
7th Symposium on Languages,
Applications and Technologies

SLATE 2018, June 21–22, 2018, Guimarães, Portugal

Edited by

Pedro Rangel Henriques
José Paulo Leal
António Leitão
Xavier Gómez Guinovart

OASIcs – Vo l . 62 – SLATE 2018 www.dagstuh l .de/oas i c s

Editors
Pedro Rangel Henriques José Paulo Leal
Departamento de Informática Faculdade de Ciências
Universidade do Minho Universidade do Porto
prh@di.uminho.pt zp@dcc.fc.up.pt

António Leitão Xavier Gómez Guinovart
Instituto Superior Técnico Galician Language Technology and Applications
Universidade Técnica de Lisboa Universidade de Vigo
antonio.menezes.leitao@ist.utl.pt xgg@uvigo.gal

ACM Classification 2012
Computing methodologies → Natural language processing, Software and its engineering → Compilers,
Information systems → World Wide Web

ISBN 978-3-95977-072-9

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-072-9.

Publication date
July, 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.SLATE.2018.0

ISBN 978-3-95977-072-9 ISSN 2190-6807 http://www.dagstuhl.de/oasics

http://www.dagstuhl.de/dagpub/978-3-95977-072-9
http://www.dagstuhl.de/dagpub/978-3-95977-072-9
http://dnb.d-nb.de
https://dx.doi.org/10.4230/OASIcs.SLATE.2018.0
http://www.dagstuhl.de/dagpub/978-3-95977-072-9
http://drops.dagstuhl.de/oasics
http://www.dagstuhl.de/oasics

0:iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

Editorial Board

Daniel Cremers (TU München, Germany)
Barbara Hammer (Universität Bielefeld, Germany)
Marc Langheinrich (Università della Svizzera Italiana – Lugano, Switzerland)
Dorothea Wagner (Editor-in-Chief, Karlsruher Institut für Technologie, Germany)

ISSN 2190-6807

http://www.dagstuhl.de/oasics

SLATE 2018

http://www.dagstuhl.de/dagpub/2190-6807
http://www.dagstuhl.de/oasics

Contents

Computer-Computer Languages

Kaang: A RESTful API Generator for the Modern Web
Ricardo Queirós . 1:1–1:15

LearnJS - A JavaScript Learning Playground
Ricardo Queirós . 2:1–2:9

Moozz: Assessment of Quizzes in Mooshak 2.0
Helder Correia, José Paulo Leal, and José Carlos Paiva . 3:1–3:8

Raccode: An Eclipse Plugin for Assessment of Programming Exercises
André Silva, José Paulo Leal, and José Carlos Paiva . 4:1–4:8

Human-Computer Languages

eOS: The Exercise Operating System
Rui Mendes and José João Almeida . 5:1–5:13

Construction of a Pushdown Automaton Accepting a Postfix Notation of a Tree
Language Given by a Regular Tree Expression

Tomáš Pecka, Jan Trávníček, Radomír Polách, and Jan Janoušek 6:1–6:12

Context-Oriented Algorithmic Design
Bruno Ferreira and António Menezes Leitão . 7:1–7:14

Abcl: Abc music notation with rich chord support
José João Almeida . 8:1–8:8

Asura: A Game-Based Assessment Environment for Mooshak
José Carlos Paiva and José Paulo Leal . 9:1–9:9

CaVaDSL: Virtual Learning Spaces Formal Specification
Ricardo Giuliani Martini and Pedro Rangel Henriques . 10:1–10:10

Non-LR(1) Precedence Cascade Grammars
José-Luis Sierra . 11:1–11:8

Human-Human Languages

ASAPP 2.0: Advancing the state-of-the-art of semantic textual similarity for
Portuguese

Ana Alves, Hugo Gonçalo Oliveira, Ricardo Rodrigues, and Rui Encarnação 12:1–12:17

Evaluation of Distributional Models with the Outlier Detection Task
Pablo Gamallo . 13:1–13:8

Extending the Galician Wordnet Using a Multilingual Bible Through Lexical
Alignment and Semantic Annotation

Alberto Simões and Xavier Gómez Guinovart . 14:1–14:13
7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

0:vi Contents

Path Patterns Visualization in Semantic Graphs
José Paulo Leal . 15:1–15:15

Comparison of Segmentable Units as Indicators of Two Texts Being Parallel
Afonso Xavier Canosa . 16:1–16:7

Less is more in incident categorization
Sara Silva, Ricardo Ribeiro, and Rubén Pereira . 17:1–17:7

NLPPort: A Pipeline for Portuguese NLP
Ricardo Rodrigues, Hugo Gonçalo Oliveira, and Paulo Gomes . 18:1–18:9

Predicting Performance Problems Through Emotional Analysis
Ricardo Martins, José João Almeida, Pedro Henriques, and Paulo Novais 19:1–19:9

Preface

This book compiles the 19 papers —10 full and 9 short— for the 7th edition of the Symposium
on Languages, Applications and Technologies (SLATE’2018), held at Minho University,
Guimarães, Portugal, from 21st to 22nd of June.

The Symposium receives submissions covering theoretical and practical (technologies and
applications) topics on the large area of computer-based automatic language processing. They
focus the different problems that arise when dealing with programming languages, annotation
or serializing languages and natural languages, presenting the approaches, methods and
techniques that shall be used to cope with them. While the approaches are (usually) different
for each subarea, they clearly have clear similarities. So, by tradition, this symposium is
organized in three tracks chaired by different researchers and reviewed by distinct program
committees.

These tracks are:
HHL Track: Processing Human–Human Languages is dedicated to the discussion of research

projects and ideas involving natural language processing and their industrial application.
In 2018 we have 8 papers in this subarea, being dominant the topics like automatic
translation, corpora processing; or sentiment analysis;

HCL Track: In Processing Human–Computer Languages, researchers, developers, and edu-
cators exchange ideas and information on the latest academic or industrial work on
language design, processing, assessment, and applications. In 2018, we have 6 papers
under the HCL title on language (and domain specific language) design, grammars, and
parsing.

CCL Track: The main goal of Processing Computer–Computer Languages is to provide a
broad platform for discussion on the XML markup language: examples of usage and
associated technologies. In 2018 this track has 5 papers focusing learning environments
and automatic program assessment.

I am sure we succeed to gather in this book a selection of valuable articles that will
provide an enjoyable reading and that will contribute for the progress of the research on
language processing.

As General Chair of SLATE 2018, I want to thank the many people without whom this
event would never have been possible. The three track Chairs, António Menezes Leitão, José
Paulo Leal, Xavier Gómez Guinovart, Publication Chair, Alberto Simões and Advertising
Chair, Maria João Varanda.

I extend this acknowledgment to all the Members of the Scientific Program Committee
for their valuable effort reviewing the submissions and deciding the final list of accepted
paper; all the Members of the Organizing Committee for looking carefully after all the
details concerned with the tremendous logistics necessary to put up the event; to the invited
Speakers, Kent Pitman, Luísa Coheur, Nuno Carvalho, and José Pereira that let us learn
with their research and experiences; to the Authors that communicate their fully implemented
ideas or projects, or their fresh proposals that are intended to be realize in the near future;
and finally, to the Participants that made actually the conference happen and be a fruitful
forum for the exchange of experiences and know-how.

At last but not least, my acknowledgements go to the Institutional Partners and Sponsors,
namely the University of Minho Engineering School (EEUM), and in particular the Computer
Science Department (DIUM); the UNU-EGOV Operating Unit, for serving as the venue of
the symposium; and Checkmarx Portugal for sponsoring the keynotes speakers.
7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

0:viii Preface

We are also indebted to OASIcs —the OpenAccess Series in Informatics for the online
publication of this peer-reviewed proceedings— and to MAKE —Machine Learning and
Knowledge Extraction, from MDPI—, COMLAN —Computer Languages, Systems and
Structures from Elsevier—, and COMSIS —Computer Science and Information Systems
journals— for accepting submissions of additionally revised and extended journal-oriented
versions of the best papers presented at the symposium; and to the EasyChair conference
management system authors and maintainers, whose system was crucial to manage all the
Program Committee work.

Pedro Rangel Henriques
Conference Main Chair

This book compiles the 19 papers —10 full and 9 short— for the 7th edition of the
Symposium on Languages, Applications and Technologies (SLATE’2018), held at Minho
University, Guimarães, Portugal, from 21st to 22nd of June.

The Symposium receives submissions covering theoretical and practical (technologies and
applications) topics on the large area of computer-based automatic language processing. They
focus the different problems that arise when dealing with programming languages, annotation
or serializing languages and natural languages, presenting the approaches, methods and
techniques that shall be used to cope with them. While the approaches are (usually) different
for each subarea, they clearly have clear similarities. So, by tradition, this symposium is
organized in three tracks chaired by different researchers and reviewed by distinct program
committees.

These tracks are:
HHL Track: Processing Human–Human Languages is dedicated to the discussion of research

projects and ideas involving natural language processing and their industrial application.
In 2018 we have 8 papers in this subarea, being dominant the topics like automatic
translation, corpora processing; or sentiment analysis;

HCL Track: In Processing Human–Computer Languages, researchers, developers, and edu-
cators exchange ideas and information on the latest academic or industrial work on
language design, processing, assessment, and applications. In 2018, we have 6 papers
under the HCL title on language (and domain specific language) design, grammars, and
parsing.

CCL Track: The main goal of Processing Computer–Computer Languages is to provide a
broad platform for discussion on the XML markup language: examples of usage and
associated technologies. In 2018 this track has 5 papers focusing learning environments
and automatic program assessment.

I am sure we succeed to gather in this book a selection of valuable articles that will
provide an enjoyable reading and that will contribute for the progress of the research on
language processing.

As General Chair of SLATE 2018, I want to thank the many people without whom this
event would never have been possible. The three track Chairs, António Menezes Leitão, José
Paulo Leal, Xavier Gómez Guinovart, Publication Chair, Alberto Simões and Advertising
Chair, Maria João Varanda.

I extend this acknowledgment to all the Members of the Scientific Program Committee
for their valuable effort reviewing the submissions and deciding the final list of accepted
paper; all the Members of the Organizing Committee for looking carefully after all the
details concerned with the tremendous logistics necessary to put up the event; to the invited
Speakers, Kent Pitman, Luísa Coheur, Nuno Carvalho, and José Pereira that let us learn

Preface 0:ix

with their research and experiences; to the Authors that communicate their fully implemented
ideas or projects, or their fresh proposals that are intended to be realize in the near future;
and finally, to the Participants that made actually the conference happen and be a fruitful
forum for the exchange of experiences and know-how.

At last but not least, my acknowledgements go to the Institutional Partners and Sponsors,
namely the University of Minho Engineering School (EEUM), and in particular the Computer
Science Department (DIUM); the UNU-EGOV Operating Unit, for serving as the venue of
the symposium; and Checkmarx Portugal for sponsoring the keynotes speakers.

We are also indebted to OASIcs —the OpenAccess Series in Informatics for the online
publication of this peer-reviewed proceedings— and to MAKE —Machine Learning and
Knowledge Extraction, from MDPI—, COMLAN —Computer Languages, Systems and
Structures from Elsevier—, and COMSIS —Computer Science and Information Systems
journals— for accepting submissions of additionally revised and extended journal-oriented
versions of the best papers presented at the symposium; and to the EasyChair conference
management system authors and maintainers, whose system was crucial to manage all the
Program Committee work.

Pedro Rangel Henriques
Conference Main Chair

SLATE 2018

List of Authors

Afonso Xavier Canosa
University of Santiago de Compostela
Galiza, Spain
canosarodrigues@gmail.com

Alberto Simões
2Ai Lab, Escola Superior de Tecnologia
Instituto Politécnico do Cávado e do Ave
Barcelos, Portugal
asimoes@ipca.pt

Ana Alves
CISUC / ISEC
Polytechnic Institute of Coimbra
Coimbra, Portugal
ana@dei.uc.pt

André Silva
Faculty of Sciences
University of Porto, Portugal
up201007410@fc.up.pt

António Menezes Leitão
Instituto Superior Técnico
INESC-ID, Lisbon, Portugal
antonio.menezes.leitao@tecnico.pt

Bruno Ferreira
Instituto Superior Técnico
INESC-ID, Lisbon, Portugal
bruno.b.ferreira@tecnico.ulisboa.pt

Helder Correia
CRACS & INESC-Porto LA
Faculty of Sciences
University of Porto, Portugal
up201108850@fc.up.pt

Hugo Gonçalo Oliveira
CISUC / Dpt. of Informatics Engineering
University of Coimbra
Coimbra, Portugal
hroliv@dei.uc.pt

Jan Janoušek
Department of Theoretical Computer Science
Czech Technical University in Prague
aculty of Information Technology
Jan.Janousek@fit.cvut.cz

Jan Trávníček
Department of Theoretical Computer Science
Czech Technical University in Prague
Faculty of Information Technology
Jan.Travnicek@fit.cvut.cz

José Carlos Paiva
CRACS & INESC-Porto LA
Faculty of Sciences
University of Porto, Portugal
up201200272@fc.up.pt

José João Almeida
Centro Algoritmi / Dpt. de Informática
Universidade do Minho, Campus de Gualtar
Braga, Portugal
jj@di.uminho.pt

José-Luis Sierra
Fac. Informática
Universidad Complutense de Madrid
28040 Madrid, Spain
jlsierra@ucm.es

José Paulo Leal
CRACS & INESC-Porto LA
Faculty of Sciences, University of Porto
Porto, Portugal
zp@dcc.fc.up.pt

Pablo Gamallo
Centro Inv. en Tecnoloxías da Información
University of Santiago de Compostela
Galiza, Spain
pablo.gamallo@usc.es

Paulo Gomes
CISUC, University of Coimbra
Coimbra, Portugal
pgomes@dei.uc.pt

Paulo Novais
Centro Algoritmi / Dpt. de Informática
Universidade do Minho
Braga, Portugal
pjon@di.uminho.pt

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

0:xii Authors

Pedro Rangel Henriques
Centro Algoritmi / Dpt. de Informática
Universidade do Minho
Braga, Portugal
prh@di.uminho.pt

Radomír Polách
Department of Theoretical Computer Science
Czech Technical University in Prague
Faculty of Information Technology
Radomir.Polach@fit.cvut.cz

Ricardo Giuliani Martini
Centro Algoritmi / Dpt. de Informática
Universidade do Minho
Braga, Portugal
rgm@algoritmi.uminho.pt

Ricardo Martins
Centro Algoritmi / Dpt. de Informática
Universidade do Minho
Braga, Portugal
ricardo.martins@algoritmi.uminho.pt

Ricardo Queirós
CRACS & INESC-Porto LA
DI/ESMAD/Politécnico do Porto
Porto, Portugal
ricardoqueiros@esmad.ipp.pt

Ricardo Ribeiro
INESC-ID Lisboa & ISCTE
Instituto Universitário de Lisboa
Lisbon, Portugal
ricardo.ribeiro@iscte-iul.pt

Ricardo Rodrigues
CISUC / ESEC
Polytechnic Institute of Coimbra
Coimbra, Portugal
rmanuel@dei.uc.pt

Rubén Pereira
ISCTE / Instituto Universitário de Lisboa
Lisbon, Portugal
Ruben.Filipe.Pereira@iscte-iul.pt

Rui Encarnação
CISUC, University of Coimbra
Coimbra, Portugal
race@dei.uc.pt

Rui Mendes
Centro Algoritmi / Dpt. de Informática
Universidade do Minho, Campus de Gualtar
Braga, Portugal
azuki@di.uminho.pt

Sara Silva
ISCTE, Instituto Universitário de Lisboa
Lisbon, Portugal
satsa@iscte-iul.pt

Tomáš Pecka
Department of Theoretical Computer Science
Czech Technical University in Prague
Faculty of Information Technology
Tomas.Pecka@fit.cvut.cz

Xavier Gómez Guinovart
TALG Group
Universidade de Vigo
Galiza, Spain
xgg@uvigo.gal

Committees

Conference Chairs

Main Program Chair:
Pedro Rangel Henriques
Universidade do Minho, PT

Track Chairs:
Human-Human Languages:
Xavier Gómez Guinovart
Universidade de Vigo, ES
Human-Computer Languages:
António Leitão
Instituto Superior Técnico, PT
Computer-Computer Languages:
José Paulo Leal
Universidade do Porto, PT

Publication Chair:
Alberto Simões
Instituto Politécnico do Cávado e do Ave, PT

Organization Committee

Pedro Rangel Henriques
Universidade do Minho, PT

Alberto Simões
Instituto Politécnico do Cávado e do Ave, PT

Maria João Varanda Pereira
Instituto Politécnico de Bragança, PT

José Carlos Ramalho
Universidade do Minho, PT

José João Dias de Almeida
Universidade do Minho, PT

Sara Santos Fernandes
United Nations University, PT

Goreti Pereira
Universidade do Minho, PT

Scientific Committee

Alberto Simões
Instituto Politécnico do Cávado e do Ave, PT

Alda Gancarski
Telecom SudParis, FR

Alexander Paar
TWT GmbH Science and Innovation, DE,

Alexandre Rademaker
IBM Research Brazil, BR

Antoni Oliver
Universitat Oberta de Catalunya, ES

Antonio Leitão
Instituto Superior Técnico, PT

António Teixeira
University of Aveiro, PT

Arantza Diaz De Ilarraza
University of the Basque Country, ES

Arkaitz Zubiaga
The University of Warwick, UK

Brett Drury
SciCrop, BR

Cristina Ribeiro
University of Porto, PT

Daniel Zeman
Univerzita Karlova, CZ

Daniela da Cruz
Checkmarx, PT

Dietmar Seipel
University of Wuerzburg, DE

Fernando Batista
INESC-ID & ISCTE-IUL, PT

Filipe Portela
University of Minho, PT

Francis M. Tyers
Higher School of Economics, RU

Gabriel David
Universidade do Porto, PT

Giovani Librelotto
Universidade Federal de Santa Maria, BR

Horacio Saggion
Universitat Pompeu Fabra, ES

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

0:xiv Committees

Hugo Gonçalo Oliveira
University of Coimbra, PT

Irene Castellón
Universitat De Barcelona, ES

Ivan Lukovic
University of Novi Sad, RS

Jakub Swacha
University of Szczecin, PL

Jan Janousek
Czech Technical University Prague, CZ

Jan Kóllar
FEI TU Kosice, SK

Jaroslav Poruban
Technical University of Košice, SK

Jean-Cristophe Filliatre
Centre National Recherche Scientifique, FR

João Paiva Cardoso
University of Porto, PT

João Correia Lopes
University of Porto, PT

João Saraiva
University of Minho, PT

Jorge Baptista
Universidade do Algarve, PT

José João Almeida
Universidade do Minho, PT

José Luís Sierra Rodriguez
Universidad Complutense de Madrid, ES

José Paulo Leal
Universidade do Porto, PT

Josep Silva Galiana Universitat Politècnica
de València, ES

Luís Ferreira
Instituto Politécnico do Cávado e do Ave, PT

Luis Morgado Da Costa
Nanyang Technological University, SG

Marco Temperini
Sapienza University of Rome, IT

Maria João Varanda Pereira
Instituto Politécnico de Bragança, PT

Mario Beron
National University of San Luis, AR

Marjan Mernik
University of Maribor, SL

Miguel Anxo Solla Portela
Universidade de Vigo, ES

Mikel Forcada
Universitat d’Alacant, ES

Nuno Oliveira,
Checkmarx, PT

Nuno Ramos Carvalho
University of Minho, PT

Núria Bel
Universitat Pompeu Fabra, ES

Pablo Gamallo
University of Santiago de Compostela, ES

Pedro Rangel Henriques
Universidade do Minho, PT

Ricardo Martins
University of Minho, PT

Ricardo Queirós
Politécnico do Porto, PT

Ricardo Rocha
University of Porto, PT

Salvador Abreu
University of Evora, PT

Sebastian Link
The University of Auckland, NZ

Thierry Declerck
DFKI GmbH, DE

Xavier Gómez Guinovart
Universidade de Vigo, ES

Kaang: A RESTful API Generator for the Modern
Web

Ricardo Queirós
CRACS & INESC-Porto LA & DI/ESMAD/P.PORTO, Porto, Portugal
ricardoqueiros@esmad.ipp.pt

https://orcid.org/0000-0002-1985-6285

Abstract

Technology is constantly evolving, as a result, users have become more demanding and the ap-
plications more complex. In the realm of Web development, JavaScript is growing in a surprising
way, already leaving the boundaries of the browser, mainly due to the advent of Node.js. In fact,
JavaScript is constantly being reinvented and, from the ES2015 version, began to include the OO
concepts typically found in other programming languages.

With Web access being mostly made by mobile devices, developers face now performance
challenges and need to perform a plethora of tasks that weren’t necessary a decade ago, such as
managing dependencies, bundling files, minifying code, optimizing images and others. Many of
these tasks can be achieved by using the right tools for the job. However, developers not only
have to know those tools, but they also must know how to access and operate them. This process
can be tedious, confusing, time-consuming and error-prone.

In this paper, we present Kaang, an automatic generator of RESTFul Web applications. The
ultimate goal of Kaang is to minimize the impact of creating a RESTFul service by automating all
its workflow (e.g., files structuring, boilerplate code generation, dependencies management, and
task building). This kind of generators will benefit two types of users: will help novice developers
to decrease their learning curve while facing the new frameworks and libraries commonly found
in the modern Web and speed up the work of expert developers avoiding all the repetitive and
bureaucratic work. At the same time, Kaang promotes the good development principles by
adding automatic testing and documentation generation.

