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Abstract
Regular tree expressions are a formalism for describing regular tree languages, which can be
accepted by a finite tree automaton as a standard model of computation. It was proved that
the class of regular tree languages is a proper subclass of tree languages whose linear notations
can be accepted by deterministic string pushdown automata. In this paper, we present a new
algorithm for transforming regular tree expressions to equivalent real-time height-deterministic
pushdown automata that accept the trees in their postfix notation.
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1 Introduction

The theories of formal string languages and formal tree languages are important parts
of computer science. Strings and trees are fundamental data structures. Tree languages
processing has become very popular in the recent years. For example, we can find practical
usages in the area of processing markup languages (like XML) or abstract syntax trees.
Traditionally, problems on trees are solved using various kinds of tree automata [5]. However,
trees can also be represented by strings, for instance in their prefix or postfix notation
obtained by preorder or postorder traversal of the tree, respectively. It was proved by
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6:2 Construction of a PDA Accepting a Postfix Notation of Trees Given by a RTE

Janoušek and Melichar [9] that the class of regular tree languages is a proper subclass of
tree languages whose linear notations can be accepted by deterministic pushdown automata
(PDAs). Thus, the standard (string) PDA is another suitable model of computation for
processing regular tree languages in a linear notation. For example, algorithms processing
XML with the use of PDAs have been investigated [10, 17].

Regular tree expressions (RTEs) are a natural formalism for the description of regular
tree languages [5]. They are analogous to regular (string) expressions. It is well known
that regular (string) expressions describe regular languages and can be converted to finite
automata. In the case of trees, RTEs can be converted to corresponding finite tree automata.

Finite automata and regular (string) expressions are well-studied [8, 16]. A string language
membership problem is a decision problem. Given a regular (string) expression E and a
string w, decide whether w is in the language described by the regular (string) expression E.
This problem can be decided by converting the expression to an equivalent finite automaton
and running the automaton on the input word w.

Many algorithms deal with a problem of converting regular (string) expressions to finite
automata in the string domain. Three algorithms by Brzozowski [4], Thompson [18] and
Glushkov [7] (also known as a position automaton) are the basic ones. Antimirov’s partial
derivatives method [3] (which can be seen as a non-deterministic extension of Brzozowski’s
algorithm) must be also mentioned. Conversions by Glushkov’s and Antimirov’s can be done
in polynomial time w.r.t. the number of occurrences of symbols in the regular expression.

The language membership problem for trees and RTEs is analogous: Given a regular
tree expression E and a tree t, decide whether t is in the language described by the regular
tree expression E. As in the string case, one can create a finite tree automaton (or a PDA)
equivalent to the RTE E and let the automaton run on (linearised) tree t.

Algorithms for the conversion of RTEs to finite tree automata are inspired by the
mentioned algorithms from the string domain. Antimirov’s and Glushkov’s algorithms were
adapted to regular tree expressions by Kuske and Meinecke [11] and also later by Laugerotte
et al. [12]. The finite tree automaton is constructed in polynomial time w.r.t. the size of the
RTE in both adaptations. Thompson’s algorithm was an inspiration for Polách [14], where
RTEs are converted to PDAs.

This paper presents a new approach for the conversion of RTEs to PDAs. The presented
algorithm was inspired by the Glushkov’s algorithm [7] for regular (string) expressions. To
create the equivalent PDA, the RTE is analysed similarly to Glushkov’s algorithm. Resulting
PDA accepting linearised trees described by the RTE is constructed in quadratic time w.r.t.
the size of the RTE. The constructed automaton is a real-time height-deterministic PDA
and therefore it can be always determinised [15].

The paper is organised as follows: Basic definitions are given in Section 2. The conversion
algorithm producing the PDA is presented in Section 3. Section 4 discusses complexity
improvements to the algorithm and to the size of the constructed PDA. Finally, the results
are summarised in the conclusion.

2 Basic Definitions

2.1 Trees
A labelled, ordered and ranked tree over a ranked alphabet A can be defined based on the
concepts from graph theory [1].

