questions
per exam). A natural candidate for this role is the Question and Test Interoperability (QTI)
standard. However, QT revealed to be too complex and does not support configurations

needed for quizzes in Mooshak, so a new language based in QTI is proposed, named Moo.

As QTI, Moo is an XML language with its own XML Schema definition. As depicted in the
simplified data model of Figure 4, Moo stores questions and settings such as the duration,
and name of the quiz. Questions are organized in groups and each group stores information,
such as the name, grade, and number of questions to appear on the exam.

Questions and answers of a group are stored in a type called QA. This type saves the
question and its answers (if applicable) as well as configurations, such as the name of the

question, the type, and the score, which is the sum of the positive scores of the answers.

Each QA has one or more elements of type Choice. The Choice elements save different data,
according to the type of the question. For example, in multiple, single, short-answer and
boolean types, it includes the response text, feedback for each option, score and mark. The
recorded data for numeric types depends on their subtype: exact answer (response value and
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the margin of error), range answer (initial and final interval values), and precision answer
(value and accuracy). In questions of type matching, it saves the key and the value. The
essay type just saves the question, since the answer is a free-text introduced by the student.
The essay type does not support feedback. The questions and answers texts accept inline
HTML tags for including media or text formatting.

4 Conclusions and Future Work

Mooshak is a system that supports automated assessment in computer science. It has been
used both in competitive and learning environments, supporting the assessment of visual
and text-based programming languages. This paper presents an assessment environment
for quizzes in Mooshak 2.0, named Moozz. Moozz supports all the standard question types,
including multiple choice, true/false, short answer, numerical, fill in the blank and matching,
and questions with media formats. It uses XSL Transformations to support the most common
quiz formats, namely IMS QTI and GIFT.

Moozz includes a quiz authoring tool that is embedded into the administrator GUI of
Mooshak. This editor is capable of importing and exporting quizzes in different formats,
inserting multimedia elements, and add any of the supported question types with feedback
information for each answer.

This environment is a work in progress. Currently, the development phase is almost
completed, only missing the XSL Transformation to comply with IMS QTI. The next phase
is the validation, which will be conducted in a real exam scenario with text, visual and quiz
based exercises.
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