For this accomplishment, Kaang generates the main API content based on the user’s input
and a set of templates which will help developers to manage and test routes, define resources,
store data models and others. In order to provide an addition level of confidence to the generator’s
end-users, the generator will be integrated on Travis CI and published on both the npmjs and
Yeoman registries.

2012 ACM Subject Classification Software and its engineering → Source code generation

Keywords and phrases web development, generators, web tooling, javascript

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.1

Funding FourEyes is a Research Line within project “TEC4Growth – Pervasive Intelligence,
Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER-000020” fin-
anced by the North Portugal Regional Operational Programme (NORTE 2020), under the POR-
TUGAL 2020 Partnership Agreement, and through the European Regional Development Fund
(ERDF).

© Ricardo Queirós;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 1; pp. 1:1–1:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ricardoqueiros@esmad.ipp.pt
https://orcid.org/0000-0002-1985-6285
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

1:2 Kaang: A RESTful API Generator for the Modern Web

1 Introduction

Nowadays we are witnessing a remarkable revolution in the Web frontend development.
A decade ago we just needed to master the 3 pillars of the Web: the HyperText Markup
Language (HTML) for structuring content, the Cascading Style Sheets (CSS) to style it and
the JavaScript language to attach some behavior. With the evolution of the Web, users
became more demanding and the applications became more complex. At the same time,
browsers became more powerful and, consequently, the growing access to the Web through
mobile devices increased. This made the frontend work more bureaucratic from the ad hoc
management of few HTML/CSS/JS files to the automation of complex workflows. These new
workflows are characterized by several tools and libraries organized into several categories
which can be boil down to three main categories: scaffolding tools, dependency managers
and build tools [3].

While all these tools help developers in their day-to-day lives, they also create a big
learning curve for those that are starting in the Web development realm. Even for experts,
this kind of tools and repetitive tasks become time-consuming, boring and their mechanical
nature can produce undesirable errors either working alone or within a team. A typical
scenario is the creation of RESTful APIs. In this context, we need to gather several libraries
and frameworks to handle route management, resource definition, data persistence and unit
tests. Also, we need to create the client-side, typically composed by a responsive and friendly
GUI based on forms to easily communicate with the API endpoints and feed the respective
models. As you can imagine, this process is time-consuming and error prone.

This paper presents Kaang as a RESTful API generator. In order to use the generator,
the developer only has to open the command line and invoke the generator. During the
application generation process, the API is customized based on the developers’ input data.
At the end, a tested and documented RESTful API is generated and can be consumed by a
responsive GUI or using your favorite API tester (e.g., Postman). Obviously, the programmer
may have to do some refinement, namely adding routes or new features. But the important
thing is that the entire software development workflow had been set up and all the initial hard
work mitigated, freeing the developer for more important coding aspects of the application.

The remainder of this paper is organized as follows: Section 2 reviews the current tools
that nowadays gravitate in the Web development workflow and enumerates and compares
the main existing generators based on three criteria: maturity, coverage and performance. In
Section 3, we present Kaang and describe its architecture and main components, the input
system, the routes management and the generation of tests and documentation. In Section 4,
we validate Kaang enumerating the steps for the generation of a Movies API. Finally, we
conclude with a summary of our main contributions and a perspective of future research.

2 Web development workflow

The Web development is going through an unprecedented phase of profound changes.
Nowadays, a frontend Web developer should not only master the HTML/CSS/JavaScript
triad, but also have a (basic) knowledge of what are preprocessors, module bundlers, task
runners, scaffolding tools and other automation tools. In fact, these tools are mandatory in
the so-called “new web development workflows” mitigating developers work and saving their
time for others tasks.

Based on a typical software development workflow, you can easily translate it for the
Web realm identifying three phases developers go through when coding (Figure 1).

The setup phase is the starting point where developers commonly set up project
structure, apply reusable patterns/boilerplate code and install third-party libraries.

Ricardo Queirós 1:3

Figure 1 Phases of the Web development workflow.

The development phase is where developers write code using a programming language.
If necessary, developers can go back to the setup phase, if they need to add a new module or
refactor some code. Also here is the right place to perform quality control based on tests.

The deployment phase is where developers create an executable bundle from the code
written in the previous phase and deploy it. In the Web context, this boils down to deploy
the HTML/JavaScript/CSS to an web server. Obviously, developers can return to the
development phase (fixing bugs or adding new features to existing code) or to the setup
phase (creating new modules).

In order to meet all those expectations proper tooling is needed. In the next two sections
Web tooling is depicted. In Section 2.1 the Web tooling is organized into three categories:
scaffolding tools, dependency managers and build tools. In Section 2.2, we take a closer
look for scaffolding tools and we compare those that generate RESTfull Web apps based on
predefined criteria.

2.1 Frontend tooling

Nowadays, a typical Web development workflow [1] comprises three types of tooling which
can be organized as follows:

Scaffolding tools: generate the Web project structure, inject boilerplate code and add
new modules;
Dependency managers: take care of the self-contained modules, or packages and
potential conflicts between them (e.g., dependencies versions) avoiding redundancy;
Build tools: perform all the file-processing tasks, transforming your source code into
something deployable. Typical examples are bundle and minify JavaScript and CSS
files (e.g., MinifyCSS, UglifyJS), remove dead code (e.g., PurifyCSS), lint code (e.g.,
ESlint), optimize images (e.g., ImageMagick, ImageOptim), preprocess source code (e.g.,
CoffeeScript, LiveScript, Less, Sass, PostCSS), run tests (e.g., Jasmine, Mocha, Jest) and
many others [2]. The configuration of those tools is stored in build files.

As depicted in Figure 2, the modern Web developer, in a typical scenario, developers start
a scaffolding tool (e.g., Brunch, Yeoman) to set up the project, search and install components
with a dependency manager (e.g., Bower, WebPack), and process files periodically through a
build tool (e.g., Grunt, Gulp) [4]. The first two types of tools work mainly in the initialization
phase, while the last one gravitates in the development and deployment phases.

SLATE 2018

1:4 Kaang: A RESTful API Generator for the Modern Web

Figure 2 Web tooling.

Thus, the idea is straightforward: instead of using a huge number of tools individually
for all the development tasks, developers should invest on automating the execution of tasks
through these three different tool types. With these three easy-to-use interfaces all the
complexity is hidden and developers can thereafter concentrate their efforts in the business
logic.

2.2 REST API generators

One of the most important type of tools in the modern Web workflow is the scaffolding
tools. As said before, these type of tools help developers to quickly build web applications
by creating the necessary folders, copying initial files (like build scripts), applying boilerplate
code, and triggering the installation of dependencies. Throughout development, these tools
are also responsible for the creation of the base structure of new modules inside the Web
project.

In this context, one of the most dominating tool is Yeoman, powered by Google. Despite,
the earlier success of Loom and Brunch tools, Yeoman is currently the best way to kick-start
new projects, prescribing best practices and tools. The success of yeoman is mainly due to
its generator ecosystem. A generator can be defined as a plugin that can be run with the ‘yo‘
command to scaffold complete projects. Currently, Yeoman supports more than 7000 plugins
from basic web apps to complex generators for the popular frameworks of Angular, React,
Polymer and others.

A generator comes with a folder full of templates that have to be transferred and updated
by the generator script based on a simple prompting API that allows different parameters to
change the output generated by the generator. Yeoman’s only task is to run the generator.

Ricardo Queirós 1:5

Table 1 Generators maturity.

GitHub data generator-rest generator-sails-rest-api generator-api

First release date Sep/2016 Jan/2015 Sep/2016
Last release date 0.12.0 (Mar/2018) 1.3.13 (Dec/2017) 1.5.3 (Mar/2018)
Open issues 11 12 3
Pull requests 1 7 2
Commits 130 1486 151
Releases 22 63 9
Contributors 13 10 11
Stars 602 325 188
Forks 117 63 33

In this paper we take a closer look for RESTful API generators. The selection of the
generators was very simple. We access the yeoman generators repository1 and search the
generators using the keyword “rest”. Then we sorted the results by popularity (stars of
GitHub) and selected the top three, namely: generator-rest2, generator-sails-rest-api3 and
generator-api4.

In the next subsections the three generators are described and compared based on three
facets: maturity, coverage and performance.

2.2.1 Maturity

It is difficult to determine which generator is most widely used or have more impact. Various
methods of measuring tools popularity have been proposed, each subject to a different bias
over what is measured. In this context, we will focus on comparing the activity in GitHub
where all the selected generators are stored. In fact, the three generators chosen are pretty
active on GitHub, as you can see in Table 1.

Although relatively recent, the generator-rest is the most popular, with a larger number
of stars and forks. The number of forks is relevant. A fork is a copy of a repository. Forking
a repository allows you to freely experiment a repo (with changes) without affecting the
original project. Thus, this means that most people are using the Yeoman generator-rest
base code to start their own projects. Regarding the generator-api, it presents the lower
values of the three in almost all the indicators.

2.2.2 Coverage

For the coverage criterion we will make a comparison of the three Yeoman generators
regarding the support for tasks typically found in build tools and REST specific features.

In Table 2 we present the comparison on generators build tools features.
As you can conclude, we have disappointing results, but there is an obvious reason. Web

RESTful applications depend mostly in thin Web clients while most of the hard work is

1 http://yeoman.io/generators
2 https://github.com/diegohaz/rest
3 https://github.com/ghaiklor/generator-sails-rest-api
4 https://github.com/ndelvalle/generator-api

SLATE 2018

http://yeoman.io/generators
https://github.com/diegohaz/rest
https://github.com/ghaiklor/generator-sails-rest-api
https://github.com/ndelvalle/generator-api

1:6 Kaang: A RESTful API Generator for the Modern Web

Table 2 Build tools features comparison.

Features generator-rest generator-sails-rest-api generator-api

Bundler - - -
Linter ESLint - ESLint
Minifier - - -
Optimizer - - -
PreProcessor - Sass/Coffee -
Reloader - - -
Tester jest mocha mocha

Table 3 REST features comparison.

Features generator-rest generator-sails-rest-api generator-api

CRUD yes yes yes
User login yes yes no
Pagination yes no no
Tester yes yes yes
Documenter yes no no
New models yes no yes
Predefined services no yes no
MVC no yes no

server-side. Thus, you do not need to handle large and complex HTML/CSS files on the
client. For that reason, is not crucial the presence of most of the tools included in this table.

In Table 3 we present the comparison on generators REST features.
One can conclude that all the generators have the basic ability to support CRUD functions

in one (or more) endpoints. Also all the generators have an authentication layer based on
JWT, Facebook, Twitter, GitHub, Instagram, Google Plus and other social networks. The
pagination feature is only supported by the generator-rest through querymen, a Querystring
parser middleware for MongoDB, Express and Nodejs (MEN). All the generators support
tests. The generator-rest uses jest5 and the others two use mocha6. Regarding documentation,
only the generator-rest supports the creation of documentation from API annotations in the
source code. The generation of documentation is based on apiDoc7 – an inline documenter for
RESTful web APIs. Also, all the generators foster the creation of new models and endpoints.
However, the generator-api provides a quasi-automatic approach based on the concept of
subgenerators. Once you have the generated project, if you want to add a new model you
can simply run yo api:model. This will generate a new folder under model, and, then, you
just need to import the route. Finally, the generator-sails-rest-api is the only generator that
comprises several predefined services (cipher, image, payment, sms, etc.) and implements
MVC through Sails.js8 – a realtime MVC framework for Node.js.

5 https://facebook.github.io/jest/
6 https://mochajs.org/
7 http://apidocjs.com/
8 https://sailsjs.com/

https://facebook.github.io/jest/
https://mochajs.org/
http://apidocjs.com/
https://sailsjs.com/

Ricardo Queirós 1:7

Table 4 Performance benchmark.

Generators generator-rest generator-sails-rest-api generator-api

Installation (npm) 10.73s 10.85s 10.91s
Generation (yo) 25.33s 4.31s 8.42s

2.2.3 Performance
In this subsection, the three generators are compared in terms of performance. This
performance benchmark will be achieved by measuring the installation time of the generators
through npm and the generation time of new projects through yeoman.

Obviously, these times are not very important in the production phase, but they are
crucial in the development phase, since they allow to measure the impact in terms of time
during the development process of the generator.

For the experiment, we started by installing Node.js v8.11.1 (includes npm 5.8.0) in a
machine running Windows 10 (64 bits), Intel Core i7-6700K at 4.00GHz, 16 GB RAM and
SSD. The results are presented in Table 4.

The first line of the table reflects the time spent by npm to install the generator. The
npm tool is a package manager for JavaScript and is the world’s largest software registry.

The npm tool is distributed with Node.js – which means that when you download Node.js,
you automatically get npm installed on your computer. The command used for install the
generators was the following:

npm install %%GENERATOR_NAME%% -g

The second line reflects the time spent by Yeoman to generate a new Web project based
on the respective generator. For these you should firstly install yeoman, then create a folder
for the new project and, finally, you can use yo to generate your project.

npm install -g yo
mkdir %%PROJECT_FOLDER%%
cd %%PROJECT_FOLDER%%
yo %%GENERATOR_NAME%%

Based on these results, the main conclusion is that all the generators take almost the
same time to be installed through npm. However, when we look for the projects generation
time, we see that generator-rest takes too much time when compared with the remainder
generators. The reason for this discrepancy is due to the high number of libraries and tools
provided by this generator.

3 Kaang

In this section we present Kaang, a RESTful API generator. The ultimate goal of Kaang is
to help developers to quickly create basic REST API applications using the modern Web
tooling. Kaang is based on Yeoman.

Yeoman is an open source client-side development stack, consisting of tools and frameworks
intended to help developers build web applications. The most important part of Yeoman is
the concept of generators. Yeoman generators are, at their core, Node.js modules and can be
defined as building blocks on the Yeoman ecosystem. For the creation of Kaang, we didn’t
create it from scratch, instead we use a Yeoman generator (called generator-generator) to

SLATE 2018

1:8 Kaang: A RESTful API Generator for the Modern Web

Figure 3 Kaang architecture.

automatically create a generator skeleton. Based on this skeleton we applied several changes
which are depicted in the next subsections.

3.1 Architecture
Kaang’s generated application architecture is based on a typical server-side API, running in
a Node.js server and implementing MVC as depicted in Figure 3.

Kaang is composed by the following four main components:
1. Web framework
2. Database
3. Object document Mapper
4. Template engine

Web framework. For the Web framework we selected Express.js9 as the REST framework
which includes basic routing to determine how the generated application will respond to a
client request to a particular endpoint. Each route can have one or more handler functions,
which are executed when the route is matched.

Database. The database chosen was MongoDB10. Currently, MongoDB is the most popular
NoSQL database since it integrates seamlessly in the Node.js realm.

Object document mapper. In order to map the model with the database, we selected
a mediator responsible to define objects with a strongly-typed schema which is mapped
to a MongoDB document. In this case, the selection was easy due to the popularity of
Mongoose11, an Object Document Mapper (ODM) for MongoDB documents.

Template engine. A template engine enables the use of static template files in a Web
application. At runtime, the template engine replaces variables in a template file with actual
values, and transforms the template into an HTML file sent to the client. This approach
makes it easier to design an HTML page. Express uses Pug (by default), but we can use
others such as Mustache or EJS. For the Kaang generator, we opted for EJS12 as the official
template engine due to its simplicity and increasing popularity.

9 https://expressjs.com/
10 https://www.mongodb.com/
11 http://mongoosejs.com/
12 http://ejs.co/

https://expressjs.com/
https://www.mongodb.com/
http://mongoosejs.com/
http://ejs.co/

Ricardo Queirós 1:9

3.2 Structure and Input

By default, Kaang presents a basic structure influenced by the structure generated by the
express-generator tool, responsible to quickly create an application skeleton in Express. The
following list shows the main folders and files generated by Kaang:

-- config/
-- bower/
-- gulp/

-- public/
-- images/
-- js/
-- css/
-- libs/

-- bootstrap
-- jquery

-- routes/
-- all.js

-- models/
-- movies.js

-- views/
-- error.ejs
-- index.ejs
-- layout.ejs

-- tests/
-- api.test.js

-- node_modules/
-- server.js
-- package.json

Once you have this structure in place, it’s time to write the actual generator. Yeoman
offers a base generator which you can extend to implement your own behavior.

The first task is receive input data from the user while generating the Web application.
To accomplish this task, we use the Prompting API from Yeoman. The prompt module
is provided by Inquirer.js and you should refer to its API for a list of available prompt
options. The prompt method is asynchronous and returns a promise. You’ll need to return
the promise from your task in order to wait for its completion before running the next one.
Listing 1 shows an excerpt from the Kaang generation main file.

The generator starts by asking some questions to the user. For our generator, the
questions are:

Name of the application: the name of the folder for the generated application. Also
this name will be injected in several configuration files (bower, gulp, etc.) and in the title
element of the main HTML file;
Use of a Web framework (Bootstrap): a yes|no question that will give the user the
chance to install Bootstrap and use it to add responsiveness to the main HTML file and
for more sophisticated GUI components to be included in the Web application;
Use of a JavaScript library (jQuery): a yes|no question that will give the user the
chance to install jQuery and use it in the event management and AJAX calls in the main
JavaScript file of the application;

SLATE 2018

1:10 Kaang: A RESTful API Generator for the Modern Web

Listing 1 Main generator file.
’use strict ’;
const Generator = require (’yeoman -generator ’);
const chalk = require (’chalk ’);
const yosay = require (’yosay ’);

module . exports = class extends Generator {
constructor (args , opts) {

super(args , opts);
this.log(’ Initializing KAANG generator !’);

}
prompting () {

this.log(yosay(‘ Welcome ${chalk.red(’generator -kaang ’)}! ‘));
const prompts = [

{
type: ’input ’,
name: ’name ’,
message : ’Your project name?’,
default : this. appname

},
...

];
return this. prompt (prompts). then(props => {

// To access props later use this.props.name;
this.props = props;
...

}); }
};

Use of a test framework (jest): a yes|no question that will give the user the chance
to use jest to test the API endpoints.
Use an API documenter (apiDocs): a yes|no question that will give the user the
chance to have inline Documentation for the RESTful web API.

Based on the users’ answers, Yeoman takes the predefined templates (based on the
previous structure) and execute several tasks: injects the user data, made conditional copies,
etc. Listing 2 shows the use of the copyTpl method in order to copy a template file with
automatic data injection.

The template language used is EJS which aims to help render JavaScript code in the client
side. In this case, the value of the name variable is injected in the _index.ejs template as
shown in Listing 3.

Beyond data injection, the user’s data can influence the inclusion of references in the
dependency management file (_bower.json). That is the case of Bootstrap and jQuery
installation which will depend on the users acceptance.

3.3 Routes and Models
Kaang generator creates, by default, an API for movies management. The API exposes the
several endpoints. In Table 5, we present some of the available endpoints and a respective
description.

Ricardo Queirós 1:11

Listing 2 Template generation.
// Scaffolding
writing () {

// Copy application files
this.fs. copyTpl (

this. templatePath (’ _views / _index .ejs ’),
this. destinationPath (’views/index.ejs ’),
{ name: this.props.name }

);
...

}

Listing 3 Basic template file.
// _index .ejs
<html >

<head >
<title ><%= name %></title >

</head >
...

</html >

The reference API of the movie resource is composed by three functions. The GET
function retrieves all the movies resources. The POST function inserts a new movie passed as
a JSON string through a POST parameter. The DELETE function removes a specified movie
(id included in the URI of the endpoint). Listing 4 shows the routing of these endpoints to
specific function handlers

This file imports the module all.js which contains the concrete implementation of the
routes, as presented in Listing 5.

These functions will interact with the Movies model represented as a Mongoose schema.
This schema mediates the interaction with the respective MongoDB collection, as shown on
Listing 6.

3.4 Testing
Kaang uses Jest, a testing framework written by Facebook, to test the API routes. The best
way to organize the API tests is to separate each generator (and sub-generator) into its own
describe block. Then, use a test block for each assertion. In code, this should end up with a
structure similar to the presented in Listing 7.

Then, you can trigger the tests in the task runner workflow or invoke manually the npm
command npm run test from the command line. The results are shown in Figure 4.

3.5 Documentation
For the documentation, the Kaang generator uses the apiDoc tool that can be defined as an
inline documentation generator for RESTful web APIs. This tool creates documentation
based on API annotations included in the JavaScript source code. For the use of this tool
we had to update the package.json file, namely the devDependencies section to include the

SLATE 2018

1:12 Kaang: A RESTful API Generator for the Modern Web

Table 5 Endpoints of the Movies API.

Endpoint Description

GET /movies Gets all the movie resources
POST /movie Creates a new movie resource
DELETE /movie/:movieId Remove a specified movie resource

Listing 4 Application routing.
...
let routes = require (’./ routes /all ’);
// Creation of the routes
app.get(’/’, routes .index);
app.get (’/ movies ’, routes . getMovies);
app.post (’/movie ’, routes . postMovie);
app. delete (’/ movie /:id ’, routes . removeMovie);
...

Figure 4 Results of API test using Jest.

references to apiDoc and opn-cli (a cross-platform node-open which opens websites, files,
executables, etc.).

"devDependencies": {
"apidoc": "^0.17.6",
"opn-cli": "^3.1.0"

}

After that we include a new script in the file:

"docs": "apidoc -i routes -o docs && opn docs/index.html"

Thus, all we need to do to generate the API docs and show the documentation is type the
following command.

npm run docs

This command opens the respective file in the Web browser (Figure 5).