A ranked alphabet A is a finite nonempty set of symbols. Each symbol a is assigned with
a non-negative integer arity denoted by arity(a). An denotes the set of symbols from A with
arity n. The set A0 is nonempty. Notation a2 denotes symbol a with arity(a) = 2.
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Figure 1 A directed, rooted, labelled, ranked and ordered tree over A = {a2, b0}.

A directed ordered graph G is a pair (N,R) where N is a set of nodes and R is a set of
ordered lists of edges. Elements from R are in the form ((f, g1), (f, g2), . . . , (f, gn)), where
f, g1, g2, . . . , gn ∈ N, n ≥ 0. Such element indicates that there are n edges leaving f with
the first edge entering node g1, the second entering node g2, and so forth. A sequence of
nodes (f0, f1, . . . , fn), n ≥ 1 is a path of length n from node f0 to node fn if there is an edge
from fi to fi+1 for each 0 ≤ i < n. A cycle is a path where f0 = fn.

An in-degree of a node f ∈ N is the number of distinct pairs (g, f), g ∈ N in elements of
R. An out-degree of f ∈ N is the number of distinct pairs (f, g), g ∈ N in elements of R. A
node with the out-degree 0 is a leaf.

An ordered directed acyclic graph (DAG) is an ordered directed graph with no cycle.
A rooted DAG is a DAG with a special node r ∈ N called the root. The in-degree of r is
0, in-degree of every other node is 1 and there is just one path from the root r to every
f ∈ N, f 6= r. A labelled ranked DAG is a DAG where every node is labelled by a symbol
a ∈ A and the out-degree of a node a ∈ A equals to arity(a). A directed, ordered, rooted,
labelled and ranked tree is rooted, labelled and ranked DAG. All trees in this paper are
considered to be directed, ordered, rooted, labelled and ranked.

The postfix notation of a tree t denoted by post(t) is defined recursively:
1. post(t) = root(t) if root(t) is also a leaf,
2. post(t) = post(c1) · post(c2) · · · post(cn) · root(t), ci are children of root(t).
The postfix notation of a tree language L is defined as post(L) = {post(t) : t ∈ L}. A postfix
notation of any subtree of t is a substring of post(t). However, not every substring of a
postfix notation of a tree is a postfix notation of its subtree [6].

I Example 1. Let t from Figure 1 be a directed, rooted, labelled, ranked and ordered tree
with labels from ranked alphabet A = {a2, b0}. The root of t is a node a2 with an ordered
2-tuple of children (a2, b0). Postfix notation of t is post(t) = b0 b0 a2 b0 b0 a2 a2 b0 a2.

2.2 Regular Tree Expressions
Regular tree expressions (RTEs) are defined using a substitution operation as in [5]. The
definition of the RTE is similar to the definition of the regular (string) expression.

RTEs are defined over two alphabets, F and K. F is a ranked alphabet of symbols. K
is a set of constants (symbols with arity 0), K = {�1,�2, . . . ,�n}, n ≥ 0, F ∩ K = ∅. This
alphabet is used to indicate the position where substitution operations take place.

Firstly, the substitution, i.e. replacing occurrences of �i by trees from a tree language
Lj , is defined. Let K = {�1, . . . ,�n} and t be a tree over F ∪ K, and let L1, . . . , Ln be
tree languages. Then the tree substitution of �1, . . . ,�n by L1, . . . , Ln in t denoted by
t{�1 ← L1, . . . ,�n ← Ln} is the tree language defined by the following identities:

SLATE 2018
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(a) A sample regular tree expression (RTE).
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(b) A RTE denoting the language of integer lists
in LISP.

Figure 2 Examples of RTEs.

�i{�1 ← L1, . . . ,�n ← Ln} = Li, for i = 1, . . . , n,
a{�1 ← L1, . . . ,�n ← Ln} = {a},∀a ∈ F ∪ K with arity(a) = 0 and a 6= �1, . . . , a 6= �n,
f(s1, . . . , sn){�1 ← L1, . . . ,�n ← Ln} = {f(t1, . . . tn)|ti ∈ si{�1 ← L1, . . . ,�n ← Ln}}.