4 Validation

In order to validate Kaang we enumerate the necessary steps to generate and run a Web
application. For that purpose, you just need to execute the following steps to see your Web
app running:

Ricardo Queirós 1:13

Listing 5 Routes implementation.
// _routes /_all.js
const Movie = require (’../ models /movie ’). movies
// Renders the main page (index.ejs)
module . exports .index = function (req , res) {

res. render (’index ’)
}
// Returns all movies
module . exports . getMovies = function (req , res) {

Movie.find (). exec(function (err , movie) {
return err ? res.send(err) : res.json(movie)

})
}
// Adds a new movie
module . exports . postMovie = function (req , res) {

Movie. create (req.body , function (err , movie) {
return err ? return res.send(err) : res.json(movie)

})
}
// Remove an existent movie
module . exports . removeMovie = function (req , res) {

let movieId = req. params .id
Movie.find ({’_id ’: movieId }). remove (). exec(function (err , movie) {

return err ? return res.send(err) : res.json(movie)
})

}

Listing 6 SOS schema for a task.
// _model / _movie .js
let mongoose = require (’mongoose ’);
let Schema = mongoose . Schema ;
let movieSchema = new Schema ({

title: String , year: Number ,
genre: String , votes: Number

});
module . exports . movies = mongoose .model(’Movie ’, movieSchema);

Listing 7 SOS schema for a task.
// _tests /_me.test.js
const app = require (’../app ’)
describe (’Root path ’, () => {

test(’Test status code for GET method ’, () => {
return request (app). get ("/"). then(response => {

expect (response . statusCode). toBe (200)
})

});
})

SLATE 2018

1:14 Kaang: A RESTful API Generator for the Modern Web

Figure 5 Documentation HTML file.

Figure 6 Kaang generator app frontend.

1. Call mongod to initiate MongoDB;
2. Generate Kaang’s web app typing in the command line: yo kaang;
3. Answer the generator questions;
4. Execute npm start to start the server;
5. Open a browser and type http://localhost/8080.

The GUI of the generated Web application is depicted in Figure 6.
As you can see, it is a simple GUI, for testing purposes. Here, you can browse all the

movies, add a new movie or delete an existent movie.

Ricardo Queirós 1:15

Kaang’s source code is available at GitHub13. As part of being published to both the
npmjs and Yeoman registries, the generator will be integrated on Travis CI. This should
provide an addition level of confidence to the generator’s end-users. Additionally, Travis CI
feeds test results to Coveralls, which displays the generator’s code coverage.

5 Conclusions

This paper describes Kaang as a RESTful API generator. The paper comprises several
contributions, namely:

It presents the state of art of REST generators using JavaScript;
It can be used as a practical guide for those who aim to create their own generators;
It abstracts the complexity of the creation of REST APIs;
It fosters the use of generators decreasing the bureaucratic work and repetitive tasks;
It decreases the learning curve for those who want to enter in the modern Web realm
It fosters the use of good development practices such as testing and documenting.

As future work, the main idea is to extend this generator to cover other features such as the
possibility to automatically generate new models/routes, the support for authentication based
on JWT, the support for JavaScript and CSS preprocessors (e.g. CoffeeScript, LiveScript,
Less, Sass) and the inclusion of a better module bundler and task runner with predefined
runnable tasks (minification, image optimization, etc.). In this context, we expect that the
new version of the Kaang generator supports Webpack14.

References
1 Stefan Baumgartner. Front-End Tooling with Gulp, Bower, and Yeoman. Manning Public-

ations, 2017.
2 Marijn Haverbeke. Eloquent JavaScript. No Starch Press, 2017.
3 Ricardo Queirós. CSS preprocessing: Tools and automation techniques. Information, 9(1),

2018. doi:10.3390/info9010017.
4 Alex Rauschmayer. Speaking JavaScript: An In-Depth Guide for Programmers. O’Reilly,

2017.

13 https://github.com/rqueiros/Kaang
14 https://webpack.js.org/

SLATE 2018

http://dx.doi.org/10.3390/info9010017
https://github.com/rqueiros/Kaang
https://webpack.js.org/

LearnJS - A JavaScript Learning Playground
Ricardo Queirós
CRACS & INESC-Porto LA & DI/ESMAD/P.PORTO, Porto, Portugal
ricardoqueiros@esmad.ipp.pt

https://orcid.org/0000-0002-1985-6285

Abstract
The JavaScript ecosystem is evolving dramatically. Nowadays, the language is no longer con-
fined to the boundaries of the browser and is now running in both sides of the Web stack. At
the same time, JavaScript it’s starting to play also an important role in desktop and mobile
applications development. These facts are leading companies to massively adopt JavaScript in
their Web/mobile projects and schools to augment the language spectrum among their courses
curricula.

Several platforms appeared in recent years aiming to foster the learning of the JavaScript
language. Those platforms are mainly characterized with sophisticated UI which allow users to
learn JavaScript in a playful and interactive way. Despite its apparent success, these environments
are not suitable to be integrated in existent educational platforms. Beyond these interoperability
issues, most of these platforms are rigid not allowing teachers to contribute with new exercises,
organize the existent exercises in more suitable and modular activities to be deployed in their
courses, neither keep track of student’s progress.

This paper presents LearnJS as a simple and flexible platform to teach and learn JavaScript.
In this platform, instructors can contribute with new exercises and combine them with expositive
resources (e.g videos) to define specific course activities. These activities can be gamified with the
injection of dynamic attributes to reward the most successful attempts. Finally, instructors can
deploy activities in their educational platforms. On the other hand, learners can solve exercises
and receive immediate feedback on their solutions through static and dynamic analyzers. Since
we are in the early stages of implementation, the paper focus on the presentation of the LearnJS
architecture, their main components and their data and integration models. Nevertheless, a
prototype of the platform is available in a GitHub repository.

2012 ACM Subject Classification Software and its engineering → General programming lan-
guages, Applied computing → Interactive learning environments

Keywords and phrases Web development, programming, e-learning, automatic evaluation

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.2

Category Short Paper

Funding FourEyes is a Research Line within project “TEC4Growth – Pervasive Intelligence,
Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER-000020” fin-
anced by the North Portugal Regional Operational Programme (NORTE 2020), under the POR-
TUGAL 2020 Partnership Agreement, and through the European Regional Development Fund
(ERDF).

1 Introduction

Nowadays, the JavaScript (JS) language is no longer seen as a browser scripting language
to validate forms and make AJAX calls to Web servers. In fact, the language has evolved
in a consistent way and can already be used to create applications on the most popular

© Ricardo Queirós;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 2; pp. 2:1–2:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ricardoqueiros@esmad.ipp.pt
https://orcid.org/0000-0002-1985-6285
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

2:2 LearnJS - A JavaScript Learning Playground

platforms. One of the great impulses for this growth was the appearance of Node.js, which
allows developers to use JS throughout the stack (front and backend) of a Web application.
But it’s not just on the Web domain that JS is having a huge success. In fact, JS can already
be used to create native/hybrid mobile (e.g. React Native, Ionic) and desktop applications
(e.g. Electron, WinJS, NW.js). Last but not least, several game engines based on JavaScript
can be used for making HTML5 games for desktop and mobile web browsers, supporting
Canvas and WebGL rendering (e.g Phaser, Cocos2d).

Obviously, the rise of JS and its corresponding omnipresence led companies to start
adopting the language since it allows their development teams the need to master a single
language for the cross-platform development of their products. This growth has also re-
activated the JavaScript community, being nowadays considered one of the most popular
languages according to several studies1. At the same time, there is a concern from Schools
to adjust their courses curricula to teach these skills not only at the language level, but also
to adopt the most popular frameworks and tools that are now gravitating on the Web.

In this context, several online platforms have appeared in recent years aiming to foster the
learning of JavaScript. These platforms, typically coupled in online learning platforms (e.g
Udemy, Udacity), provide sophisticated UI and a very strong level of interaction, facilitating
the progress of students through creative examples. Regardless of their popularity, these
platforms have issues regarding interoperability with educational systems and flexibility in
content management. For instance, teachers can only advise the use of such tools for training
purposes and cannot use them to define specific learning activities and keep track on the
evolution of students.

This paper presents LearnJS as a learning environment for the teaching-learning process
of the JavaScript programming language. The platform allows two main use cases: teachers
can contribute with new resources, combine existing resources into activities and distribute
activities in learning management systems; students can access activities, solve exercises and
receive automatic feedback. Both use cases have important points that should be emphasized.
In the case of teachers, the activities created can include expository resources (e.g. PDF,
videos) and evaluative resources (e.g. exercises). Also, gamification attributes (e.g. levels,
hints, achievements, leaderboards, unlock levels and code skeletons) can be assigned to
provide playful and engaged activities to students. In the case of the students the feedback
returned by the platform is not only produced by dynamic evaluation (tests cases), but also
by static code analysis through the use of linters which are responsible for the inspection of
potential buggy code.

The remainder of this paper is organized as follows: Section 2 reviews the existing
environments to learn JavaScript and focuses its attention on Web platforms. In this context
several platforms are compared according to several criteria: interoperability, flexibility. In
Section 3, the LearnJS architecture and its main components are presented. In this context,
we expose the data and interoperability models. In Finally, we conclude with a summary of
the main contributions and perspectives of future work.

2 Related Work

Learning computer programming can be a lonely, complex, and demotivating process [1, 3, 5].
These issues have been addressed in the last years, with the appearance of several on-line
learning environments trying to leverage coding education and make it accessible to everyone,

1 https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/

R. Queirós 2:3

Table 1 MOOCs features comparison.

Path Resources (expositives) Resources (evaluation) Social

EdX Yes Videos Quiz F/D
Coursera Yes Videos Quiz/Puz UP/F/D
Udacity Yes Videos Quiz Forum
CodePlayer No Videos No Com/Rec
CodeAcademy Yes ICE ICE Ach/Badges
Code.org Yes Videos ICE/Puz Levels
TreeHouse Yes Videos ICE/Puz Badges
CodeSchool Yes Videos ICE F/Badges

even those with absolutely no coding experience or knowledge [7, 4]. These environments
come in various formats ranging from non-interactive approaches (e.g. YouTube channels,
blogs, books) to integrated and interactive solutions (e.g. intelligent tutors, online coding
environments).

Nowadays, there is an enormous demand on the technology sector to be up to date
with the latest frameworks and languages. Regardless whether you are a coding newbie
or a mature developer, you have several options, besides a computer science degree, to
improve your programming skills. In this realm, MOOCs (Massive Open Online Courses)
and Online Coding Bootcamps are two increasingly popular options for learners to improve
their development skills and find work within a relatively short amount of time. While
these two are excellent alternative learning contexts, the two options still have very distinct
differences [2].

A MOOC is an online course, usually available without charge, where learners can choose
their own learning pace and direction. MOOCs are free educational courses often delivered by
renowned university professors that typically feature a mix of downloadable readings, quizzes,
discussion boards, video content and peer-to-peer assessment. The goal of MOOCs is to reach
a much larger audience than traditional courses can accommodate. Often, MOOCs offer
certificates for a fee which are awarded on successful completion of a course, and transferable
college credit.

An Online Coding Bootcamp, on the other hand, is an intensive and paid course, usually
eight to twelve weeks in duration, which offers hands-on training, career guidance and job
assistance. These types of platforms involve a greater time commitment for the learner and
are more suitable for those who wants to quickly master a specific language (or stack) and
get a technical job.

Table 1 compares a few of the most popular online learning platforms/MOOCs on a set
of features and tools.

Most of the MOOCs offer learning paths with a list of courses to work through. This
feature is very important, especially for those new to programming. Despite the existence of
paths, the studied MOOCs don’t offer a very rigid structure allowing learners to choose several
learning paths during the course. The materials of the courses come in several flavors and
are organized in two types: 1) expository resources, such as videos (the most popular format)
and HTML/PDF tutorials and 2) evaluation resources, such as interactive code exercises,
quizzes and puzzles. Almost all platforms offer videos as a way to disseminate knowledge.
These videos include the resolution step-by-step of exercises. This way, learners gain some
theoretical/practical skills that can be later consolidated and applied in coding challenges.

SLATE 2018

2:4 LearnJS - A JavaScript Learning Playground

Figure 1 LearnJS component diagram.

These challenges can be run inside of interactive coding exercises components (ICE) giving
feedback and support to the learner during the resolution of the exercise (e.g. CodeAcademy,
Treehouse). Most of these components are based on cloud IDEs (e.g. Cloud9, Codeanywhere)
and integrate some tools like resources sequence, chat and video visualization. Regarding
gamification and social features, most platforms adhere to the same components, such as
forums (F), learning dashboards (D), user profiles (UP), comments (COM), recommendation
(REC), levels and badges. For instance, CodePlayer offers a different approach to learning
code by playing code like a video, helping people to learn front-end technologies quickly and
interactively. The platform also includes a commenting tool and links to related walkthroughs.
CodeAcademy includes a user progress dashboard informing of the current state of the learner
regarding its progress in the courses. This platform enhances the participation in the courses
by also including achievements (ACH) that are rewarded with badges and users are also able
to share completed projects with the rest of the site community and potentially showcase
their skills to employers. Except for Code.org, all the platforms have a strong presence in
the mobile world, with app versions for Android and iOS.

3 LearnJS

In this section we present LearnJS, a simple and flexible online playground for the teaching
and learning of the JavaScript language. The architecture of learnJS is depicted in Figure 1.

At its core, LearnJS is composed by two components used by the two system user profiles:
Teachers: use the LearnJS Management Tool to create/select resources to/from the
Learning Resources Repository in order to compose a learning activity. Next, they deploy
the activity in a Learning Management System.
Students: launch the activity in the LMS and solve it using the LearnJS Playground.
Beyond the internal gamification features, the playground can benefit from other Gami-
fication Services to foster student’s competitiveness and engagement.

The purpose of LearnJS is also to integrate an e-learning ecosystem based on an LMS
(e.g. Moodle, Sakai, BlackBoard). For this, it benefits from the interoperability mechanisms
to provide authentication directly from the LMS and to submit exercises grades back to the
LMS, using the Learning Tools Interoperability (LTI) specification.

In the following sections we detail these two main components in the LearnJS ecosystem:
the management tool and the playground.

R. Queirós 2:5

3.1 LearnJS Management Tool
The LearnJS Management Tool is a Web-based component which will be used by teacher-
s/instructors to submit resources and aggregate them to obtain a composite learning activity.
The next section will detail the main aspects of this management tool, more precisely, the
GUI component and the resource and activity schemata.

3.1.1 GUI component
The LearnJS Management Tool is a Web-based component based on HTML5 Canvas. Its
main purpose is to provide a flexible way for teachers to contribute with new learning
resources and allow their aggregation and gamification to define playful learning activities.
The final result of this aggregation is a LearnJS manifest with all the necessary information
for the correct functioning of the activity in the student’s playground.

Another feature of this tool is the capacity for sharing and grading activities. This feature
will allow a teacher to share a previously created learning activity in the public space of the
LearnJS community. With the grade feature, instructors could score a given activity taken
into account the experience that they have with it. This grading will influence the results
list after searching.

3.1.2 The resources schema
Teachers can use the LearnJS Management Tool to contribute with new resources. The
supported resources in LearnJS follow Sweller and Cooper [6] paradigm based on a learner-
centered approach to define a constructivist learning model. This model foster the learning
by viewing and learning by doing approaches where educational resources, either expository
or evaluative, play a pivotal role. Thus, in LearnJS, resources have two flavours:

Evaluative: JavaScript challenges to be solved by coding;
Expositive: Videos or PDF files showing how to master a specific topic.

In this moment, we do not have yet the GUI component finalized. Thus, the submission of
a new learning resource should be made through the upload of a JSON file which should
comply with the LearnJS official resource schema formalized by a public JSON Schema2.
The example on Listing 1 shows an evaluative resource for the calculation of a number’s
factorial.

The JSON document has a simple structure. It contains basic properties for identification
and metadata purposes. One of the most important properties is the type property. It can
assume one of two values: document or exercise. The former requires the url property to be
set. In this case, the system will load the resource located in that URL. The later requires
filling the exercise property. This property is composes by the following sub-properties:

statement: the exercise statement formatted in plain text or HTML;
hint: a set of hints to help students to overcome the challenge. By default, they are
blocked;
code/skeleton: code skeleton defined by the teacher. Only available by gamification;
code/solution: solution of the challenge submitted by the teacher. Used for input tests
injection. Only available after success completion of the exercise by the student;
code/tests: test cases. The input tests are inject in the student’s solution and the
outputs compared with the provided output tests or with the output generated by the
teacher solution.

2 https://github.com/rqueiros/learnJS

SLATE 2018

https://github.com/rqueiros/learnJS

2:6 LearnJS - A JavaScript Learning Playground

Listing 1 Resource JSON instance template file.
{

"id ":" http :// learnJS / resources /125412" ,
"title ": " Calculate factorial of a number ",
"url ": "",
"type ": " exercise ",
" metadata ": {

" author ": " Ricardo Queiros ",
"date ": "19 -04 -2018" ,
"level ": " intermediate ",
"tags ": [" recursivity "," math "]

},
" exercise ": {

" statement ": " Create a function that receives one number and
returns its factorial ",

"hint ": [" Verify special cases like 0 that should return 1"],
"code ": {

" skeleton ": " function factorial (x){ return ;}",
" solution ": " function factorial (x){if(x ===0){ return 1;}

return x* factorial (x -1);}" ,
"tests ": [{" in": "4" ," out ": "24"} ,{" in": "0" ," out ": "1"}]

} } }

.

3.1.3 The activity schema

Teachers can also perform other operations in the management tool, such as the creation of
activities.

An activity combines a set of resources of several types (evaluative, expositive) with
gamification attributes. Listings 2 shows an activity JSON instance for learning JavaScript
arrays.

An activity JSON file is composed by several properties. We highlight two:
levels: can be considered as sub-activities composed by a set of resources identified in
the resources sub-property. Students should see and solved the respective resources
of the level. The completion of the level and the respective unlock of the next level is
granted after the student solved a specific percentage of evaluative resources defined in
the perc property of the level.
gamify: a set of attributes that can be assigned to resources. After a success completion
of an evaluative resource, students can be awarded in multiple forms. Hence, the award
property can have one of the following values:

HintExtra: gives an extra point to the learner. The learner can spend the hint points
on any exercise by unhiding the hint associated;
ShowNextSkeleton|ShowAllSkeleton: gives the learner the ability to unhide the
code skeleton associated to the next (or all) gamified resources;
UnlockLevel|UnlockAllLevels: gives the learner the ability to unlock the next (or
all) level.

R. Queirós 2:7

Listing 2 Learning activity JSON instance.
{

"id": "http :// learnJS / activities /129387" ,
"title ": "Learn the basics of Arrays ",
" metadata ": {

" author ":" Ricardo Queiros ",
"date ":"19 -04 -1975" ,
"level ":" basic",
"tags ":[" arrays "]

},
" levels ": [

{"id ":"1" , "name ":" Basic operations ", "perc ":"75" ,
" resources ": ["... resources /125412" , "..."]} ,

{"id ":"2" , "name ":" Sort", "perc ":"50" , " resources ":["..."]}
],
" gamify ": [

{" resource ": ".../ resources /125412" , "award ":" HintExtra "},
{" resource ": ".../ resources /225232" , "award ":" ShowNextSkeleton "}

]
}

3.2 LearnJS Playground
The LearnJS Playground is a Web-based component which will be used by students/learners
to browse learning activities and interact with the compound resources. Here students can
see videos of specific topics and solve exercises related with those topics with automatic
feedback on their resolutions. The architecture of the playground is shown in Figure 2.

The playground is composed by three main components:
1. Editor: allows students to code their solutions in a interactive environment;
2. Evaluator: assess the student’s solution based on static and dynamic analyzers;
3. Gamification Engine: gamifies the learning activity with the management of levels

and several awards.

For the Editor component, the playground uses Ace (maintained as the primary editor
for Cloud9 IDE) which can be easily embedded in any web page and JavaScript application.
The editor is properly configured for the JavaScript language and supports the Emmet toolkit
for the inclusion of dynamic JavaScript snippets.

Ace editor can display errors on the editor itself but does not handle language dependencies.
A parser needs to be used to detect errors and determine their positions on the source file.
There are several tools that can improve code quality. One of such cases is code linters.
Linters (e.g JSLint, JSHint) can detect potential bugs, as well as code that is difficult to
maintain. These static code analysis tools come into play and help developers spot several
issues such as a syntax error, an unused variable, a bug due to an implicit type conversion,
or even (if properly configured) coding style issues. LearnJS uses JSHint to accomplish this
behavior. While static code analysis tools can spot many different kinds of mistakes, they
can not detect if your program is correct, fast or has memory leaks. For that particularly
reason, LearnJS combines JSHint with functional tests (based on test cases). For this kind
of tests, and since the code is written in JS and the context is the browser, we use a simple
approach by iterating all the case tests and applying the eval function for tests injection.

SLATE 2018

2:8 LearnJS - A JavaScript Learning Playground

Figure 2 LearnJS Playground component diagram.

Both analyzers (linter and Test Case runner) are subcomponents of the LearnJS evalu-
ator component that runs exclusively on the client side. This approach avoids successive
round-trips to the server which affects negatively the user experience.