The tree substitution can be generalized to languages: L{�1 ← L1, . . . ,�n ← Ln} =⋃
t∈L t{�1 ← L1, . . . ,�n ← Ln}.
The operation alternation of L1 and L2 is denoted by L1 + L2. The result is a set of

trees obtained by the union of regular tree languages L1 and L2, i.e. L1 ∪ L2.
The operation concatenation of L2 to L1 through �, denoted by L1 ·� L2, is the set

of trees obtained by substituting the occurrence of � in trees of L1 by trees of L2, i.e.⋃
t∈L1

t{�← L2}.
Given a tree language L over F ∪ K and � ∈ K, the sequence Ln,� is defined by

the equalities L0,� = {�} and Ln+1,� = L · �Ln,�. The operation closure is defined as
L∗,� =

⋃
n≥0 L

n,�.
The RTE over alphabets F and K is defined as follows:
the empty set (∅) and a constant (a ∈ F0 ∪ K) are RTEs,
if E1, E2, . . . , En are RTEs and � ∈ K, then: E1 +E2 is a RTE, E1 ·� E2 is a RTE, E1

∗,�

is a RTE and a(E1, . . . , En) is a RTE if a ∈ Fn and arity(n) > 0.

RTE E represents a language denoted by L(E) and defined by the following equalities:
L(∅) = ∅,
L(a) = {a} for a ∈ F0 ∪K,
L(f(E1, . . . , En)) = {f(s1, . . . , sn) | s1 ∈ L(E1),
s2 ∈ L(E2), . . . , sn ∈ L(En)},

L(E1 + E2) = L(E1) ∪ L(E2),
L(E1 ·� E2) = L(E1){�← L(E2)},
L(E∗,�) = L(E)∗,�.

The size of the RTE E (denoted by |E|) is the size of the syntax tree of E. The number
of occurrences of symbols from F and K in the RTE E is denoted by ‖FE‖ and ‖KE‖,
respectively.

I Example 2. Let F = {nil, cons, int} where arity(cons) = 2 and other symbols have arity
0. Let K = {�1,�2}. Then the RTE from Figure 2b denotes the language of lists of integers
in LISP: {nil, cons(int, nil), cons(int, cons(int, nil)), . . .}

2.3 Pushdown Automata
Notions are used similarly as they are defined in [8].
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A nondeterministic pushdown automaton (PDA) is a seven-tuple (Q,Σ,Γ, δ, q0,⊥, F )
where Q is a finite set of states, Σ is a finite set of input symbols (input alphabet), Γ is
a finite set of pushdown store symbols (pushdown store alphabet), δ is a mapping from
Q× (Σ ∪ {ε})× Γ∗ into a set of finite subsets of Q× Γ∗, q0 ∈ Q is the initial state, ⊥∈ Γ is
the initial pushdown store symbol and F ⊆ Q is a set of final states.

Triplet (q, w, α) ∈ Q× Σ∗ × Γ∗ is a configuration of a PDA. The initial configuration is
(q0, w,⊥), w ∈ Σ∗. Relation (q, aw, βα) `M (p, w, βγ) ∈ (Q× Σ∗ × Γ∗)× (Q× Σ∗ × Γ∗) is a
transition of a PDA M if (p, γ) ∈ δ(q, a, α). ak

M denotes the k-th power, a+
M is the transitive

closure and a∗M is the transitive and reflexive closure. In strings representing the pushdown
store in this paper, the top of the pushdown store is situated on the right.

A language accepted by PDA M can be defined in two distinct ways. PDA can accept
1. either by final states, then L(M) = {w : w ∈ Σ∗,∃γ ∈ Γ∗,∃f ∈ F, (q0, w,⊥) `∗ (f, ε, γ)},
2. or by an empty pushdown store, then L(M) = {w : w ∈ Σ∗,∃q ∈ Q, (q0, w,⊥) `∗ (q, ε, ε)}

and F = ∅.

A PDA is deterministic if the following conditions hold:
1. |δ(q, a, γ)| ≤ 1, ∀q ∈ Q,∀a ∈ (Σ ∪ {ε}),∀γ ∈ Γ∗,
2. If δ(q, a, α) 6= ∅, δ(q, a, β) 6= ∅ and α 6= β, then α is not a prefix of β and β is not a prefix

of α (i.e., αγ 6= β, α 6= βγ, γ ∈ Γ∗),
3. If δ(q, a, α) 6= ∅, δ(q, ε, β) 6= ∅, then α is not a prefix of β and β is not a prefix of α (i.e.,

αγ 6= β, α 6= βγ, γ ∈ Γ∗).

The class of languages accepted by nondeterministic PDAs is exactly the class of context-
free languages. Deterministic PDAs accepts deterministic context-free languages. This class
is a proper subset of context-free languages.

A height-deterministic PDA is such PDA which on all of its runs on input word w ∈ Σ∗
leads to the same pushdown store height. Height-deterministic PDAs are a generalization
of visibly PDAs [13, 15, 2]. A real-time height-deterministic PDA is such PDA that is
height-deterministic and without ε-transitions. This class of PDAs is determinisable [13, 15].

3 Converting RTE to PDA

In this section, a new method of creating a real-time height-deterministic PDA from RTE is
proposed. The constructed PDA accepts postfix ranked linear notation of trees.

3.1 Analysing RTE

To analyse the structure of the expression, the RTE has to be preprocessed similarly to
Glushkov’s algorithm. Firstly, every occurrence of symbol from F alphabet of the RTE is
subscripted with an unique symbol. Subscripted RTE E is denoted as E′.

Functions First, Follow and Pos are defined to analyse the RTE E′. Function Pos returns
a set of occurrences of symbols from F alphabet of E′. Function First computes a set of
symbols that can be a root of a tree described by E′. Function Follow returns tuples of
children of a given symbol. Unlike strings, a symbol can be followed by more than a single
symbol. The size of the children tuple is defined by the arity of the symbol.

SLATE 2018
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I Definition 3. Based on the definition of RTEs, the function First is defined recursively:

First(∅) = ∅
First(a(E1, E2, . . . , En)) = {a}

First(E1 + E2) = First(E1) ∪ First(E2)

First(E1 ·� E2) =
{

First(E1) if � /∈ First(E1)
(First(E1) \ {�}) ∪ First(E2) if � ∈ First(E1)

First(E∗,�) = {�} ∪ First(E)

I Theorem 4. The function First(E′) returns the set of symbols that can be the root of any
tree described by an RTE E.

Proof. The proof is done by induction on the structure of the RTE: The basis: If E =
a(E1, E2, . . . , En), a ∈ F ∪ K, n ≥ 0: Only a can be a root. If E = ∅: There is no root.
Now, assume that the theorem holds for any E1 and E2. If E = E1 + E2: This operator
unifies two sets of trees. Therefore the roots of trees from L(E) are either from First(E1) or
First(E2). If E = E1

∗,�: The roots can be only elements from First(E1) or the substitution
symbol �. If E = E1 ·� E2: Initially, suppose � /∈ First(E1). Then the root must be from
First(E1). If � ∈ First(E1), then � gets substituted by the roots of the trees from E2. J

The function Follow returns a set of tuples of symbols which can be direct descendants
(children) of a symbol a ∈ F . The computation of the function is defined using Algorithm 1.
The algorithm recursively traverses the syntax tree of the RTE and maintains a substitution
map. The map contains roots of all possible trees that can be substituted for each � ∈ K. If
� occurs as a child of the symbol a when computing Follow(E′, a), it gets substituted by
elements of a substitution map for a given �.
It is possible that �2 ∈ K is present in the subMap[�1] of any node. Then it is required to
include the contents of mapping for key �2 into �1 set of that node. Also, if � ∈ subMap[�]
then � element can be discarded from the set as it brings no new information.

For the purpose of proving the correctness of the computation, the algorithm can be
split in a two pass algorithm. In the first pass, the substitution mapping for each node is
computed. In the second pass, the computation of Follow can use the computed mapping.

I Theorem 5. Algorithm 1 computes a substitution mapping of every node of the RTE.