Lastly, the Gamification Engine component is responsible for loading/parsing the
LearnJS manifest and fetching resources from the learning resources store. If levels are
defined, the engine sequences and organizes the resources properly. Upon completion of
evaluative resources from students, the engine deals with all the logic associated with the
respective awards by unhiding/unlocking features of next challenges. Finally, the component
send the results back to the server.

At this moment, we have a simple running prototype. The source code is available at a
GitHub repository. Figure 3 shows the frontend GUI of the playground.

4 Conclusions

In this paper we present LearnJS as a flexible playground for JavaScript learning. Since we
are in the beginning of implementation, the paper stresses the design of the platform divided
in two main components: the management tool and the playground. In the former, teachers
can contribute with new exercises and bundle related exercises in learning activities. All
these entities were formalized using JSON schemata. The later, allows students through a
sophisticated and interactive UI, to see and solve educational resources (mostly, videos and
exercises). In order to engage students, the platform can be configured to gamify resources
through the subgrouping of activities in levels, the assignment of awards and the exhibition
of a global leaderboard.

The main contributions of this work is the design of a platform with interoperability
concerns in mind and the respective schemata for the simple concepts of educational resources
and activities.

As future work we intend to create a more mature prototype by creating a introductory
course for novice students to learn JavaScript. Then, for validation purposes, we intend to

R. Queirós 2:9

Figure 3 LearnJS Playground UI.

use the platform in real classes and receive student’s feedback. After this process, our idea is
to work on the management tool. Regarding the playground, our intentions is to maintain it
very simple, avoid at maximum the communication with the server and improve the game
mechanics of the engine.

References
1 Kirsti M. Ala-Mutka. A survey of automated assessment approaches for program-

ming assignments. Computer Science Education, 15(2):83–102, 2005. doi:10.1080/
08993400500150747.

2 Gemma Church. MOOCs versus coding bootcamps. https://www.class-central.com/
report/moocs-versus-coding-bootcamps/, 2016. [Online; accessed april 19th, 2018].

3 Jackie O’Kelly and J. Paul Gibson. Robocode & problem-based learning: A non-
prescriptive approach to teaching programming. SIGCSE Bulletin, 38(3):217–221, 2006.
doi:10.1145/1140123.1140182.

4 Pedro Xavier Pacheco and António Coelho. Computer-based assessment system for e-
learning applied to programming education. In 4th International Conference of Education,
Research and Innovation, pages 3738–3747, 2011.

5 Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and teaching pro-
gramming: A review and discussion. Computer Science Education, 13(2):137–172, 2003.
doi:10.1076/csed.13.2.137.14200.

6 John Sweller and Graham Cooper. The use of worked examples as a substitute for problem
solving in learning algebra. Cognition and Instruction, 2(1):59–89, 1985. doi:10.1207/
s1532690xci0201_3.

7 Elena Verdú, Luisa M. Regueras, María J. Verdú, José P. Leal, Juan P. de Castro, and
Ricardo Queirós. A distributed system for learning programming on-line. Computers and
Education, 58(1):1–10, 2012. doi:10.1016/j.compedu.2011.08.015.

SLATE 2018

http://dx.doi.org/10.1080/08993400500150747
http://dx.doi.org/10.1080/08993400500150747
https://www.class-central.com/report/moocs-versus-coding-bootcamps/
https://www.class-central.com/report/moocs-versus-coding-bootcamps/
http://dx.doi.org/10.1145/1140123.1140182
http://dx.doi.org/10.1076/csed.13.2.137.14200
http://dx.doi.org/10.1207/s1532690xci0201_3
http://dx.doi.org/10.1207/s1532690xci0201_3
http://dx.doi.org/10.1016/j.compedu.2011.08.015

Moozz: Assessment of Quizzes in Mooshak 2.0
Helder Correia
CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto, Portugal
up201108850@fc.up.pt

https://orcid.org/0000-0002-7663-2456

José Paulo Leal
CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto, Portugal
zp@dcc.fc.up.pt

https://orcid.org/0000-0002-8409-0300

José Carlos Paiva
CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto, Portugal
up201200272@fc.up.pt

https://orcid.org/0000-0003-0394-0527

Abstract
Quizzes are a widely used form of assessment, supported in many e-learning systems. Mooshak
is a web system which supports automated assessment in computer science. This paper presents
Moozz, a quiz assessment environment for Mooshak 2.0, with its own XML definition for de-
scribing quizzes. This definition is used for: interoperability with different e-learning systems,
generating HTML-based forms, storing student answers, marking final submissions and generat-
ing feedback. Furthermore, Moozz also includes an authoring tool for creating quizzes. The paper
describes Moozz, its quiz definition language and architecture, and details its implementation.

2012 ACM Subject Classification Applied computing → Interactive learning environments

Keywords and phrases quiz, automated assessment, authoring, XML, feedback, e-learning

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.3

Category Short Paper

Funding This work is partially funded by the ERDF through the COMPETE 2020 Programme
within project POCI-01-0145-FEDER-006961, by National Funds through the FCT as part of
project UID/EEA/50014/2013, and by FourEyes. FourEyes is a Research Line within project
“TEC4Growth – Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact
/NORTE-01-0145-FEDER-000020” financed by the North Portugal Regional Operational Pro-
gramme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the
European Regional Development Fund (ERDF).

1 Introduction

Mooshak [5] is a web system that supports automated assessment in computer science.
It evolved from a programming contest management system, supporting different contest
models, to a pedagogical tool used in introductory computer science courses. Although
Mooshak was initially targeted for text-based computer programming languages, it was later
extended to support visual languages, such as EER (Extended Entity-Relationship) and
UML (Unified Modeling Language).

Quizzes are a widely used form of assessment, not only in computer science, and they are
widely supported among e-learning systems. Quizzes can also be used in computer science

© Hélder Correia, José Paulo Leal and José Carlos Paiva;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 3; pp. 3:1–3:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:up201108850@fc.up.pt
https://orcid.org/0000-0002-7663-2456
mailto:zp@dcc.fc.up.pt
https://orcid.org/0000-0002-8409-0300
mailto:up201200272@fc.up.pt
https://orcid.org/0000-0003-0394-0527
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

3:2 Moozz: Assessment of Quizzes in Mooshak 2.0

contests, in particular in those targeted to younger students, to develop their computational
thinking skill, as is the case of Bebras [2]. Hence, a system supporting automated assessment
in computer science, both in competitive and pedagogical settings, should also have a quiz
assessment environment.

In fact, the previous version of Mooshak already has an incipient form of quiz assessment.
Nevertheless, it lacks support for several types of questions, standard quiz interoperability
languages, and integration with other assessment modes. Meanwhile, version 2.0 has a
pedagogical environment, named Enki [6], that integrates different kinds of assessment in a
single course, including code and diagram assessment.

This paper presents Moozz, an assessment environment for quizzes integrated into Mooshak
2.0. Moozz supports all the standard question types, including multiple choice (select one or
multiple), gap filling, matching, short answer, and essay, as well as questions with media files
(e.g, images, sounds, and videos). Moozz uses its own XML definition for describing quizzes,
named Moo, providing eXtensible Stylesheet Language Transformations (XSLT) to convert
to and from other quiz formats, such as IMS Question and Test Interoperability specification
(QTI) [8] and the GIFT format1.

An authoring tool is also included in Moozz to facilitate the creation of quizzes. This tool
allows to import and export quizzes in the supported formats, insert multimedia content,
and add questions, answers and feedback messages.

The remainder of this paper is organized as follows. Section 2 presents Mooshak 2.0,
and the formats and standards supported by Moozz. Section 3 describes the architecture of
Moozz and details its implementation. Finally, Section 4 summarizes the contributions of
this work and identifies opportunities for future developments.

2 Background

This paper presents Moozz, a quiz assessment environment that aims to integrate in the
pedagogical tool of Mooshak 2.0, named Enki [6]. This environment has several features,
such as the compatibility with IMS QTI specification and the GIFT format, and the support
for Bebras quiz competitions. This section aims to provide some background on Mooshak,
particularly on the tool in which Moozz integrates, and to describe the supported formats.

2.1 Mooshak 2.0
Mooshak [5] is a system for managing programming contests on the web, which provides
automatic judging of submitted programs, submission of clarification requests, reevaluation
of programs, tracking of printouts, among many other features. It supports a wide range of
programming languages, such as Java, C, VB, and Prolog.

Even if Mooshak was initially designed to be a programming contest management system
for ICPC contests, educators rapidly found its ability to assist them in programming courses [3]
to give instant feedback on practical classes, evaluate and mark assignments, among other
uses. This has motivated the development of several extensions specifically for learning, such
as a plagiarism checker and an exam policy.

Recently, Mooshak was completely reimplemented in Java with Graphic User Interfaces
(GUIs) in Google Web Toolkit (GWT). Besides the changes in the codebase, Mooshak 2.0
gives special attention to computer science learning, providing a specialized computer science
languages learning environment – Enki [6] –, which not only supports exercises using typical
programming languages, but also diagramming exercises.

1 https://docs.moodle.org/25/en/GIFT_format

https://docs.moodle.org/25/en/GIFT_format

H. Correia, J. P. Leal, and J. C. Paiva 3:3

Enki blends assessment and learning, integrating with several external tools to engage
students in learning activities. Furthermore, Enki’s GUI mimics the aspect of an IDE, and
attempts to achieve their powerful extensibility. As a typical IDE, such as Eclipse and
NetBeans, the GUI of Enki is divided into regions, each one containing several overlapping
windows, organized using tabs. These regions are resizable, and their windows can be moved
among different regions. A window holds a unique component, capable of communicating
with other components. Therefore, it is possible to add any number of components required
by a specific assessment environment and link them to the evaluation engine with relative
ease. This has already been done for the diagram assessment.

2.2 Question and Test Interoperability (QTI)

The IMS Question and Test Interoperability (QTI) specification describes a data model for
representing question and test data, as well as their corresponding results. This specification
enables authoring and delivering systems, question banks, and Learning Management Systems
(LMSs) to exchange question and test data [8]. Among other things, this common format can
facilitate populating question banks, transmitting results and information about the learner
between the various components of an e-learning ecosystem, and incorporating questions
designed by several IMS QTI users into a single assessment.

The IMS QTI uses XML to store information about assessments. Its data model can
be seen as a hierarchy of elements whose contents and attributes are XML tags [7]. There
are three key elements in this model: assessment, section and item. The assessment
element contains a set of questions, which can be organized using section elements. The
section element indicates a group of questions, enabling authors to separate each subtopic
and calculate the score obtained for each section as well as the overall score. An item is a
question with all the associated data, such as score, answers, layout and feedback.

The results of the IMS QTI are specific to a participant, but can contain data of more
than one assessment. The core data structures for reporting results are the summary, which
contains global statistics of the assessment, such as the number of attempts, and the results
of the internal tree of the assessment, section and item elements.

2.3 Bebras

Bebras is a community building model for concept-based learning of informatics [2]. It
is designed to promote informatics learning in school through short tasks about simple
concepts [1]. These tasks are the main component of Bebras. They are generally accompanied
by a story or media element, to attract the attention of the children, and try to teach one or
more concepts of informatics. Besides covering a wide range of topics, these tasks can be
designed to help in the development of core computational thinking skills, such as abstraction,
decomposition, evaluation and generalization.

From the practical point of view, Bebras tasks are just quiz questions with multimedia
elements. The Bebras model can be used both in competitive and learning environments.
Furthermore, it has already been used in several individual and team competitions across
the globe.

SLATE 2018

3:4 Moozz: Assessment of Quizzes in Mooshak 2.0

2.4 General Import Format Template (GIFT)
The General Import Format Template (GIFT)2 is a format created by the Moodle community
to import quiz questions from a text file using markup language [4]. It supports multiple-
choice, true-false, short answer, matching, fill in the blank and numerical questions.

The markup language of GIFT uses blank lines to delimit questions. Questions are
written with the following syntax ::title:: question { answers }. The syntax of the
answers depends on the type of question. For instance, in multiple choice questions the
correct answer(s) are prefixed with an equal sign (=) and the wrong answers with a tilde. To
add feedback, an hash (#) can be used after each answer followed by the feedback message.
Comments are preceded by double slashes (//) and are not imported. A full description of
the language can be found on the Moodle page dedicated to the format.

3 Moozz

Moozz is an assessment environment for quizzes. It supports multiple choice (select one or
multiple), gap filling, matching, short answer, and essay questions, as well as questions with
media files. Moozz has its own XML language, named Moo, for storing and interchanging
quizzes. Moo can be converted to and from different formats, such as GIFT and IMS QTI.
Hence, the questions present in assessments can be saved in a question bank and reused
in other assessments. It also contains an authoring tool for creating quizzes complying
with Moo.

3.1 Authoring Tool
Moozz provides an authoring tool for quizzes. This tool can import and export quizzes
in one of the following formats: Moo (XML), GIFT (plain text), IMS QTI (XML), and
JSON. Besides that, it allows to create question groups, and add, edit, and remove questions.
Questions can also have notes for each possible choice, question, or group. The quizzes are
stored in Moo XML in Mooshak.

The GIFT format was extended to support the concept of groups in Moozz. Each group
starts with $name:numberQuestion. name is the name of group whereas numberQuestion is
the number of questions in the group to be selected for the exam. Two blank lines must be
used to separate two groups of questions and one blank line must be left to separate each
question from the next one.

Moozz supports several kinds of questions, such as: single-select answer, multiple-select
answers, short answer, numerical, fill in the blank, matching, and essay questions. In
single-select answer questions only one alternative can be marked as right and erroneous
responses can be scored negatively. By default, a wrong answer has score zero and the
correct answer scores one, but this can be modified in the Quiz Editor. A multiple-select
answer question is used when two or more answers must be selected in order to obtain full
credit. The multiple-select answer option is enabled by assigning partial answer weight to
multiple answers, while allowing no single answer to receive full credit. The rating of each
option can be defined and by default, a wrong answer has score zero. In short answer
type, all the possible answers must be written, and it will be 100% credited if it matches
exactly any of the correct responses, or zero, otherwise. A numerical question is similar
to a short answer question, but the answer is a number. Numerical answers can include an

2 https://docs.moodle.org/25/en/GIFT_format

https://docs.moodle.org/25/en/GIFT_format

H. Correia, J. P. Leal, and J. C. Paiva 3:5

Figure 1 Screenshot of the Moozz authoring tool.

error margin, an interval and a precision for a correct answer. A fill in blank question is
like a short answer question, but the answers are presented in an HTML element select.
In the boolean question type, the answer indicates whether the statement is true or false.
There can be one or two feedback strings. The first is shown if the student gives the wrong
answer, and the second if the student gives the right answer. In matching questions, there
are two arrays. One array with the keys and another with the values. Each key matches one
and only one value. These questions do not support feedback messages. Finally, an essay
question allows any text response, and is graded manually.

Figure 1 presents the first version of the authoring tool embedded in Mooshak adminis-
trator GUI.

3.2 Architecture
There are four types of XML files stored in Moozz which are Moo-compliant: QuizDb, Exam,
Answers, and CorrectedExam. QuizDb is the question bank XML file containing all the
questions used in assessments, which is created in the authoring tool of Moozz or imported
in one of the supported formats. Exam is the XML file that contains the subset of questions
of an actual exam. Answers has the answers of a student to an exam. CorrectedExam has
the exam with feedback, classification and grade for each question.

Some of these files are generated from each other during the quiz assessment workflow
(e.g., Exam is generated from an XSL Transformation applied to QuizDb). The Exam and
CorrectedExam are also transformed into an user-friendly format to be displayed to the
student using XSLT. Therefore, most of the work in Moozz consists of XML manipulations.
Figure 2 presents the architecture of Moozz, particularly the transformations conducted in
its core.

When the user request for a new exam, a transformation QuizDbToExam is applied on
QuizDb, which is present on the problem directory. This transformation aims to select
randomly N questions from the whole question bank. The outcome of this transformation
is an Exam XML file, which is stored in the submission directory reserved to the current
participant for subsequent requests. Before being sent to user, this XML is transformed into
HTML through an ExamToHTML transformation. After solving the exam, answers are sent to
Moozz in JSON and converted to XML in a Java class JSONHandler. The result is an Answers

SLATE 2018

3:6 Moozz: Assessment of Quizzes in Mooshak 2.0

Problem

Submission

QuizDb

<<XML>>

<<XSL Processor>>
Exam

<<XML>>

QuizDbToExam

<<XSL>>

CorrectedExam

<<XML>>

<<XSL Processor>>
Corrector

<<XSL>>

Answers

<<XML>>

<<XSL Processor>>

ExamToHTML

<<XSL>>

ExamHTML

<<HTML>>

<<XSL Processor>>
CorrectedExamHTML

<<HTML>>

CorrectedExamToHTML

<<XSL>>

Figure 2 Diagram of the architecture of Moozz, highlighting the XSL Transformations carried
internally.

XML file, which is also stored in the submission directory. The quiz evaluation is then
executed. The evaluation consists of applying a Corrector transformation to Answers XML.
This transformation outputs a CorrectedExam, which is saved in the same directory. Finally,
CorrectedExam XML is converted to CorrectedExamHTML through CorrectedExamToHTML
to present the feedback to the student.

3.3 User Interface

The client-side of Moozz follows the Model-View-Presenter (MVP) design pattern, integrating
seamlessly in Enki within a single window. Since Enki uses GWT, the Viewer is also
implemented with it. In this sense, the component defines a Java interface MoozzView
with methods to update the view, such as setQuiz(String html), and a class named
MoozzViewImpl that implements the interface and displays the quiz. The presenter part is
implemented in MoozzPresenter. This class receives the commands inputted by the user in
the view, and invokes the necessary methods on the RPC interface of the Moozz service.

The data received from the server is either an ExamHTML, if the exam is not solved, or
a CorrectedExamHTML, if the exam was already submitted. These HTML files are just an
excerpt of an HTML, not a complete HTML page, containing the formatted elements to be
displayed to the user. The excerpt is inserted into the container reserved for the quiz, after
some Javascript pre-processing steps and CSS styling to make it more user-friendly. The
answers submitted by the students are sent in an XML-formatted string complying with the
Moo language.

On multiple choice questions, feedback is displayed only for the selected answer. For
true-false questions, there can be one or two feedback strings. The first is shown if the
student gives the wrong answer. The second if the student gives the right answer. Figure 3
presents an example of feedback in Moozz.

H. Correia, J. P. Leal, and J. C. Paiva 3:7

Figure 3 Example of feedback presented in Moozz.

Figure 4 Data model of the Moo language.

3.4 Moo Language
Moozz is able to import quizzes in different formats, therefore it is required a common quiz
format, capable of storing the quiz and its configurations (e.g., time and number of questions
per exam). A natural candidate for this role is the Question and Test Interoperability (QTI)
standard. However, QTI revealed to be too complex and does not support configurations
needed for quizzes in Mooshak, so a new language based in QTI is proposed, named Moo.
As QTI, Moo is an XML language with its own XML Schema definition. As depicted in the
simplified data model of Figure 4, Moo stores questions and settings such as the duration,
and name of the quiz. Questions are organized in groups and each group stores information,
such as the name, grade, and number of questions to appear on the exam.

Questions and answers of a group are stored in a type called QA. This type saves the
question and its answers (if applicable) as well as configurations, such as the name of the
question, the type, and the score, which is the sum of the positive scores of the answers.
Each QA has one or more elements of type Choice. The Choice elements save different data,
according to the type of the question. For example, in multiple, single, short-answer and
boolean types, it includes the response text, feedback for each option, score and mark. The
recorded data for numeric types depends on their subtype: exact answer (response value and

SLATE 2018

3:8 Moozz: Assessment of Quizzes in Mooshak 2.0

the margin of error), range answer (initial and final interval values), and precision answer
(value and accuracy). In questions of type matching, it saves the key and the value. The
essay type just saves the question, since the answer is a free-text introduced by the student.
The essay type does not support feedback. The questions and answers texts accept inline
HTML tags for including media or text formatting.

4 Conclusions and Future Work

Mooshak is a system that supports automated assessment in computer science. It has been
used both in competitive and learning environments, supporting the assessment of visual
and text-based programming languages. This paper presents an assessment environment
for quizzes in Mooshak 2.0, named Moozz. Moozz supports all the standard question types,
including multiple choice, true/false, short answer, numerical, fill in the blank and matching,
and questions with media formats. It uses XSL Transformations to support the most common
quiz formats, namely IMS QTI and GIFT.

Moozz includes a quiz authoring tool that is embedded into the administrator GUI of
Mooshak. This editor is capable of importing and exporting quizzes in different formats,
inserting multimedia elements, and add any of the supported question types with feedback
information for each answer.

This environment is a work in progress. Currently, the development phase is almost
completed, only missing the XSL Transformation to comply with IMS QTI. The next phase
is the validation, which will be conducted in a real exam scenario with text, visual and quiz
based exercises.

References
1 Valentina Dagienė and Sue Sentance. It’s computational thinking! Bebras tasks in the

curriculum. In International Conference on Informatics in Schools: Situation, Evolution,
and Perspectives, pages 28–39, 2016.

2 Valentina Dagiene and Gabriele Stupuriene. Bebras-a sustainable community building
model for the concept based learning of informatics and computational thinking. Inform-
atics in Education, 15(1):25, 2016.

3 Ginés Gárcia-Mateos and José Luis Fernández-Alemán. A course on algorithms and data
structures using on-line judging. ACM SIGCSE Bulletin, 41(3):45–49, 2009. doi:10.1145/
1562877.1562897.