Proof. If the substitution operation takes place (in concatenation and iteration nodes), it
alters the substitution map. The changes in substitution mapping come from the definitions
of RTEs. Case E1 ·� E2: Roots from trees described by E2 may appear in the place of �
symbols in E1. Therefore the mapping for the � symbol in E1 is replaced. The substitutions
for � symbols in E2 are determined by the same mapping as in the parent node. Case
E1
∗,�: Symbol � is to be replaced by roots of E1 (this implements the actual iteration) and

the iteration is terminated by concatenating a tree from the right operand of the closest
substitution or iteration node. In other cases, the existing mapping is simply passed to
children as no substitution happens. J

I Theorem 6. Function Follow(E′, a) (defined by Algorithm 1) correctly returns a set of
tuples representing all possible tuples of direct children of a node a.

Proof. The proof by induction is straightforward with the use of the previous theorem. J
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Algorithm 1: Computation of Follow(E′, a) in a single pass.
1 Function Follow(E, a)
2 return FollowRec(E, a, NewMap())
3 Function FollowRec(E, a, subMap)
4 switch E do
5 case E1 + E2 do
6 return FollowRec(E1, a, subMap) ∪ FollowRec(E2, a, subMap)
7 case E1 · �E2 do
8 subMapL← subMap /* copy map */
9 subMapL[�]← First(E2) /* replace mapping for � */

10 return FollowRec(E1, a, subMapL) ∪ FollowRec(E2, a, subMap)

11 case E∗,�1 do
12 subMap[�]← subMap[�] ∪ First(E1)
13 return FollowRec(E1, a, subMap)
14 case f(E1, E2, . . . , En) do
15 if a = f then return ReplaceConstants(subMap, E1, E2, . . . , En)
16 else return

⋃n
i=1 FollowRec(Ei, a, subMap)

17 case ∅ do
18 return ∅
19 Function ReplaceConstants(subMap, E1, E2, . . . , En)
20 lst← NewList()
21 for Ei in E1, E2, . . . , En do
22 if Ei ∈ K then lst← Append(lst, subMap[c]) /* child is a � */
23 else lst← Append(lst, First(Ei))
24 return CartesianProduct(lst)

I Example 7. Let E be a RTE from Figure 2a. First(E′) = {b02, a21, a23}. The results
of the function First and the substitution map for individual nodes are illustrated in Fig-
ure 3. Follow(E′, a21) = {(a23, a23), (a23, a21), (a23, b02), (a21, a23), (a21, a21), (a21, b02),
(b02, a23), (b02, a21), (b02, b02)}. Follow(E′, a23) = {(b04, b05)}. Follow of leaves is ∅.

3.2 Pushdown Automaton Construction

In the previous section, it was shown how to compute First and Follow sets. The First set
determines what symbols are the last to be read in the postfix notation. The Follow sets
store the information about the direct children of a node. This information is used to create
transitions of the two state PDA that accepts by final state. The automaton reads a linear
postfix notation of a tree with an end-of-string marker a appended to the end of the input.
Technical helper functions ϕ and σ are presented first.

I Definition 8. Function ϕ maps an element (tuple) of Follow(E′, a) to a string of pushdown
store symbols. The resulting string is ε if the size of the tuple is zero. Mapping σ strips the
unique index from the subscripted symbol.

I Example 9. Let E′ be a subscripted RTE and let f = (a21, b22, c03) be a follow tuple of
some node. Then ϕ(f) = a21b22c03. Also σ(a21) = a2.

SLATE 2018
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First = {a21, b02,�}
{� → {a23}}

First = {a21, b02}
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First = {a21}
{� → {a21, a23, b02}}
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{� → {a21, a23, b02}}

First = {�}
{� → {a21, a23, b02}}

First = {b02}
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{� → {b05}}

First = {b04}
{� → {b05}}

First = {�}
{� → {b05}}

First = {b05}
{� → {}}

Figure 3 RTE E′ from Figure 2a with First set and substitution mapping for each node.