4 Gaurav Kumar and Anu Suneja. Using Moodle – an open source virtual learning envir-
onment in the academia. International Journal of Enterprise Computing and Business
Systems, 1(1):1–10, 2011.

5 José Paulo Leal and Fernando Silva. Mooshak: A web-based multi-site programming contest
system. Software: Practice and Experience, 33(6):567–581, 2003.

6 José Carlos Paiva, José Paulo Leal, and Ricardo Alexandre Queirós. Enki: A pedagogical
services aggregator for learning programming languages. In Conference on Innovation and
Technology in Computer Science Education, pages 332–337, 2016.

7 Niall Sclater and Rowin Cross. What is IMS question and test interoperability. Retrieved,
7(22), 2003.

8 Colin Smythe, Eric Shepherd, Lane Brewer, and Steve Lay. IMS question & test interoper-
ability: an overview, 2002. Final Specification, version 1.2.

http://dx.doi.org/10.1145/1562877.1562897
http://dx.doi.org/10.1145/1562877.1562897

Raccode: An Eclipse Plugin for Assessment of
Programming Exercises
André Silva
Faculty of Sciences, University of Porto, Portugal
up201007410@fc.up.pt

https://orcid.org/0000-0002-7663-2456

José Paulo Leal
CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto, Portugal
zp@dcc.fc.up.pt

https://orcid.org/0000-0002-8409-0300

José Carlos Paiva
CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto, Portugal
up201200272@fc.up.pt

https://orcid.org/0000-0003-0394-0527

Abstract
IDEs are environments specialized in support during the development of programs. They con-
tain several utilities to code, run, debug, and deploy programs quickly. However, they do not
provide the automatic assessment of programming exercises, which is required in both learning
and competitive programming environment. Therefore, IDEs are often underestimated in these
contexts and replaced by basic code editors. Yet, IDEs have unique features which are essential
for programmers, such as the debugger or the package explorer. This paper presents Raccode, a
plugin for assessment of programming exercises in Eclipse. This plugin integrates with Mooshak
to combine the diverse capabilities of an IDE, like Eclipse, with the automatic evaluation of exer-
cises, clarification requests, printouts, balloons, and rankings. It can be used both in competitive
and learning environments. The paper describes Raccode, its concept, architecture and design.

2012 ACM Subject Classification Software and its engineering → Integrated and visual devel-
opment environments

Keywords and phrases automatic evaluation, programming, IDE, learning, competition

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.4

Category Short Paper

Funding This work is partially funded by the ERDF through the COMPETE 2020 Programme
within project POCI-01-0145-FEDER-006961, by National Funds through the FCT as part of
project UID/EEA/50014/2013, and by FourEyes. FourEyes is a Research Line within project
“TEC4Growth – Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact
/NORTE-01-0145-FEDER-000020” financed by the North Portugal Regional Operational Pro-
gramme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the
European Regional Development Fund (ERDF).

© André Silva, José Paulo Leal, and José Carlos Paiva;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 4; pp. 4:1–4:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:up201007410@fc.up.pt
https://orcid.org/0000-0002-7663-2456
mailto:zp@dcc.fc.up.pt
https://orcid.org/0000-0002-8409-0300
mailto:up201200272@fc.up.pt
https://orcid.org/0000-0003-0394-0527
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

4:2 Raccode: An Eclipse Plugin for Assessment of Programming Exercises

1 Introduction

Integrated Development Environments (IDEs) are applications specialized in supporting
programmers during the development of software, either simple or complex. They are
designed to include all programming tasks in a single application. Therefore, IDEs provide a
central interface containing every tool that a developer should need, including a code editor,
a package explorer, a compiler, a debugger, and several build automation tools.

In competitive and learning programming environments, the automatic assessment of
submitted programs is essential. Students and contest participants need timely feedback
on their attempts, that can not be guaranteed by human judges. Several tools have been
developed to provide this feature, which generally include embedded code editors trying
to mimic IDEs. Hence, IDEs are often underestimated and set aside in these contexts to
streamline the process.

However, this decision can have very negative outcomes. Besides not adapting future
programmers to the tools that they will have to use later, it can slow down the development
of the right solution to an exercise. For instance, the debugger can help to find bugs in
programs, by running it step by step, stopping at some event or specified instruction (i.e., a
breakpoint), and tracking the values of variables.

This paper presents Raccode, an Eclipse plugin that combines the several features of an
IDE with the key characteristics of a tool that provides automatic assessment of programming
exercises both in competitive and learning environments. Raccode integrates the REST
API of Mooshak 2.0, providing Eclipse with automatic evaluation of programming exercises,
support for clarification requests, tracking of printouts and balloons, rankings list view,
among many others.

Eclipse is one of the most used IDEs among software developers. As an open source
software, developers can contribute to the project or share their own products in the form
of a plugin [10]. Eclipse has an environment called Eclipse Marketplace that provides an
extensive listing of Eclipse-based solutions, such as plugins and bundles, which can be
installed directly from the workspace using the Marketplace Client. These features together
with the environments that Eclipse offers, such as Rich Client Platform – RCP [5, 3] – and
Plug-in Development Environment – PDE [6] –, have led us to choose it as the first IDE to
integrate Raccode. However, support for other IDEs is already planned.

The remainder of this paper is organized as follows. Section 2 reviews some systems
that combine automatic evaluation with IDE-like features. Section 3 describes Mooshak
and details its REST API, included in version 2.0. Section 4 presents Raccode, its concept,
architecture, and design. Finally, Section 5 summarizes the main contributions of this work
and next steps.

2 State of the Art

There are several online platforms and tools, such as CodeChef1, CodinGame2, or Enki [8],
that combine automatic assessment of programming exercises with an IDE-like user interface
and some of its features. However, they just include a very limited set of features when
compared to IDEs, including a code editor with a weak support for code completion and a
console log where the output is displayed.

1 https://codechef.com/
2 https://codingame.com/

https://codechef.com/
https://codingame.com/

A. Silva, J. P. Leal, and J. C. Paiva 4:3

CodeChef is an online competitive programming platform. It supports more than 35
programming languages, including Java, Javascript, C, C++, Python, and Pascal. The
development environment contains a code editor, a selector for programming language, and
a widget to provide custom inputs. The platform has two modes: practice and contest.
The practice mode categorizes problems by difficulty, allowing users to solve at their own
rhythm. The contest mode proposes a series of problems for participants to solve under
specific time constraints. Users are ranked according to the number of problems solved,
breaking ties with the total amount of time spent solving them. Every month more than 30
programming contests are realized. Users can award ranking points in both modes.

CodinGame is an online platform where programmers can learn and compete through
game-based challenges. Most of these challenges require the user to develop a software agent
to control the behavior of a character in a game environment, and provide a 2D game-like
graphical feedback.The agent programmed by the player must pass all test cases (public
and hidden) to solve the puzzle. Players can choose one of the more than 20 programming
languages available. Once the exercise is solved, players can access, rate, and vote on the
best solutions. The interface to develop agents presents the statement of the exercise on
the left as well as the movie player, and the code editor and test cases on the right. The
widget containing the test cases supports custom input and displays the output log, once the
test runs.

Enki is a web-based learning environment with an IDE-like graphic user interface. It
integrates with several kinds of tools. These tools include a gamification service to provide
gamification features to students, an educational resources sequencing service to offer different
learning paths, and an evaluator engine to give automatic feedback to students’ solutions.
The user interface includes windows for a code editor, a console log output, an error list, a
test case editor, and a ranking list.

3 Mooshak 2.0 REST API

Mooshak [4] is a web-based system for automatic assessment in computer science. It was
primarily designed for managing programming contests, such as ICPC contests, but the need
for automatic assessment in pedagogical contexts has led to its adoption in computer science
education. Since then, Mooshak assists educators in programming courses, providing instant
feedback on practical classes and exams.

Recently, Mooshak 2.0 has been released. This version is a complete reimplementation
in Java and Google Web Toolkit (GWT) of the initial codebase. However, it also adds
several new features, including a learning environment – Enki [8] –, a diagram assessment
environment – Kora [1] –, and a REST (Representational State Transfer [2]) API.

The REST API of Mooshak 2.0 uses Jersey3, an open-source framework that is the
reference implementation of the Java API for RESTful Web Services, extending it with
several features to further simplify RESTful service. Jersey provides a Core Server to build
annotation-based RESTful services, and to support JSON and the Java Architecture for
XML Binding. It also includes a Core Client to facilitate the communication with REST
services.

Mooshak 2.0 REST API contains endpoints for authentication and authorization (auth),
contests, problems, questions, printouts, balloons, languages, and submissions.
Most of the endpoints consume and produce JSON and XML, but some require other

3 https://jersey.github.io/

SLATE 2018

https://jersey.github.io/

4:4 Raccode: An Eclipse Plugin for Assessment of Programming Exercises

Table 1 Main endpoints of the REST API of Mooshak.

Method Endpoint Consume Produce Description

POST auth/login JSON/XML Authentication
into a contest

GET data/contests/contestId/rankings JSON/XML View rankings
of a contest

GET data/contests/contestId/problems JSON/XML List all problems
of a contest/course

GET data/contests/contestId/problems/problemId/view JSON/XML View a problem
of a contest/course

POST data/contests/contestId/problems/problemId/evaluate form-data JSON/XML Evaluate a program
of a contest/course

GET data/contests/contestId/languages JSON/XML List all languages
of a contest/course

GET data/contests/contestId/languages/languageId JSON/XML Get a language
of a contest/course

GET data/contests/contestId/submissions/submissionId
/evaluation-summary JSON/XML Get the summary

of an evaluation

GET data/contests/contestId/questions JSON/XML JSON/XML List all questions
of a contest/course

POST data/contests/contestId/questions JSON/XML JSON/XML Create a question
in a contest/course

PUT data/contests/contestId/questions/questionId JSON/XML JSON/XML Update a question
in a contest/course

POST data/contests/contestId/printouts form-data JSON/XML Create a printout
in a contest

POST data/contests/contestId/balloons JSON/XML JSON/XML Create a balloon
in a contest

formats, such as Form Data (e.g., the evaluation endpoint receives a file as input). The most
important endpoints are summarized in Table 1.

The authentication to the API uses JWT (JSON Web Token)4, a compact URL-safe form
of representing claims that are transferred between two parties. Once the REST endpoint
for login receives a request from a client, it extracts the user name, password and domain to
which the user is attempting to connect, and leverages the work on the AuthManager which
checks the credentials against the database. If it succeeds, a JWT Token is generated and
sent back to the client, otherwise an error is returned. Thereafter, all requests must have the
JWT Token in the Authorization header.

4 Raccode

The operation of the Raccode can be summarized by the sequence diagram presented in
Figure 1. It starts by connecting to a server, using an host and port defined in Eclipse
preferences. If no problem occurs and the connection is successful, this data is stored in the
registries, so that it is not necessary to configure the server every time the plugin is started.
From this moment, the user can proceed with the authentication in a contest.

There are two ways to login into a contest: via Eclipse wizards menu, following the path
File -> New -> Other... -> Raccode -> Login; or just clicking on the button present
on the toolbar with the label New Problem. If the user chooses a problem from a different
contest, he needs re-authenticate. Nevertheless, the token given by server is also stored in a
registry and, if it is the same among different contests, it is just needed to select the other

4 https://tools.ietf.org/html/rfc7519

https://tools.ietf.org/html/rfc7519

A. Silva, J. P. Leal, and J. C. Paiva 4:5

Raccode Mooshak
REST API

Mooshak

AuthManager::authenticate(contest,
user, password)

Start
Authentication

Process

POST auth/login/

Session

JWT Token

POST
data/contests/{{contestId}}/problems/{{problemId}}/evaluate ParticipantManager::evaluate(session,

problemId, programName, program)
Enqueue

Evaluation
Request

Process
Evaluation
Request

EvaluationSummary
EvaluationSummary

Figure 1 UML sequence diagram of an evaluation.

contest and click Login. If the problem belongs to the same contest, no action is required
since Raccode keeps the JWT token given to the user for an hour, refreshing it when the
time expires but the user remains active.

The second page of the login wizard presents a menu with the available problems and
languages, allowing the user to select a problem. When pressing the Finish button, the
project is created and added to Package Explorer. If the local machine does not have the
selected language installed, an error message is presented explaining the situation and the
project is not created.

The Problem view presents the problem statement, either in HTML or PDF. While
solving the problem, the user can test his program with test cases received from the server
(public tests) or its own test cases (user-defined tests). If the outputs do not match, he can
always use the debugger to identify the problem.

Finally, to submit the code the user can use the menu Raccode -> Submit or click on
the Submit button on the Eclipse toolbar. The program is then sent to the evaluator on
server and a summary is returned, giving the user feedback and informing him if his program
was accepted or not.

Raccode presents several tools on the perspective, including the ranking of the contest,
the progress of the user (e.g., the number of attempts for the current problem, problems
solved, among others), a listing of questions and answers of the selected problem as well as a
means to submit questions, and listings for balloons and printouts if it is a contest.

In a general way, the Raccode plugin makes the bridge between Mooshak 2.0 and Eclipse.
The following subsections present how Raccode integrates with the Mooshak 2.0 REST API
and its design.

4.1 API integration
Mooshak has a REST API that enables a client to send HTTP requests to the server and get
information easily. The documentation of the API describes how requests should be made,
providing an example of a request and a response for each endpoint. Raccode consumes this
API exactly as documented, displaying a message in a label or in a pop-up window if an
exception occurs while making a request.

SLATE 2018

4:6 Raccode: An Eclipse Plugin for Assessment of Programming Exercises

The project structure is split into two parts: one for requests and another for the User
Interface (UI). By dividing the project into these two parts, it provides extensibility for other
IDEs, since the API integration can be reused. The only code that needs to be modified is
the UI part. The HTTP requests are performed using HttpsURLConnection library. The UI
was developed using Standard Widget Toolkit (SWT) [9], a graphical widget toolkit to use
with the Java platform. The aspect of the perspective is described in the next subsection.

The request package is divided in several classes corresponding to the resources being
consumed from the REST API. Each of these classes leverages the request on the adequate
method of the RequestSender, depending on the HTTP method being used. For instance,
the Auth class contains methods to authenticate/authorize users. The login method invokes
the post method of the RequestSender, which issues the request and processes the response
to JSON, returning it. If everything goes fine the user gets logged in, and the response
contains a token with a duration of an hour. During this time, every time the user submits a
solution or wants to choose a new problem, he doesn’t need to log in again. In the same
way, if the user doesn’t close the application or make logout past this hour, the token is only
refreshed and the user can keep going to work. This is how Raccode works directly with
Mooshak, making requests to obtain all resources needed for the good functionality of the
plugin.

4.2 Design

In terms of design, Raccode uses a perspective to present the many tools needed to solve a
problem. The default design aspect of Raccode includes a text editor, a list of problems, a
package explorer, the console, the rankings list, and a Q&A (questions and answers) window.
The toolbar of the perspective adds two buttons, one to get a new problem and another to
submit a solution. As previously described, the new problem button opens a wizard that
asks for user authentication, if it is not authenticated yet. Once logged in, and continuing in
the same wizard, all problems in the contest become available and the user can choose which
of them wants to solve, and in which language.

Furthermore, there is a page in Eclipse preferences to configure the connection to the
server, in which Mooshak is added by default. Figure 2 presents the distribution of the
several views, which were strategically positioned to fit the common Eclipse perspectives.
Three of these windows are recognizable by any Eclipse user: package explorer, text editor,
and terminal (console). The important here is to present the other three. The Problem view
shows the problem statement, with the description, and some examples of input and output.
The Ranking view allows the participant to have a notion of his progress (which problems
solved with success, how many submissions were made, which problems remain to be resolved,
etc). Furthermore, it is also useful to know the progress of the other participants, since it is
possible to make competitions using Raccode. Each submission made by a participant is
only accepted to run on the evaluation machine if the program has some difference from the
previous program. After compiled and tested, a feedback message is returned, which can be
Accepted, Runtime Error or Compile Time Error, for example.

When a participant of a contest has some doubts about a problem, he can submit a
question through the Q&A view for teachers/judges to clarify their issues. If Mooshak is in
the learning mode, other students can also answer the questions from their peers also.

Also, an a how-to manual about the work environment is provided, with information
about submission of programs, the meaning of the feedback messages, troubleshooting, among
others.

A. Silva, J. P. Leal, and J. C. Paiva 4:7

NEW�PROBLEM

AND�LOGIN

SUBMIT�SOLUTION

Figure 2 Raccode perspective: distribution of the components (open to changes).

5 Conclusions

At the moment, Raccode is a work in progress. The connection between the REST API of
Mooshak 2.0 and Eclipse is almost completed, only missing the submission and automatic
creation of project parts. The design of the application is also complete with all views and
wizards created, as well as the integration of Eclipse tools in the perspective.

Raccode has some issues with language verification. For instance, when the user wants to
solve a problem in C++, it can not verify if the user has the required libraries installed to
compile it.

Regarding improvements, the goal of Raccode is to integrate with other IDEs, since
the market for IDEs is quite large. Another future improvement concerns the automatic
installation of the required environment for compiling programs exactly as in Mooshak.

Raccode will be tested in an open environment with students from the Department of
Computer Science of the Faculty of Sciences of the University of Porto (DCC-FCUP). This
experiment aims to compare Enki with Raccode environment, in a small open course with a
series of problems. The feedback will be taken through an online questionnaire based on the
Nielsen’s model [7], in Google Forms.

References
1 Helder Patrick de Pina Correia. Avaliação de diagramas no Mooshak 2.0. Master’s thesis,

Universidade do Porto, 2017.
2 Roy Thomas Fielding. Architectural styles and the design of network-based software archi-

tectures. PhD thesis, University of California, 2000.
3 Andreas Kornstadt and Eugen Reiswich. Composing systems with Eclipse rich client plat-

form plug-ins. IEEE Software, 27(6):78–81, 2010.
4 José Paulo Leal and Fernando Silva. Mooshak: A web-based multi-site programming contest

system. Software: Practice and Experience, 33(6):567–581, 2003.
5 Jeff McAffer, Jean-Michel Lemieux, and Chris Aniszczyk. Eclipse rich client platform.

Addison-Wesley, 2010.

SLATE 2018

4:8 Raccode: An Eclipse Plugin for Assessment of Programming Exercises

6 Wassim Melhem and Dejan Glozic. PDE does plug-ins. Technical report, IBM Canada
Ltd., 2003.

7 Jakob Nielsen and Thomas K. Landauer. A mathematical model of the finding of usabil-
ity problems. In INTERACT’93 and CHI’93 conference on Human factors in computing
systems, pages 206–213, 1993.

8 José Carlos Paiva, José Paulo Leal, and Ricardo Alexandre Queirós. Enki: A pedagogical
services aggregator for learning programming languages. In Conference on Innovation and
Technology in Computer Science Education, pages 332–337, 2016.

9 Matthew Scarpino, Stephen Holder, Stanford Ng, and Laurent Mihalkovic. SWT/JFace in
action. Manning, 2005.

10 Lars Vogel. Contributing to the Eclipse IDE Project: Principles, Plug-ins and Gerrit Code
Review. Lars Vogel, 2015.

eOS: The Exercise Operating System
Rui Mendes
Centro Algoritmi / Departamento de Informática
Universidade do Minho, Campus de Gualtar, Braga, Portugal
azuki@di.uminho.pt

https://orcid.org/0000-0002-5321-6863

José João Almeida
Centro Algoritmi / Departamento de Informática
Universidade do Minho, Campus de Gualtar, Braga, Portugal
jj@di.uminho.pt

https://orcid.org/0000-0002-0722-2031

Abstract
We present an architecture for a system for creating, adapting and evaluating programming exer-
cises for students. The system is capable of generating exercise skeletons, automatically creating
inputs and outputs, provide a way of creating a large number of exercises programmatically and
allowing students to solve them while giving them feedback. Furthermore, it allows the creation
of special comparators that can check whether the output of a given submission is equivalent to
the expected one or simply check whether the above mentioned output corresponds to a correct
solution.

2012 ACM Subject Classification Software and its engineering → Domain specific languages

Keywords and phrases domain specific language, code generation, automatic evaluation, testing

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.5

1 Introduction

Evaluating students’ performance in programming involves creating a large number of
programming exercises and tools for estimating how well they solve them. The task of
creating programming assignments forces teachers to devise these problems and to write
them in a systematic fashion, not only concerning the task descriptions but also how they are
evaluated. The usual methodology involves creating several scenarios that cover all the cases
and check if the submissions solve them correctly. Thus, the team needs to create the inputs
and corresponding outputs covering those cases. Furthermore, in many cases the formulation
is rendered more difficult because there are several correct answers and this usually involves
further complicating the problem by establishing a specific ordering (e.g., we want the first
solution in the lexicographic order) or artificially simplifying the problem in order to get
a deterministic answer (e.g., asking for the length of the minimum path length in a graph
instead of one of the paths).

The goal of eOS is to help in this task. eOS will help create assignments by automatically
generating program inputs and even getting the outputs by automatically generating them
from the inputs by means of a solution. Furthermore, it is capable of handling comparators
for increasing the ability of ascertaining whether a given solution is correct.

What sets eOS appart from other systems like CodeBoard [4], Stepik [15] or Mooshak [12]
is the fact that it provides ways to programmatically create exercises by using scripting
tools instead of using a web interface that, while user friendly, is time consuming when it is
necessary to create many, often similar, problems. The second advantage is the fact that

© Rui Mendes and José João Almeida;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 5; pp. 5:1–5:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:azuki@di.uminho.pt
https://orcid.org/0000-0002-5321-6863
mailto:jj@di.uminho.pt
https://orcid.org/0000-0002-0722-2031
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

5:2 eOS: The Exercise Operating System

it is easy to use special comparators thus allowing the creation of programming exercises
without having to artificially modify the system in order to get a single, deterministic answer
to a given input. The third advantage is being able to create problems that involve creating
one or more functions in a given, larger program.