Algorithm 2: PDA accepting linearised trees described by an RTE E.
input :RTE E.
output :PDA A such that L(A) = post(L(E))
Create PDA with the following properties:

Set of states is equal to {q, f},
alphabet is equal to the F alphabet of E, and a symbol,
pushdown store alphabet is equal to the symbols Pos(E′) ∪ {⊥},
mapping δ can be created by these rules:
∀ai ∈ Pos(E′), σ(ai) ∈ F0, add transition δ(q, σ(ai), ε) = {(q, ai)},
∀ai ∈ Pos(E′), σ(ai) /∈ F0, ∀f ∈ Follow(E′, ai), add δ(q, σ(ai), ϕ(f)) = {(q, ai)},
∀ai ∈ First(E′) add transition δ(q,a,⊥ ai) = {(f, ε)}.

Resulting PDA is A = ({q, f},F ∪ {a},Pos(E′) ∪ {⊥}, δ,⊥, q, {f}). Automaton
accepts by the final state. The top of the pushdown store is on the right.

Roots of subtrees are stored on the pushdown store to keep track of which subtrees have
been read so far. When the root of a subtree is read, its children have to be on the top of
the pushdown store. They are replaced by a pushdown store symbol corresponding to the
read symbol. PDA recognising postfix notations of trees described by RTE E (post(L(E)))
is constructed by Algorithm 2.

I Example 10. This example expands on Example 7. The PDA A = ({q, f}, {a2, b0,a}, {⊥,
a21, b02, a23, b04, b05}, δ,⊥, q, {f}) is constructed by Algorithm 2. δ is defined as follows:

δ(q, a2, a23a23) = {(q, a21)} δ(q, a2, b02a21) = {(q, a21)} δ(q, a2, a23a21) = {(q, a21)}
δ(q, a2, b02b02) = {(q, a21)} δ(q, a2, a23b02) = {(q, a21)} δ(q, a2, b04b05) = {(q, a23)}
δ(q, a2, a21a23) = {(q, a21)} δ(q, a2, a21a21) = {(q, a21)} δ(q, a2, a21b02) = {(q, a21)}
δ(q, a2, b02a23) = {(q, a21)} δ(q, b0, ε) = {(q, b02), (q, b04), (q, b05)}
δ(q,a,⊥ b02) = {(f, ε)} δ(q,a,⊥ a23) = {(f, ε)} δ(q,a,⊥ a21) = {(f, ε)}

The RTE from Figure 2a describes, for instance, the tree from Figure 1. This tree in its
postfix notation (with a symbol appended) is accepted by the automaton.

I Theorem 11. Algorithm 2 creates PDA A such that L(A) = post(L(E)).

Proof. The proof consists of two parts: post(L(E)) ⊆ L(A) and L(A) ⊆ post(L(E)).
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·�1

·�2

∗,�1

∗,�2

a21

�2 �1

b02

c03

(a) A RTE.

qstart

f

a2 | a21a21 → a21, a2 | a21b02 → a21

a2 | a21c03 → a21, a2 | b02a21 → a21

a2 | b02b02 → a21, a2 | b02c03 → a21

b0 | ε → b02, c0 | ε → c03

a | ⊥ a21 → ε

a | ⊥ b02 → ε

a | ⊥ c03 → ε

(b) The PDA for the RTE from Figure 4a.

Figure 4 A RTE and its equivalent PDA.

Case post(L(E)) ⊆ L(A): Proof comes directly from the proof of the Follow and First
functions. The functions analyse all possible combinations of parent-children relations. The
relations are used in the transition function of the PDA. When an input tree (except a
symbol) is read, the automaton can continue only if the pushdown store content equals to
the string ⊥ f (f ∈ First(E′) set) to ensure that whole tree was read.

Case L(A) ⊆ post(L(E)): If there is a word from L(A) that is not in post(L(E)) then
either the computation of First or Follow functions were wrong or the transitions created
from Follow sets would allow the automaton to accept something more. The functions First
and Follow are proved to be correct. J

I Theorem 12. Algorithm 2 creates a real-time height-deterministic PDA.