2 On the automatic evaluation of programming assignments

It is not easy to write programs that are capable of automatically evaluating code. This
is due to the fact that the automatic analysis of code is difficult. It is extremely hard to
write a system that is capable of understanding what a piece of code does without running it
and even to know if it will terminate. The usual approach for the automatic evaluation of
programs is somewhat similar to unit testing [10]: it sets up a given environment and runs
the program and analyzes its output. Most existing systems are either language dependent
or often prefer to have the program read inputs from the standard input and write its result
to the standard output. The authors are especially interested in systems that work in a wide
spectrum of languages and thus favor the latter approach.

At the Department, the teaching staff uses automated evaluation in several courses
and languages: we have been using such systems with C, Python, Perl and courses like
introduction to programming, algorithms and complexity and bioinformatics. We also have
courses that use other programming languages (e.g., Java) and subjects (e.g., machine
learning, evolutionary computation) but don’t use such systems mainly because the task of
creating programming assignments is quite cumbersome and current systems are not capable
of dealing with non determinism or the stochastic behavior inherent to such systems.

2.1 Overview of existing systems
We have extensively used Mooshak[12] and also Codeboard [4] or Stepik [15]. Mooshak is
a system for managing programming contests on the Web that is used in the Maratona
Inter-Universitária de Programação (MIUP) which is a 5 hour Portuguese programming
contest that is part of the ACM International Collegiate Programming Contest for teams of
three students. When a contest is created, Mooshak allows administrators to create problems.
Creating a problem involves using a web interface with the mouse and keyboard, selecting
things like the description, timeout, problem letter (from A to Z), if there are static or
dynamic correctors and other details. Creating tests involves, again using the web interface,
to create several tests where one selects what is the input, the output, context and number of
points. One of the authors was involved in preparing the last MIUP contest and the task of
setting up the system is somewhat daunting because the contest involved nine problems each
with more than 10 test cases. It is possible to create special correctors (somewhat similar
to what is presented in section 3.5) but the functionality is not well documented and it is
almost never used. Thus, one is limited to check whether the expected and obtained outputs
are exactly equal, to the point of there being a specific error message for the fact that both
match if one removed all whitespace. Its limitations also involve that using floating point
is avoided to the maximum and the authors have had several problems in the past when
creating assignments that use floating point, to the point where these exercises are either
simply not used or involve much more information about truncating errors and rounding.

Stepik was thought for creating courses and allows the creation of programming assign-
ments. The programming assignments are created in Python and involve creating functions
that generate program inputs, outputs and comparators between the expected and obtained
outputs like our system. However, it is hard to manage the assignments, including moving
them and each assignment must be created or edited using a web interface involving using
the mouse and keyboard.

R. Mendes and J. Almeida 5:3

Codeboard can perform automatic evaluation by creating a project that outputs a special
string as the last line of output. This involves creating the project using an IDE in the web
interface and, for each assignment and language, creating a part of the code that grades
the system. It is also possible to use of Java-JUnit, Haskell-HSpec or Python-UnitTest to
help evaluate assignments. However, assignments are still created one at a time using a web
interface and furthermore, they seem to be language specific.

2.2 Creating programming assignments
Creating programming assignments often involves:
1. Write the description of the assignment;
2. Create the inputs that will be passed to the programs submitted by the users in order to

estimate their correctness;
3. Create the expected outputs;
4. Describe how close the outputs of the submission match the expected ones.

Most of these steps often involve repeatable effort. Creating the inputs often depends
on the type of problem. For instance, problems over sequences or lists involve creating
them according to a given rule (e.g., generate integer lists with random elements over a
given interval) while most problems concerning graphs involve creating a graph with some
characteristics (e.g., a geometric graph [13]). In order to create a candidate solution to a
problem one needs to create some sort of algorithmic pipeline.

For instance, when creating a problem that involves path-finding, it is necessary to
generate graphs, compute the distances between nodes, apply a shortest path algorithm (e.g.,
Dijkstra [3] or Floyd Warshall [5]) and present a path. Then, it is necessary to compare
the path produced by the submission with the expected outputs in order to estimate the
correctness of the solution.

This programming task’s difficulty could even be tweaked by either providing the edges of
the graph along with their weights or by providing the geometric coordinates of the vertexes
or even some more indirect way of representing them.

The task of ascertaining the correctness of the submissions also involves repetition. If the
expected output is for instance, a set of values, it is necessary to verify whether the user’s
submission provides the correct output but simply using a different ordering or, in the case
of a graph path, if it is a valid one of the correct length.

Even writing the problem description is not without its fair share of repetition. In fact,
the description of the program inputs and how the program should print its output could be
reused for similar problems.

Often, it is necessary to create several problems using the same data structure. This
means that it is usually possible to create an input generator for that data structure and
use it in several problems. If one is able to combine this with a library that solves all the
necessary tasks, it should be easy to create several programming tasks that will be able to
correctly evaluate the students’ ability to solve them.

3 Framework

The aim of eOS is to provide a framework, written in Python, to help the teaching staff with
the task of creating problem assignments. It uses a command called eos with the following
sub-commands (cf. Fig. 1 for the eOS process flow):
register This command allows the registration of a new problem;
evaluate This command takes a problem and a submission and evaluates the submission;

SLATE 2018

5:4 eOS: The Exercise Operating System

Figure 1 Process flow of eOS.

list This command lists all problems;
describe This command describes a problem;
language This command allows the definition of a new programming language.

3.1 Registering problems
In order to register problems, we conceived a very simple Domain Specific Language (DSL) [11].
It allows users to describe all the aspects of the problem including:
import In order to import Python modules;
input output The input or output;
description A problem description;
parse_input parse_output A function that parses the input or output, it takes a string and

returns a list of strings;
solution A function that solves the problem, it takes a string corresponding to one of the

inputs and returns a string that is the corresponding output;
template In the case where the problem only asks for a part of the code;
lang The language of the problem;
ntests The number of tests to show to the user (0 by default);
timeout The number of CPU seconds allowed for the program to run on each test (1 by

default);
comparator A function that takes the input, expected output and obtained one and returns

True or False;
source_invariant A function that takes the language used by the submission and the program

source and returns None in case it can be accepted and a string containing an error message
in case the program cannot be accepted.

R. Mendes and J. Almeida 5:5

Each commands starts with a # (e.g., the command is #import) and accepts one or more
lines. These commands can be supplied with an exclamation point suffix in order to evaluate
the argument of the command assuming it is Python code. In case the arguments supplied
to a command consist of a a single word (i.e., they have no whitespace), the systems searches
for a Python function with that name.

3.2 Describing inputs and outputs
In order to describe inputs, one uses the #input keyword. This involves creating a list
of strings where each string corresponds to one of the inputs. This keyword can accept
a function, given by its name, that produces the list. In this case, if the function has a
docstring [2], it will be automatically added to the problem description.

By default, the input is several lines where each line corresponds to one input. In case
something else is necessary, one can use the keyword #parseinput for supplying a function
that performs the necessary parsing and produces the list of strings. It is also possible to
supply the list of strings directly by appending an exclamation point to the input command.
As an example, the following lines supply the same input:

#input
there is no place like home.
hello there!
#input! [’there is no place like home.\n’, ’hello there!\n’]

One can specify the output in exactly the same way or by supplying a solution by using
the #solution keyword. This is a Python function that can be given by name and that
takes a string corresponding to one input and produces a string corresponding to one output.
If the solution is specified and the function has a docstring, it will be automatically used in
order to document how the output is specified. No documentation of the input or output is
performed if a template is used (since in this case the user does not have to worry about it).

3.3 A simple example
Let us assume that we aim to create a problem where the user has to read a sequence of
integers and has to compute the longest increasing subsequence. We would need to write a
text file, e.g, lis01.xrc that could have the following:

#description
Write a function called lis that takes a list of numbers and returns the
size of the longest increasing subsequence of non-consecutive integers
found.
#input
3 1 2 4
7 2 1 3 2 3 7 2 4
1 1 2 2 3 3 3 4 4 4 5 5 5 6
#output
3
4
14
#lang python
#template
[[function]]

SLATE 2018

5:6 eOS: The Exercise Operating System

lst = list(map(int, input().split()))
print(lis(lst))
#ntests 1

We define a template, that the submission must be in Python and that only the first of
the three tests is shown to the user as feedback. It is also possible to supply the input by
means of a function that returns a list of strings where each string is a test case and the
output as a function that yields a list of strings. Templates can be used for other languages
as long as they are defined (cf. section 3.8).

Instead of the output, we can supply a solution that is a function that computes the
output given the input. In this case, we could have the following in file lis02.xrc:

#import example
#description
Write a program that reads a line containing a sequence of numbers
separated by spaces and prints the size of the longest increasing
subsequence of non-consecutive integers found.
#input get_input
#solution solve_lis
#ntests 2
#timeout 2

The module example.py contains the functions get_input and solve_lis. The function
get_input doesn’t take any arguments and returns a list of strings while the function
solve_lis takes a string, which is an input and returns a string that is the output. If
get_input has a docstring, it will by automatically appended to the problem description.
The output description can also be taken from the docstring of the function solution. We
also specify that the timeout is 2 seconds (instead of the 1 second default) and that the first
two tests are supplied to the user as feedback. This problem asks the user to write the whole
program, including reading the input and writing the output and accepts solutions in any
language.

If we want to register the problem lis02.xrc given above and evaluate a solution in a
file called sub01.py we would write:

$ eos register lis02
Write a program that reads a line containing a sequence of numbers
separated by spaces and prints the size of the longest increasing
subsequence of non-consecutive integers found.
The input consists on a single line containing several integers
separated by spaces.
The output consists of a single integer representing the length
of the longest increasing subsequence of non-consecutive integers
found.
Input 1:
3 1 2 4
Output 1:
3
Input 2:
7 2 1 3 2 3 7 2 4
Output 2:

R. Mendes and J. Almeida 5:7

4
$ eos evaluate lis02 sub01.py
Ok!

Notice that since the functions get_input and solve_lis have docstrings, their docu-
mentation is added at the end of the problem description. If we evaluate a submission that
doesn’t pass all tests, the output will indicate a feedback, if available, how many tests were
run, how many were correct, how many had errors and how many timed out.

$ eos evaluate lis02 sub02.py
correct: 1
error: Timeout
errors: 0
timeouts: 10
total: 11

The file sub02.py corresponds to a naive implementation and, as such, it can only solve
1 of the 11 problems in the CPU time given. We realize that our program wasn’t able to
solve 10 problems due to timeout.

3.4 Parsing the input or output
In case we wanted to create a task for counting the number of lines in the input, we would
want a different way of specifying input since in this case, the input would be several lines.
For this, we could use a function called get_paragraphs defined in parse_inputs.py that
splits the text on blank lines. Notice that, in this case, no tests are shown to the user in case
of failure.

#import parse_inputs
#description
Write a program that counts the number of lines in the input.
#parse_input get_paragraphs
#input
d

e
f
#output
1
2

3.5 An example with special comparators
In many cases, it is more interesting to use a special comparator because there are many
ways of supplying the same solution. For instance, if we ask for a path between two vertexes
in a graph, there can be several paths between these nodes even if we are only interested in
the shortest one. In this case, we have to supply a comparator.

#import graphs
#description Write a program that reads a graph and two nodes and writes
the shortest path between the two nodes.

SLATE 2018

5:8 eOS: The Exercise Operating System

196
1 2 249
1 3 421
1 4 426
2 3 172
2 4 193
2 83 184
...
99 71 125
99 72 101
100 18 123
100 20 110
34 2

Figure 2 Example of a generated graph with 100 vertexes and a path of minimum length from 34
to 2 and the corresponding input. The last line of the input corresponds to the origin and destination
vertexes (34 and 2 respectively). There is another path of the same length that starts with [34, 33,
8, 56]. The figure was automatically created by the generator.

#input! generate_path_problems(10, 100)
#solution get_shortest_path
#comparator same_path_length

In this case, the function generate_path_problems was defined in graphs.py and
generates 10 graphs with 100 nodes each along with the figures depicting the generated
graphs (cf. Fig 2). The graph appears in the input with one line with an integer for the
number of edges and one line for each edge with two node ids and the corresponding weight
separated by spaces and a final line with the origin and destination nodes separated by a
space. Notice that in this case we used input! because we have to evaluate the input as it is
not simply the name of a function. The function same_path_length takes three arguments:
the input, the expected output and the obtained one and should return True if both paths
are from the same two vertexes and have the same length or False otherwise.

Another advantage of using comparators is that they can verify whether a given output is
correct. As a rather contrived example, we could ask for a sorting algorithm and simply use
the comparator to check whether the output produced by the submitted program contained
all the elements in the input and they were ordered. Thus, we could simply supply the input
and the comparator even though we didn’t have a function that produced the output. The
comparator can also be used to check if a given heuristic produces a solution of an acceptable
quality (e.g., using the A* algorithm [9]).

3.6 Source invariants
In some cases, we may want to design a problem where the user cannot use a given function
or library because we want to evaluate a given algorithm. For instance, let us suppose that
we want to evaluate submissions that implement hash tables. In this case, we could create a
function in Python similar to this one:

import re
def check_for_hash(lang, src):
RE = {’Java’: r’java.util.(Hashtable|HashMap)’,

R. Mendes and J. Almeida 5:9

’C’ : r’#include\s*<search.h>’ }
for line in src.splitlines():

if re.search(RE[lang], line):
return ’You may not use a library that implements hash tables’

and use it in the definition of a problem by adding #source_invariant check_for_hash.

3.7 Batch creation of exercises
The main advantage of eOS is to provide a programmatical way of creating several exercises.
We will illustrate this concept by creating several problems that compute statistics over lists
of integers.

problems = ’minimum maximum mean median variance’
text = """
#import my_list
#import fun_list
#description
Write a program that reads a line containing several integers separated
by whitespace and outputs their {name}
#input! gen_lists(range(1, 11))
#solution sol_{name}
"""
fun = """
def sol_{name}(inp):

lst = list(map(int, inp.split()))
return str({module}.{name}(lst))

"""
with open(’fun_list.py’, ’w’) as FL:

print(’import my_list’, file = FL)
for num, prob in enumerate(problems.split()):

with open("prob{:02}.xrc".format(num + 1), "w") as F:
print(text.format(name = prob), file = F)

print(fun.format(module = ’my_list’, name = prob), file = FL)

gen_lists is a function that generates a random list of the given size. Thus, the specified
input creates one list of each size ranging from 1 to 10. In this example, we first create 5
functions in a file called my_list.py (minimum, maximum, mean, median and variance) and
this Python script creates a file called fun_list.py with a version of these functions that
includes parsing the input and outputing the result as a string. This is done using the fun
template that is used to create functions with the prefix sol_. This script also creates 5 files
with names prob01.xrc, . . . , prob05.xrc using the template text corresponding to these 5
problems.

By executing this script and subsequently calling:

for prob in prob0?.xrc; do eos register $prob; done

on the command prompt, we register the 5 problems into the system and can then use
them. This is a proof of concept that will soon be a part of the system to facilitate its reuse.
Nevertheless, this strategy can easily be adapted to generate more exercises by adapting this
script to other needs.

SLATE 2018

5:10 eOS: The Exercise Operating System

3.8 Defining new languages
eOS is able to evaluate problems defined in any language as long as one knows how to take a
solution and compile it in order to create an executable and how to run it. The keyword
eos language allows users to define new languages.

In order to define a new language, the user needs to define the following aspects:
name The language name;
compile The Unix shell command that compiles the program and creates the executable

using file for the filename of the submission (this field may be omitted in case of an
interpreted language);

run The Unix shell command that runs the program;
extension The extension or extensions for this language.

For instance, in order to define C++, one could create the following file called lang_cpp:

#name C++
#compile g++ -std=c++11 -Wall -Wextra -Werror [[file]]
#run ./a.out
#extension cc cpp cxx

And subsequently run the command eos language lang_cpp. This command only needs
to be run once per system. As a subsequent example, let us imagine the scenario where we
want to create exercises for a course where we want to evaluate the use of flex and bison.
We can create a custom language FlexBison that expects a file, terminated by the extension
flbi, archived with tar and compressed with bzip2 containing two files, one named lex.l
and another named gram.y:

#name FlexBison
#compile
tar xjf [[file]]
bison -d gram.y
flex lex.l
g++ gram.tab.c lex.yy.c -lfl -o parser
#run ./parser
#extension flbi

4 Discussion

Existing systems provide user friendly interfaces for creating problems (e.g. [15, 4, 12]). This
is quite useful for creating exercises since it allows users to create them using a user friendly
interface. However, there are several advantages to having a programmatic way of generating
exercises. The first and foremost is the creation of a batch procedure for generating many
exercises.

Thus, it is possible to use a library for generating data structures (e.g., trees or graphs)
and create a large number of exercises that involve creating, updating or traversing the data
structure or using frequently taught algorithms over that structure (e.g., path between two
vertexes, checking whether it is a direct acyclic graph or a connected graph).

When devising problems, it is important to reserve inputs that test all functionalities of
the task besides the ones shown to the users in order to prevent them from simply creating a
program that prints the correct output given the input. As we intend to use this system
both for helping students learn programming as to evaluate their success, it is possible to
show all inputs to the students but we must caution the teaching staff about the obvious
drawback involved.

R. Mendes and J. Almeida 5:11

It is very important to create inputs that correctly test the task being evaluated including
all normal inputs and hedge cases (e.g., in the case of sorting a list, it is necessary to have
a case using the empty list, a list with one element, lists with several elements, lists with
repeated elements and lists with a very large number of elements). Inexperienced people can
be tempted to only supply a few well behaved cases and later realize that very bad solutions
were accepted. As a degenerate example, if all inputs for our sorting problem use lists of
three integers, it is possible that a system using a few conditional statements and no loops
is accepted. There are many more considerations when evaluating problems by supplying
inputs and outputs, mainly it is necessary to ensure whether there are simpler algorithms
than the ones we intend to evaluate that can solve the problem [6].

The main advantages of eOS are the following:
It was thought with the Unix philosophy in mind;
It is easy to create scripts for the batch generation of exercises;
It allows importing Python modules to help create exercises;
Most of the keywords accept a function that generates the needed value;
It provides feedback to the user when it fails, and the problem setter can configure how
many of the inputs are shown to the user;
It automatically includes docstrings of functions used to generate the input and output
to the program description thus sparing the problem setter to have to write them;
It provides facilities for evaluating a program or several functions that are included in a
larger program;
It can evaluate code in almost any language and each problem can potentially receive
submissions in several languages;
It is quite easy to create special comparators for specific similarity measures or for
evaluating heuristics (including non deterministic and stochastic ones);
It logs all submissions to the system.

The main shortcomings of eOS are the following:
In order to use the system fully, the teaching staff needs to know how to program in
Python;
There is currently no web interface neither for the teaching staff to create problems nor
for students to use the system;
As in most similar systems, one must test all hedge cases of a problem;
There is currently no way to assessing the complexity of a program, its style or if
plagiarism;
It needs to be fully tested in real world conditions and it needs stress tests to ascertain
its security to attacks.

5 Conclusions

The framework presented in this work helps the teaching staff to quickly generate several
programming assignments by introducing ways to automate this task. This automation is
due to the fact that inputs and outputs can be supplied in several ways including by using
generators, specific parsers and solutions that automatically generate outputs. The fact that
it is possible to import Python modules makes it possible to easily extend the system to
attend specific needs. Another advantage of this system is being capable of using special
correctors to accept solutions based on user supplied metrics of equivalence or proximity.

Currently, we have implemented a mail filter that receives submissions by email from
university accounts. This allows us to use the system in our courses and provides an easy

SLATE 2018

5:12 eOS: The Exercise Operating System

authentication of their submissions. We will evaluate this system in practice in the next
semester in several courses in order to evaluate its performance. Some of the courses involved
will use several programming languages and technologies (e.g., C, Python, Flex, Bison,
BioPython, Machine Learning algorithms) and can involve up to 150 students.

Currently, eOS addresses some security concerns about compiling and running insecure
code (e.g., forks, memory and disk limits) but more work is surely needed to mitigate all the
possible security issues [7]. In the future, we intend to create a Web portal for students to
submit their solutions by using this system and to specify a programmatic layer on top of
the existing one to further automate the generation of exercises (cf. section 3.7). We aim to
accomplish this by supplying several ways of generating inputs, outputs, solutions and special
comparators by using several forms of functional composition. We intend to perform this
by adding functionalities for documenting input generators and the ability of concatenating
several generators in order to both create the input and automatically describe the input in
the problem description.

We also intend to use this system for gathering statistics concerning the submission
process that will allow us to use machine learning techniques to analyze the results and
design intelligent tutors [1, 8, 16]. We also wish to incorporate the ability to check for code
plagiarism by automating the task of using systems like MOSS [14].