Proof. Transitions PDA always pop arity(a) symbols from the pushdown store and push
one symbol when reading symbol a. Reading symbol a pops two symbols and pushes none.
The pushdown store height is predetermined and same for all nondeterministic computations
of the PDA on any string. This fulfills the conditions of height-determinism. The PDA never
reads ε, therefore it is also real-time [13, 15]. J

The PDA has two properties worth mentioning: The function ReplaceConstants from Al-
gorithm 1 has an exponential output with the number of node’s children that are from K
and the size of subMap[�] for given node. As every element from the Follow set results in
one transition, the PDA has an exponential amount of transitions. Also, Theorem 12 shows
that the PDA is determinisable because the PDA is real-time height-deterministic [13, 15].

I Example 13. RTE E′ (Figure 4a) has the following properties: First(E′) = {a21, b02, c03},
Follow(E′, a21) = {(a21, a21), (a21, b02), (a21, c03), (b02, a21), (b02, b02), (b02, c03)} and
Follow(E′, b02) = Follow(E′, c03) = ∅. The equivalent PDA is illustrated in Figure 4b.

4 Reducing the Number of Transitions

The PDA created by Algorithm 2 has an exponential number of transitions. The transition
function δ enumerated all possible tuples of children for every node in the tree.

The idea behind the improvement is to make a better use of the pushdown store. New
pushdown store symbols representing all possible symbols that can appear in the place of a
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Algorithm 3: Improved PDA accepting linearised trees described by a RTE E.
input :RTE E.
output :PDA A such that L(A) = post(L(E))
Create PDA with following properties:

Set of states is equal to {q, f},
input alphabet is F ∪ {a},
pushdown store alphabet consists of all sets that appear in substitution mapping in
� ∈ K nodes and singletons consisting of indexed occurrences of symbols from F ,
transitions (δ) are created by these rules:
1. for all symbols ai ∈ F add transition δ(q, σ(ai), ϕ(Follow(E, ai))) = {(q, {ai})},
2. for all nodes �i labelled with a � ∈ K, for all symbols ai ∈ subMap�i

[�] add
δ(q, σ(ai), ϕ(Follow(E, ai))) = {(q, subMap�i

[�])},
3. for all symbols ai ∈ First(E′) add transition δ(q,a,⊥ {ai}) = {(f, ε)}.

Resulting PDA is A = ({q, f},F ∪ {a}, {{ai} | ai ∈ F} ∪ {subMap�i
[�] | for all

nodes �i labelled with a � ∈ K}, δ,⊥, q, {f}). Automaton accepts by the final state.
The top of the pushdown store is on the right.

symbol � ∈ K are introduced. These symbols effectively represent the complete substitution
mapping. For every occurrence of the symbol � ∈ K the substitution mapping set for this
occurrence is to be added as a new pushdown store symbol.

The only difference in the analysis of the RTE is the Follow algorithm. On line 24, the
computation is altered by removing the computation of Cartesian product and returning the
list lst instead. This excludes the need for computing the Cartesian product. Furthermore,
every symbol of F alphabet is now followed by exactly one tuple.

The ideas from previous paragraphs are applied in the Algorithm 3. The algorithm
constructs an improved PDA which has an asymptotically lower amount of transitions.

I Definition 14. Let subMap4[�] return the substitution mapping for symbol � ∈ K inside
the 4 node of the syntax tree.

I Theorem 15. Algorithm 3 creates a real-time height-deterministic PDA.

Proof. Similar to the proof of Theorem 12. J

The automaton created by Algorithm 3 is determinisable.

I Theorem 16. Algorithm 3 creates PDA equivalent to RTE E in O(|E|2) time and the
number of transitions of the PDA is O(‖FE‖ ‖KE‖).

Proof. Overall time complexity can be determined from the efficient implementation of the
algorithm. Computing and saving the First set takes O(|E| ‖FE‖) time. The substitution
mapping can be computed in one traversal over the syntax tree of RTE. It is saved as a
mapping from every occurrence of a node from KE alphabet to the set of elements from
FE . The Follow elements can be computed in the same traversal. This takes O(|E|2) time.
Rules of type 1 and 3 are created in O(‖FE‖) time from the Follow mapping and First set,
respectively. While creating type 2 rules, for every FE node it is required to iterate over the
saved substitution mapping. Therefore, creating type 2 rules takes O(‖FE‖ ‖KE‖) time.

The overall time complexity is O(|E| ‖FE‖+ |E| |E|+ ‖FE‖ ‖KE‖) = O(|E|2) as ‖KE‖ ≤
|E| and ‖FE‖ ≤ |E|. The number of transitions is O(‖FE‖ ‖KE‖) because there are O(‖FE‖)
transitions of types 1 and 3, and O(‖FE‖ ‖KE‖) transitions of type 2. J
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·�2

·�1

∗,�2

∗,�1

a41

�1 �2 �1 �2

+

+

b02 c03

+

d04 e05

+

p06 +

q07 r08

First = {a41, b02, c03, d04, e05,
p06, q07, r08}

{�1 → {},
�2 → {}}

First = {�1}
{�1 → {a41, b02, c03, d04, e05},
�2 → {a41, b02, c03, d04, e05,

p06, q07, r08}} First = {�2}
{�1 → {a41, b02, c03, d04, e05},
�2 → {a41, b02, c03, d04, e05,

p06, q07, r08}}

Figure 5 Sample RTE with First set and substitution mapping for important nodes.

qstart

f

a4 | ♥♣♥♣ → {a41},
b0 | ε → {b02}, c0 | ε → {c03},
d0 | ε → {d04}, e0 | ε → {e05},
p0 | ε → {p06}, q0 | ε → {q07},
r0 | ε → {r08}

 (1)

a4 | ♥♣♥♣ → ♥,
a4 | ♥♣♥♣ → ♣,
b0 | ε → ♥, b0 | ε → ♣,
c0 | ε → ♥, c0 | ε → ♣,
d0 | ε → ♥, d0 | ε → ♣,
e0 | ε → ♥, e0 | ε → ♣,
p0 | ε → ♣, q0 | ε → ♣,
r0 | ε → ♣


(2)

(3)



a | ⊥ {a41} → ε,
a | ⊥ {b02} → ε,
a | ⊥ {c03} → ε,
a | ⊥ {d04} → ε,
a | ⊥ {e05} → ε,
a | ⊥ {p06} → ε,
a | ⊥ {q07} → ε,
a | ⊥ {r08} → ε

Figure 6 PDA equivalent to a RTE from Figure 5 with transitions grouped by type.
For readability, symbol ♥ stands for {a41, b02, c03, d04, e05} and symbol ♣ stands for
{a41, b02, c03, d04, e05, p06, q07, r08}.

I Example 17. RTE E′ from Figure 5 converted to equivalent PDA (Figure 6). First(E′) =
{a41, b02, c03, d04, e05, p06, q07, r08}. Follow(E′, a41) = ({a41, b02, c03, d04, e05}, {a41, b02,

c03, d04, e05, p06, q07, r08}, {a41, b02, c03, d04, e05}, {a41, b02, c03, d04, e05, p06, q07, r08}).
Follow of other symbols (leaves) is ∅. Note that if the Follow was computed by Algorithm 1
then |Follow(E′, a41)| = 1600.

5 Conclusion and Future Work

A new algorithm for the conversion of a RTE to a PDA has been described. The resulted
PDA accepts all trees from the language described by the RTE in their linear postfix notation.
Presented PDA belongs to the class of real-time height-deterministic PDAs, therefore it can
always be determinised [15].

The presented algorithm creates the PDA in quadratic time w.r.t. to the size of input RTE’s
syntax tree, i.e. in O(|E|2) time. The number of transitions in the PDA is O(‖FE‖ ‖KE‖).

There is also a number of interesting open problems. As the processing of the RTE is
similar to processing the regular expression for the Glushkov’s algorithm, we hope to explore
more similarities with this algorithm. Although searching thoroughly, we have not found
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an algorithm for the reverse conversion (from a finite tree automaton or a PDA to a RTE).
Finally, we would like to explore the tree pattern matching problem where the definition of a
set of tree patterns is represented by RTEs.
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