References
1 Charu C. Aggarwal and Jiawei Han. Frequent pattern mining. Springer, 2014.
2 Guido van Rossum David Goodger. PEP 257 – Docstring conventions. Documentation, Py-

thon Software Foundation, 2001. URL: https://www.python.org/dev/peps/pep-0257/.
3 Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269–271, 1959.
4 Christian Estler and Martin Nordio. Codeboard: A web-based ide to teach programming

in the classroom, 2018. URL: https://codeboard.io/.
5 Robert W. Floyd. Algorithm 97: shortest path. Communications of the ACM, 5(6):345,

1962.
6 Michal Forišek. On the suitability of programming tasks for automated evaluation. Inform-

atics in education, 5(1):63–76, 2006.
7 Michal Forišek. Security of programming contest systems. Information Technologies at

School, pages 553–563, 2006.
8 Karam Gouda, Mosab Hassaan, and Mohammed J Zaki. Prism: An effective approach

for frequent sequence mining via prime-block encoding. Journal of Computer and System
Sciences, 76(1):88–102, 2010.

9 Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE transactions on Systems Science and Cyber-
netics, 4(2):100–107, 1968.

10 Dorota Huizinga and Adam Kolawa. Automated defect prevention: best practices in software
management. John Wiley & Sons, 2007.

11 Tomaž Kosar, Sudev Bohra, and Marjan Mernik. Domain-specific languages: a systematic
mapping study. Information and Software Technology, 71:77–91, 2016.

12 José Paulo Leal and Fernando Silva. Mooshak: A web-based multi-site programming contest
system. Software: Practice and Experience, 33(6):567–581, 2003.

13 Mathew Penrose. Random geometric graphs, volume 5. Oxford university press, 2003.
14 Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: local algorithms for

document fingerprinting. In ACM SIGMOD international conference on Management of
data, pages 76–85, 2003.

https://www.python.org/dev/peps/pep-0257/
https://codeboard.io/

R. Mendes and J. Almeida 5:13

15 Stepic team. Stepic.org: Cloud-based digital learning environment for computer science. ,
https://blog.stepik.org/. URL: https://stepik.org/.

16 Mohammed J. Zaki. Spade: An efficient algorithm for mining frequent sequences. Machine
learning, 42(1–2):31–60, 2001.

SLATE 2018

https://blog.stepik.org/
https://stepik.org/

Construction of a Pushdown Automaton
Accepting a Postfix Notation of a Tree Language
Given by a Regular Tree Expression
Tomáš Pecka1

Department of Theoretical Computer Science, Faculty of Information Technology
Czech Technical University in Prague
Tomas.Pecka@fit.cvut.cz

Jan Trávníček
Department of Theoretical Computer Science, Faculty of Information Technology
Czech Technical University in Prague
Jan.Travnicek@fit.cvut.cz

Radomír Polách
Department of Theoretical Computer Science, Faculty of Information Technology
Czech Technical University in Prague
Radomir.Polach@fit.cvut.cz

Jan Janoušek
Department of Theoretical Computer Science, Faculty of Information Technology
Czech Technical University in Prague
Jan.Janousek@fit.cvut.cz

Abstract
Regular tree expressions are a formalism for describing regular tree languages, which can be
accepted by a finite tree automaton as a standard model of computation. It was proved that
the class of regular tree languages is a proper subclass of tree languages whose linear notations
can be accepted by deterministic string pushdown automata. In this paper, we present a new
algorithm for transforming regular tree expressions to equivalent real-time height-deterministic
pushdown automata that accept the trees in their postfix notation.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases tree, regular tree expression, pushdown automaton

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.6

1 Introduction

The theories of formal string languages and formal tree languages are important parts
of computer science. Strings and trees are fundamental data structures. Tree languages
processing has become very popular in the recent years. For example, we can find practical
usages in the area of processing markup languages (like XML) or abstract syntax trees.
Traditionally, problems on trees are solved using various kinds of tree automata [5]. However,
trees can also be represented by strings, for instance in their prefix or postfix notation
obtained by preorder or postorder traversal of the tree, respectively. It was proved by

1 Author was supported by the Grant Agency of the Czech Technical University in Prague, grant No.
SGS17/209/OHK3/3T/18.

© Tomáš Pecka, Jan Trávníček, Radomír Polách, and Jan Janoušek;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 6; pp. 6:1–6:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Tomas.Pecka@fit.cvut.cz
mailto:Jan.Travnicek@fit.cvut.cz
mailto:Radomir.Polach@fit.cvut.cz
mailto:Jan.Janousek@fit.cvut.cz
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

6:2 Construction of a PDA Accepting a Postfix Notation of Trees Given by a RTE

Janoušek and Melichar [9] that the class of regular tree languages is a proper subclass of
tree languages whose linear notations can be accepted by deterministic pushdown automata
(PDAs). Thus, the standard (string) PDA is another suitable model of computation for
processing regular tree languages in a linear notation. For example, algorithms processing
XML with the use of PDAs have been investigated [10, 17].

Regular tree expressions (RTEs) are a natural formalism for the description of regular
tree languages [5]. They are analogous to regular (string) expressions. It is well known
that regular (string) expressions describe regular languages and can be converted to finite
automata. In the case of trees, RTEs can be converted to corresponding finite tree automata.

Finite automata and regular (string) expressions are well-studied [8, 16]. A string language
membership problem is a decision problem. Given a regular (string) expression E and a
string w, decide whether w is in the language described by the regular (string) expression E.
This problem can be decided by converting the expression to an equivalent finite automaton
and running the automaton on the input word w.

Many algorithms deal with a problem of converting regular (string) expressions to finite
automata in the string domain. Three algorithms by Brzozowski [4], Thompson [18] and
Glushkov [7] (also known as a position automaton) are the basic ones. Antimirov’s partial
derivatives method [3] (which can be seen as a non-deterministic extension of Brzozowski’s
algorithm) must be also mentioned. Conversions by Glushkov’s and Antimirov’s can be done
in polynomial time w.r.t. the number of occurrences of symbols in the regular expression.

The language membership problem for trees and RTEs is analogous: Given a regular
tree expression E and a tree t, decide whether t is in the language described by the regular
tree expression E. As in the string case, one can create a finite tree automaton (or a PDA)
equivalent to the RTE E and let the automaton run on (linearised) tree t.

Algorithms for the conversion of RTEs to finite tree automata are inspired by the
mentioned algorithms from the string domain. Antimirov’s and Glushkov’s algorithms were
adapted to regular tree expressions by Kuske and Meinecke [11] and also later by Laugerotte
et al. [12]. The finite tree automaton is constructed in polynomial time w.r.t. the size of the
RTE in both adaptations. Thompson’s algorithm was an inspiration for Polách [14], where
RTEs are converted to PDAs.

This paper presents a new approach for the conversion of RTEs to PDAs. The presented
algorithm was inspired by the Glushkov’s algorithm [7] for regular (string) expressions. To
create the equivalent PDA, the RTE is analysed similarly to Glushkov’s algorithm. Resulting
PDA accepting linearised trees described by the RTE is constructed in quadratic time w.r.t.
the size of the RTE. The constructed automaton is a real-time height-deterministic PDA
and therefore it can be always determinised [15].

The paper is organised as follows: Basic definitions are given in Section 2. The conversion
algorithm producing the PDA is presented in Section 3. Section 4 discusses complexity
improvements to the algorithm and to the size of the constructed PDA. Finally, the results
are summarised in the conclusion.

2 Basic Definitions

2.1 Trees
A labelled, ordered and ranked tree over a ranked alphabet A can be defined based on the
concepts from graph theory [1].

A ranked alphabet A is a finite nonempty set of symbols. Each symbol a is assigned with
a non-negative integer arity denoted by arity(a). An denotes the set of symbols from A with
arity n. The set A0 is nonempty. Notation a2 denotes symbol a with arity(a) = 2.

T. Pecka, J. Trávníček, R. Polách, and J. Janoušek 6:3

a2

a2

a2

b0 b0

a2

b0 b0

b0

Figure 1 A directed, rooted, labelled, ranked and ordered tree over A = {a2, b0}.

A directed ordered graph G is a pair (N,R) where N is a set of nodes and R is a set of
ordered lists of edges. Elements from R are in the form ((f, g1), (f, g2), . . . , (f, gn)), where
f, g1, g2, . . . , gn ∈ N, n ≥ 0. Such element indicates that there are n edges leaving f with
the first edge entering node g1, the second entering node g2, and so forth. A sequence of
nodes (f0, f1, . . . , fn), n ≥ 1 is a path of length n from node f0 to node fn if there is an edge
from fi to fi+1 for each 0 ≤ i < n. A cycle is a path where f0 = fn.

An in-degree of a node f ∈ N is the number of distinct pairs (g, f), g ∈ N in elements of
R. An out-degree of f ∈ N is the number of distinct pairs (f, g), g ∈ N in elements of R. A
node with the out-degree 0 is a leaf.

An ordered directed acyclic graph (DAG) is an ordered directed graph with no cycle.
A rooted DAG is a DAG with a special node r ∈ N called the root. The in-degree of r is
0, in-degree of every other node is 1 and there is just one path from the root r to every
f ∈ N, f 6= r. A labelled ranked DAG is a DAG where every node is labelled by a symbol
a ∈ A and the out-degree of a node a ∈ A equals to arity(a). A directed, ordered, rooted,
labelled and ranked tree is rooted, labelled and ranked DAG. All trees in this paper are
considered to be directed, ordered, rooted, labelled and ranked.

The postfix notation of a tree t denoted by post(t) is defined recursively:
1. post(t) = root(t) if root(t) is also a leaf,
2. post(t) = post(c1) · post(c2) · · · post(cn) · root(t), ci are children of root(t).
The postfix notation of a tree language L is defined as post(L) = {post(t) : t ∈ L}. A postfix
notation of any subtree of t is a substring of post(t). However, not every substring of a
postfix notation of a tree is a postfix notation of its subtree [6].

I Example 1. Let t from Figure 1 be a directed, rooted, labelled, ranked and ordered tree
with labels from ranked alphabet A = {a2, b0}. The root of t is a node a2 with an ordered
2-tuple of children (a2, b0). Postfix notation of t is post(t) = b0 b0 a2 b0 b0 a2 a2 b0 a2.

2.2 Regular Tree Expressions
Regular tree expressions (RTEs) are defined using a substitution operation as in [5]. The
definition of the RTE is similar to the definition of the regular (string) expression.

RTEs are defined over two alphabets, F and K. F is a ranked alphabet of symbols. K
is a set of constants (symbols with arity 0), K = {�1,�2, . . . ,�n}, n ≥ 0, F ∩ K = ∅. This
alphabet is used to indicate the position where substitution operations take place.

Firstly, the substitution, i.e. replacing occurrences of �i by trees from a tree language
Lj , is defined. Let K = {�1, . . . ,�n} and t be a tree over F ∪ K, and let L1, . . . , Ln be
tree languages. Then the tree substitution of �1, . . . ,�n by L1, . . . , Ln in t denoted by
t{�1 ← L1, . . . ,�n ← Ln} is the tree language defined by the following identities:

SLATE 2018

6:4 Construction of a PDA Accepting a Postfix Notation of Trees Given by a RTE

·�

·�

∗,�

+

a2

� �

b0

a2

b0 �

b0

(a) A sample regular tree expression (RTE).

·�1

·�2

∗,�2

cons

�1 �2

nil

int

(b) A RTE denoting the language of integer lists
in LISP.

Figure 2 Examples of RTEs.

�i{�1 ← L1, . . . ,�n ← Ln} = Li, for i = 1, . . . , n,
a{�1 ← L1, . . . ,�n ← Ln} = {a},∀a ∈ F ∪ K with arity(a) = 0 and a 6= �1, . . . , a 6= �n,
f(s1, . . . , sn){�1 ← L1, . . . ,�n ← Ln} = {f(t1, . . . tn)|ti ∈ si{�1 ← L1, . . . ,�n ← Ln}}.

The tree substitution can be generalized to languages: L{�1 ← L1, . . . ,�n ← Ln} =⋃
t∈L t{�1 ← L1, . . . ,�n ← Ln}.
The operation alternation of L1 and L2 is denoted by L1 + L2. The result is a set of

trees obtained by the union of regular tree languages L1 and L2, i.e. L1 ∪ L2.
The operation concatenation of L2 to L1 through �, denoted by L1 ·� L2, is the set

of trees obtained by substituting the occurrence of � in trees of L1 by trees of L2, i.e.⋃
t∈L1

t{�← L2}.
Given a tree language L over F ∪ K and � ∈ K, the sequence Ln,� is defined by

the equalities L0,� = {�} and Ln+1,� = L · �Ln,�. The operation closure is defined as
L∗,� =

⋃
n≥0 L

n,�.
The RTE over alphabets F and K is defined as follows:
the empty set (∅) and a constant (a ∈ F0 ∪ K) are RTEs,
if E1, E2, . . . , En are RTEs and � ∈ K, then: E1 +E2 is a RTE, E1 ·� E2 is a RTE, E1

∗,�

is a RTE and a(E1, . . . , En) is a RTE if a ∈ Fn and arity(n) > 0.

RTE E represents a language denoted by L(E) and defined by the following equalities:
L(∅) = ∅,
L(a) = {a} for a ∈ F0 ∪K,
L(f(E1, . . . , En)) = {f(s1, . . . , sn) | s1 ∈ L(E1),
s2 ∈ L(E2), . . . , sn ∈ L(En)},

L(E1 + E2) = L(E1) ∪ L(E2),
L(E1 ·� E2) = L(E1){�← L(E2)},
L(E∗,�) = L(E)∗,�.

The size of the RTE E (denoted by |E|) is the size of the syntax tree of E. The number
of occurrences of symbols from F and K in the RTE E is denoted by ‖FE‖ and ‖KE‖,
respectively.

I Example 2. Let F = {nil, cons, int} where arity(cons) = 2 and other symbols have arity
0. Let K = {�1,�2}. Then the RTE from Figure 2b denotes the language of lists of integers
in LISP: {nil, cons(int, nil), cons(int, cons(int, nil)), . . .}

2.3 Pushdown Automata
Notions are used similarly as they are defined in [8].

T. Pecka, J. Trávníček, R. Polách, and J. Janoušek 6:5

A nondeterministic pushdown automaton (PDA) is a seven-tuple (Q,Σ,Γ, δ, q0,⊥, F)
where Q is a finite set of states, Σ is a finite set of input symbols (input alphabet), Γ is
a finite set of pushdown store symbols (pushdown store alphabet), δ is a mapping from
Q× (Σ ∪ {ε})× Γ∗ into a set of finite subsets of Q× Γ∗, q0 ∈ Q is the initial state, ⊥∈ Γ is
the initial pushdown store symbol and F ⊆ Q is a set of final states.

Triplet (q, w, α) ∈ Q× Σ∗ × Γ∗ is a configuration of a PDA. The initial configuration is
(q0, w,⊥), w ∈ Σ∗. Relation (q, aw, βα) `M (p, w, βγ) ∈ (Q× Σ∗ × Γ∗)× (Q× Σ∗ × Γ∗) is a
transition of a PDA M if (p, γ) ∈ δ(q, a, α). ak

M denotes the k-th power, a+
M is the transitive

closure and a∗M is the transitive and reflexive closure. In strings representing the pushdown
store in this paper, the top of the pushdown store is situated on the right.

A language accepted by PDA M can be defined in two distinct ways. PDA can accept
1. either by final states, then L(M) = {w : w ∈ Σ∗,∃γ ∈ Γ∗,∃f ∈ F, (q0, w,⊥) `∗ (f, ε, γ)},
2. or by an empty pushdown store, then L(M) = {w : w ∈ Σ∗,∃q ∈ Q, (q0, w,⊥) `∗ (q, ε, ε)}

and F = ∅.

A PDA is deterministic if the following conditions hold:
1. |δ(q, a, γ)| ≤ 1, ∀q ∈ Q,∀a ∈ (Σ ∪ {ε}),∀γ ∈ Γ∗,
2. If δ(q, a, α) 6= ∅, δ(q, a, β) 6= ∅ and α 6= β, then α is not a prefix of β and β is not a prefix

of α (i.e., αγ 6= β, α 6= βγ, γ ∈ Γ∗),
3. If δ(q, a, α) 6= ∅, δ(q, ε, β) 6= ∅, then α is not a prefix of β and β is not a prefix of α (i.e.,

αγ 6= β, α 6= βγ, γ ∈ Γ∗).

The class of languages accepted by nondeterministic PDAs is exactly the class of context-
free languages. Deterministic PDAs accepts deterministic context-free languages. This class
is a proper subset of context-free languages.

A height-deterministic PDA is such PDA which on all of its runs on input word w ∈ Σ∗
leads to the same pushdown store height. Height-deterministic PDAs are a generalization
of visibly PDAs [13, 15, 2]. A real-time height-deterministic PDA is such PDA that is
height-deterministic and without ε-transitions. This class of PDAs is determinisable [13, 15].

3 Converting RTE to PDA

In this section, a new method of creating a real-time height-deterministic PDA from RTE is
proposed. The constructed PDA accepts postfix ranked linear notation of trees.

3.1 Analysing RTE

To analyse the structure of the expression, the RTE has to be preprocessed similarly to
Glushkov’s algorithm. Firstly, every occurrence of symbol from F alphabet of the RTE is
subscripted with an unique symbol. Subscripted RTE E is denoted as E′.

Functions First, Follow and Pos are defined to analyse the RTE E′. Function Pos returns
a set of occurrences of symbols from F alphabet of E′. Function First computes a set of
symbols that can be a root of a tree described by E′. Function Follow returns tuples of
children of a given symbol. Unlike strings, a symbol can be followed by more than a single
symbol. The size of the children tuple is defined by the arity of the symbol.

SLATE 2018

6:6 Construction of a PDA Accepting a Postfix Notation of Trees Given by a RTE

I Definition 3. Based on the definition of RTEs, the function First is defined recursively:

First(∅) = ∅
First(a(E1, E2, . . . , En)) = {a}

First(E1 + E2) = First(E1) ∪ First(E2)

First(E1 ·� E2) =
{

First(E1) if � /∈ First(E1)
(First(E1) \ {�}) ∪ First(E2) if � ∈ First(E1)

First(E∗,�) = {�} ∪ First(E)

I Theorem 4. The function First(E′) returns the set of symbols that can be the root of any
tree described by an RTE E.

Proof. The proof is done by induction on the structure of the RTE: The basis: If E =
a(E1, E2, . . . , En), a ∈ F ∪ K, n ≥ 0: Only a can be a root. If E = ∅: There is no root.
Now, assume that the theorem holds for any E1 and E2. If E = E1 + E2: This operator
unifies two sets of trees. Therefore the roots of trees from L(E) are either from First(E1) or
First(E2). If E = E1

∗,�: The roots can be only elements from First(E1) or the substitution
symbol �. If E = E1 ·� E2: Initially, suppose � /∈ First(E1). Then the root must be from
First(E1). If � ∈ First(E1), then � gets substituted by the roots of the trees from E2. J

The function Follow returns a set of tuples of symbols which can be direct descendants
(children) of a symbol a ∈ F . The computation of the function is defined using Algorithm 1.
The algorithm recursively traverses the syntax tree of the RTE and maintains a substitution
map. The map contains roots of all possible trees that can be substituted for each � ∈ K. If
� occurs as a child of the symbol a when computing Follow(E′, a), it gets substituted by
elements of a substitution map for a given �.
It is possible that �2 ∈ K is present in the subMap[�1] of any node. Then it is required to
include the contents of mapping for key �2 into �1 set of that node. Also, if � ∈ subMap[�]
then � element can be discarded from the set as it brings no new information.

For the purpose of proving the correctness of the computation, the algorithm can be
split in a two pass algorithm. In the first pass, the substitution mapping for each node is
computed. In the second pass, the computation of Follow can use the computed mapping.

I Theorem 5. Algorithm 1 computes a substitution mapping of every node of the RTE.

Proof. If the substitution operation takes place (in concatenation and iteration nodes), it
alters the substitution map. The changes in substitution mapping come from the definitions
of RTEs. Case E1 ·� E2: Roots from trees described by E2 may appear in the place of �
symbols in E1. Therefore the mapping for the � symbol in E1 is replaced. The substitutions
for � symbols in E2 are determined by the same mapping as in the parent node. Case
E1
∗,�: Symbol � is to be replaced by roots of E1 (this implements the actual iteration) and

the iteration is terminated by concatenating a tree from the right operand of the closest
substitution or iteration node. In other cases, the existing mapping is simply passed to
children as no substitution happens. J

I Theorem 6. Function Follow(E′, a) (defined by Algorithm 1) correctly returns a set of
tuples representing all possible tuples of direct children of a node a.

Proof. The proof by induction is straightforward with the use of the previous theorem. J

T. Pecka, J. Trávníček, R. Polách, and J. Janoušek 6:7

Algorithm 1: Computation of Follow(E′, a) in a single pass.
1 Function Follow(E, a)
2 return FollowRec(E, a, NewMap())
3 Function FollowRec(E, a, subMap)
4 switch E do
5 case E1 + E2 do
6 return FollowRec(E1, a, subMap) ∪ FollowRec(E2, a, subMap)
7 case E1 · �E2 do
8 subMapL← subMap /* copy map */
9 subMapL[�]← First(E2) /* replace mapping for � */

10 return FollowRec(E1, a, subMapL) ∪ FollowRec(E2, a, subMap)

11 case E∗,�1 do
12 subMap[�]← subMap[�] ∪ First(E1)
13 return FollowRec(E1, a, subMap)
14 case f(E1, E2, . . . , En) do
15 if a = f then return ReplaceConstants(subMap, E1, E2, . . . , En)
16 else return

⋃n
i=1 FollowRec(Ei, a, subMap)

17 case ∅ do
18 return ∅
19 Function ReplaceConstants(subMap, E1, E2, . . . , En)
20 lst← NewList()
21 for Ei in E1, E2, . . . , En do
22 if Ei ∈ K then lst← Append(lst, subMap[c]) /* child is a � */
23 else lst← Append(lst, First(Ei))
24 return CartesianProduct(lst)

I Example 7. Let E be a RTE from Figure 2a. First(E′) = {b02, a21, a23}. The results
of the function First and the substitution map for individual nodes are illustrated in Fig-
ure 3. Follow(E′, a21) = {(a23, a23), (a23, a21), (a23, b02), (a21, a23), (a21, a21), (a21, b02),
(b02, a23), (b02, a21), (b02, b02)}. Follow(E′, a23) = {(b04, b05)}. Follow of leaves is ∅.

3.2 Pushdown Automaton Construction

In the previous section, it was shown how to compute First and Follow sets. The First set
determines what symbols are the last to be read in the postfix notation. The Follow sets
store the information about the direct children of a node. This information is used to create
transitions of the two state PDA that accepts by final state. The automaton reads a linear
postfix notation of a tree with an end-of-string marker a appended to the end of the input.
Technical helper functions ϕ and σ are presented first.

I Definition 8. Function ϕ maps an element (tuple) of Follow(E′, a) to a string of pushdown
store symbols. The resulting string is ε if the size of the tuple is zero. Mapping σ strips the
unique index from the subscripted symbol.

I Example 9. Let E′ be a subscripted RTE and let f = (a21, b22, c03) be a follow tuple of
some node. Then ϕ(f) = a21b22c03. Also σ(a21) = a2.

SLATE 2018

6:8 Construction of a PDA Accepting a Postfix Notation of Trees Given by a RTE

·�

·�

∗,�

+

a21

� �

b02

a23

b04 �

b05

First = {a21, b02, a23}
{� → {}}

First = {a21, b02, a23}
{� → {b05}}

First = {a21, b02,�}
{� → {a23}}

First = {a21, b02}
{� → {a21, a23, b02}}

First = {a21}
{� → {a21, a23, b02}}

First = {�}
{� → {a21, a23, b02}}

First = {�}
{� → {a21, a23, b02}}

First = {b02}
{� → {a21, a23, b02}}

First = {a23}
{� → {b05}}

First = {b04}
{� → {b05}}

First = {�}
{� → {b05}}

First = {b05}
{� → {}}

Figure 3 RTE E′ from Figure 2a with First set and substitution mapping for each node.

Algorithm 2: PDA accepting linearised trees described by an RTE E.
input :RTE E.
output :PDA A such that L(A) = post(L(E))
Create PDA with the following properties:

Set of states is equal to {q, f},
alphabet is equal to the F alphabet of E, and a symbol,
pushdown store alphabet is equal to the symbols Pos(E′) ∪ {⊥},
mapping δ can be created by these rules:
∀ai ∈ Pos(E′), σ(ai) ∈ F0, add transition δ(q, σ(ai), ε) = {(q, ai)},
∀ai ∈ Pos(E′), σ(ai) /∈ F0, ∀f ∈ Follow(E′, ai), add δ(q, σ(ai), ϕ(f)) = {(q, ai)},
∀ai ∈ First(E′) add transition δ(q,a,⊥ ai) = {(f, ε)}.

Resulting PDA is A = ({q, f},F ∪ {a},Pos(E′) ∪ {⊥}, δ,⊥, q, {f}). Automaton
accepts by the final state. The top of the pushdown store is on the right.

Roots of subtrees are stored on the pushdown store to keep track of which subtrees have
been read so far. When the root of a subtree is read, its children have to be on the top of
the pushdown store. They are replaced by a pushdown store symbol corresponding to the
read symbol. PDA recognising postfix notations of trees described by RTE E (post(L(E)))
is constructed by Algorithm 2.

I Example 10. This example expands on Example 7. The PDA A = ({q, f}, {a2, b0,a}, {⊥,
a21, b02, a23, b04, b05}, δ,⊥, q, {f}) is constructed by Algorithm 2. δ is defined as follows:

δ(q, a2, a23a23) = {(q, a21)} δ(q, a2, b02a21) = {(q, a21)} δ(q, a2, a23a21) = {(q, a21)}
δ(q, a2, b02b02) = {(q, a21)} δ(q, a2, a23b02) = {(q, a21)} δ(q, a2, b04b05) = {(q, a23)}
δ(q, a2, a21a23) = {(q, a21)} δ(q, a2, a21a21) = {(q, a21)} δ(q, a2, a21b02) = {(q, a21)}
δ(q, a2, b02a23) = {(q, a21)} δ(q, b0, ε) = {(q, b02), (q, b04), (q, b05)}
δ(q,a,⊥ b02) = {(f, ε)} δ(q,a,⊥ a23) = {(f, ε)} δ(q,a,⊥ a21) = {(f, ε)}

The RTE from Figure 2a describes, for instance, the tree from Figure 1. This tree in its
postfix notation (with a symbol appended) is accepted by the automaton.

I Theorem 11. Algorithm 2 creates PDA A such that L(A) = post(L(E)).

Proof. The proof consists of two parts: post(L(E)) ⊆ L(A) and L(A) ⊆ post(L(E)).

T. Pecka, J. Trávníček, R. Polách, and J. Janoušek 6:9

·�1

·�2

∗,�1

∗,�2

a21

�2 �1

b02

c03

(a) A RTE.

qstart

f

a2 | a21a21 → a21, a2 | a21b02 → a21

a2 | a21c03 → a21, a2 | b02a21 → a21

a2 | b02b02 → a21, a2 | b02c03 → a21

b0 | ε → b02, c0 | ε → c03

a | ⊥ a21 → ε

a | ⊥ b02 → ε

a | ⊥ c03 → ε

(b) The PDA for the RTE from Figure 4a.

Figure 4 A RTE and its equivalent PDA.

Case post(L(E)) ⊆ L(A): Proof comes directly from the proof of the Follow and First
functions. The functions analyse all possible combinations of parent-children relations. The
relations are used in the transition function of the PDA. When an input tree (except a
symbol) is read, the automaton can continue only if the pushdown store content equals to
the string ⊥ f (f ∈ First(E′) set) to ensure that whole tree was read.

Case L(A) ⊆ post(L(E)): If there is a word from L(A) that is not in post(L(E)) then
either the computation of First or Follow functions were wrong or the transitions created
from Follow sets would allow the automaton to accept something more. The functions First
and Follow are proved to be correct. J

I Theorem 12. Algorithm 2 creates a real-time height-deterministic PDA.

Proof. Transitions PDA always pop arity(a) symbols from the pushdown store and push
one symbol when reading symbol a. Reading symbol a pops two symbols and pushes none.
The pushdown store height is predetermined and same for all nondeterministic computations
of the PDA on any string. This fulfills the conditions of height-determinism. The PDA never
reads ε, therefore it is also real-time [13, 15]. J

The PDA has two properties worth mentioning: The function ReplaceConstants from Al-
gorithm 1 has an exponential output with the number of node’s children that are from K
and the size of subMap[�] for given node. As every element from the Follow set results in
one transition, the PDA has an exponential amount of transitions. Also, Theorem 12 shows
that the PDA is determinisable because the PDA is real-time height-deterministic [13, 15].

I Example 13. RTE E′ (Figure 4a) has the following properties: First(E′) = {a21, b02, c03},
Follow(E′, a21) = {(a21, a21), (a21, b02), (a21, c03), (b02, a21), (b02, b02), (b02, c03)} and
Follow(E′, b02) = Follow(E′, c03) = ∅. The equivalent PDA is illustrated in Figure 4b.

4 Reducing the Number of Transitions

The PDA created by Algorithm 2 has an exponential number of transitions. The transition
function δ enumerated all possible tuples of children for every node in the tree.

The idea behind the improvement is to make a better use of the pushdown store. New
pushdown store symbols representing all possible symbols that can appear in the place of a

SLATE 2018

6:10 Construction of a PDA Accepting a Postfix Notation of Trees Given by a RTE

Algorithm 3: Improved PDA accepting linearised trees described by a RTE E.
input :RTE E.
output :PDA A such that L(A) = post(L(E))
Create PDA with following properties:

Set of states is equal to {q, f},
input alphabet is F ∪ {a},
pushdown store alphabet consists of all sets that appear in substitution mapping in
� ∈ K nodes and singletons consisting of indexed occurrences of symbols from F ,
transitions (δ) are created by these rules:
1. for all symbols ai ∈ F add transition δ(q, σ(ai), ϕ(Follow(E, ai))) = {(q, {ai})},
2. for all nodes �i labelled with a � ∈ K, for all symbols ai ∈ subMap�i

[�] add
δ(q, σ(ai), ϕ(Follow(E, ai))) = {(q, subMap�i

[�])},
3. for all symbols ai ∈ First(E′) add transition δ(q,a,⊥ {ai}) = {(f, ε)}.

Resulting PDA is A = ({q, f},F ∪ {a}, {{ai} | ai ∈ F} ∪ {subMap�i
[�] | for all

nodes �i labelled with a � ∈ K}, δ,⊥, q, {f}). Automaton accepts by the final state.
The top of the pushdown store is on the right.

symbol � ∈ K are introduced. These symbols effectively represent the complete substitution
mapping. For every occurrence of the symbol � ∈ K the substitution mapping set for this
occurrence is to be added as a new pushdown store symbol.

The only difference in the analysis of the RTE is the Follow algorithm. On line 24, the
computation is altered by removing the computation of Cartesian product and returning the
list lst instead. This excludes the need for computing the Cartesian product. Furthermore,
every symbol of F alphabet is now followed by exactly one tuple.

The ideas from previous paragraphs are applied in the Algorithm 3. The algorithm
constructs an improved PDA which has an asymptotically lower amount of transitions.

I Definition 14. Let subMap4[�] return the substitution mapping for symbol � ∈ K inside
the 4 node of the syntax tree.

I Theorem 15. Algorithm 3 creates a real-time height-deterministic PDA.

Proof. Similar to the proof of Theorem 12. J

The automaton created by Algorithm 3 is determinisable.

I Theorem 16. Algorithm 3 creates PDA equivalent to RTE E in O(|E|2) time and the
number of transitions of the PDA is O(‖FE‖ ‖KE‖).

Proof. Overall time complexity can be determined from the efficient implementation of the
algorithm. Computing and saving the First set takes O(|E| ‖FE‖) time. The substitution
mapping can be computed in one traversal over the syntax tree of RTE. It is saved as a
mapping from every occurrence of a node from KE alphabet to the set of elements from
FE . The Follow elements can be computed in the same traversal. This takes O(|E|2) time.
Rules of type 1 and 3 are created in O(‖FE‖) time from the Follow mapping and First set,
respectively. While creating type 2 rules, for every FE node it is required to iterate over the
saved substitution mapping. Therefore, creating type 2 rules takes O(‖FE‖ ‖KE‖) time.

The overall time complexity is O(|E| ‖FE‖+ |E| |E|+ ‖FE‖ ‖KE‖) = O(|E|2) as ‖KE‖ ≤
|E| and ‖FE‖ ≤ |E|. The number of transitions is O(‖FE‖ ‖KE‖) because there are O(‖FE‖)
transitions of types 1 and 3, and O(‖FE‖ ‖KE‖) transitions of type 2. J

T. Pecka, J. Trávníček, R. Polách, and J. Janoušek 6:11

·�2

·�1

∗,�2

∗,�1

a41

�1 �2 �1 �2

+

+

b02 c03

+

d04 e05

+

p06 +

q07 r08

First = {a41, b02, c03, d04, e05,
p06, q07, r08}

{�1 → {},
�2 → {}}

First = {�1}
{�1 → {a41, b02, c03, d04, e05},
�2 → {a41, b02, c03, d04, e05,

p06, q07, r08}} First = {�2}
{�1 → {a41, b02, c03, d04, e05},
�2 → {a41, b02, c03, d04, e05,

p06, q07, r08}}

Figure 5 Sample RTE with First set and substitution mapping for important nodes.

qstart

f

a4 | ♥♣♥♣ → {a41},
b0 | ε → {b02}, c0 | ε → {c03},
d0 | ε → {d04}, e0 | ε → {e05},
p0 | ε → {p06}, q0 | ε → {q07},
r0 | ε → {r08}

 (1)

a4 | ♥♣♥♣ → ♥,
a4 | ♥♣♥♣ → ♣,
b0 | ε → ♥, b0 | ε → ♣,
c0 | ε → ♥, c0 | ε → ♣,
d0 | ε → ♥, d0 | ε → ♣,
e0 | ε → ♥, e0 | ε → ♣,
p0 | ε → ♣, q0 | ε → ♣,
r0 | ε → ♣

(2)

(3)

a | ⊥ {a41} → ε,
a | ⊥ {b02} → ε,
a | ⊥ {c03} → ε,
a | ⊥ {d04} → ε,
a | ⊥ {e05} → ε,
a | ⊥ {p06} → ε,
a | ⊥ {q07} → ε,
a | ⊥ {r08} → ε

Figure 6 PDA equivalent to a RTE from Figure 5 with transitions grouped by type.
For readability, symbol ♥ stands for {a41, b02, c03, d04, e05} and symbol ♣ stands for
{a41, b02, c03, d04, e05, p06, q07, r08}.

I Example 17. RTE E′ from Figure 5 converted to equivalent PDA (Figure 6). First(E′) =
{a41, b02, c03, d04, e05, p06, q07, r08}. Follow(E′, a41) = ({a41, b02, c03, d04, e05}, {a41, b02,

c03, d04, e05, p06, q07, r08}, {a41, b02, c03, d04, e05}, {a41, b02, c03, d04, e05, p06, q07, r08}).
Follow of other symbols (leaves) is ∅. Note that if the Follow was computed by Algorithm 1
then |Follow(E′, a41)| = 1600.

5 Conclusion and Future Work

A new algorithm for the conversion of a RTE to a PDA has been described. The resulted
PDA accepts all trees from the language described by the RTE in their linear postfix notation.
Presented PDA belongs to the class of real-time height-deterministic PDAs, therefore it can
always be determinised [15].

The presented algorithm creates the PDA in quadratic time w.r.t. to the size of input RTE’s
syntax tree, i.e. in O(|E|2) time. The number of transitions in the PDA is O(‖FE‖ ‖KE‖).

There is also a number of interesting open problems. As the processing of the RTE is
similar to processing the regular expression for the Glushkov’s algorithm, we hope to explore
more similarities with this algorithm. Although searching thoroughly, we have not found

SLATE 2018

6:12 Construction of a PDA Accepting a Postfix Notation of Trees Given by a RTE

an algorithm for the reverse conversion (from a finite tree automaton or a PDA to a RTE).
Finally, we would like to explore the tree pattern matching problem where the definition of a
set of tree patterns is represented by RTEs.

References
1 Alfred V. Aho and Jeffrey D. Ullman. The theory of parsing, translation, and compiling. 1:

Parsing. Prentice-Hall, 1972.
2 Rajeev Alur and Parthasarathy Madhusudan. Visibly pushdown languages. In 36th Sym-

posium on Theory of Computing, pages 202–211, 2004. doi:10.1145/1007352.1007390.
3 Valentin M. Antimirov. Partial derivatives of regular expressions and finite automaton

constructions. Theoretical Computer Science, 155(2):291–319, 1996.
4 Janusz A. Brzozowski. Derivatives of regular expressions. Journal of the ACM, 11(4):481–

494, 1964. doi:10.1145/321239.321249.
5 Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard, Denis Lugiez, Christof

Löding, Sofia Tison, and Marc Tommasi. Tree automata techniques and applications, 2007.
Available on: http://www.grappa.univ-lille3.fr/tata.

6 Tomáš Flouri, Jan Janoušek, and Bořivoj Melichar. Subtree matching by pushdown auto-
mata. Computer Science and Information Systems, 7(2):331–357, 2010.

7 Victor Mikhailovich Glushkov. The abstract theory of automata. Russian Mathematical
Surveys, 16(5), 1961. doi:10.1070/RM1961v016n05ABEH004112.

8 John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata
theory, languages, and computation. Addison-Wesley, 2nd edition, 2003.

9 Jan Janoušek and Bořivoj Melichar. On regular tree languages and deterministic pushdown
automata. Acta Informatica, 46(7):533–547, 2009. doi:10.1007/s00236-009-0104-9.

10 Viraj Kumar, Parthasarathy Madhusudan, and Mahesh Viswanathan. Visibly pushdown
automata for streaming XML. In 16th International Conference on World Wide Web, pages
1053–1062, 2007. doi:10.1145/1242572.1242714.

11 Dietrich Kuske and Ingmar Meinecke. Construction of tree automata from regular ex-
pressions. In 12th International Conference on Developments in Language Theory, pages
491–503, 2008. doi:10.1007/978-3-540-85780-8_39.

12 Éric Laugerotte, Nadia Ouali Sebti, and Djelloul Ziadi. From regular tree expression to po-
sition tree automaton. In 7th International Conference on Language and Automata Theory
and Applications (LATA), pages 395–406, 2013. doi:10.1007/978-3-642-37064-9_35.

13 Dirk Nowotka and Jiří Srba. Height-deterministic pushdown automata. In 32nd Interna-
tional Symposium Mathematical Foundations of Computer Science (MFCS), pages 125–134,
2007. doi:10.1007/978-3-540-74456-6_13.

14 Radomír Polách, Jan Janoušek, and Bořivoj Melichar. Regular tree expressions and determ-
inistic pushdown automata. In 7th Doctoral Workshop on Mathematical and Engineering
Methods in Computer Science, pages 70–77, 2011.

15 Radomír Polách, Jan Trávníček, Jan Janoušek, and Bořivoj Melichar. Efficient determ-
inization of visibly and height-deterministic pushdown automata. Computer Languages,
Systems & Structures, 46:91–105, 2016. doi:10.1016/j.cl.2016.07.005.

16 Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages, Vol. 1:
Word, Language, Grammar. Springer-Verlag, 1997.

17 Tom Sebastian and Joachim Niehren. Projection for nested word automata speeds
up xpath evaluation on XML streams. In 42nd International Conference on Current
Trends in Theory and Practice of Computer Science, pages 602–614, 2016. doi:10.1007/
978-3-662-49192-8_49.

18 Ken Thompson. Programming techniques: Regular expression search algorithm. Commu-
nications of the ACM, 11(6):419–422, 1968. doi:10.1145/363347.363387.

http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1145/321239.321249
http://www.grappa.univ-lille3.fr/tata
http://dx.doi.org/10.1070/RM1961v016n05ABEH004112
http://dx.doi.org/10.1007/s00236-009-0104-9
http://dx.doi.org/10.1145/1242572.1242714
http://dx.doi.org/10.1007/978-3-540-85780-8_39
http://dx.doi.org/10.1007/978-3-642-37064-9_35
http://dx.doi.org/10.1007/978-3-540-74456-6_13
http://dx.doi.org/10.1016/j.cl.2016.07.005
http://dx.doi.org/10.1007/978-3-662-49192-8_49
http://dx.doi.org/10.1007/978-3-662-49192-8_49
http://dx.doi.org/10.1145/363347.363387

Context-Oriented Algorithmic Design
Bruno Ferreira
Instituto Superior Técnico/INESC-ID, Lisbon, Portugal
bruno.b.ferreira@tecnico.ulisboa.pt

https://orcid.org/0000-0001-8227-2648

António Menezes Leitão
Instituto Superior Técnico/INESC-ID, Lisbon, Portugal
antonio.menezes.leitao@tecnico.ulisboa.pt

https://orcid.org/0000-0001-7216-4934

Abstract
Currently, algorithmic approaches are being introduced in several areas of expertise, namely
Architecture. Algorithmic Design (AD) is an approach for architecture that takes advantage of
algorithms to produce complex designs, to simplify the exploration of variations, or to mechanize
tasks, including those related to analysis and optimization of designs. However, architects might
need different models of the same design for different kinds of analysis, which tempts them to
extend the same code base for different purposes, typically making the code brittle and hard to
understand. In this paper, we propose to extend AD with Context-Oriented Programming (COP),
a programming paradigm based on context that dynamically changes the behavior of the code.
To this end, we propose a COP library and we explore its combination with an AD tool. Finally,
we implement two case studies with our context-oriented approach, and discuss their advantages
and disadvantages when compared to the traditional AD approach.

2012 ACM Subject Classification Software and its engineering → Object oriented languages

Keywords and phrases context-oriented programming, algorithmic design, Python

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.7

Funding This work was partially supported by national funds through Fundação para a Ciência
e a Tecnologia (FCT) with reference UID/CEC/50021/2013.

1 Introduction

Nowadays, Computer Science is being introduced in several areas of expertise, leading to
new approaches in areas such as Architecture. Algorithmic Design (AD) is one of such
approaches, and can be defined as the production of Computer-Aided Design (CAD) and
Building Information Modeling (BIM) models through algorithms [21]. This approach can
be used to produce complex models of buildings that could not be created with traditional
means, and its parametric nature allows an easier exploration of variations.

Due to these advantages, AD started to be introduced in CAD and BIM applications,
which lead to the development of tools that support AD programs, such as Grasshopper.
However, with the complexity of the models came the necessity of analyzing the produced
solutions with analysis tools. For this task, the geometrical models are no longer sufficient, as
analysis software usually requires special analytical models, that are different from geometrical
models and can not be obtained with import/export mechanisms due to errors. This leads to
the production of several models, which have to be kept and developed in parallel, involving
different development lines that are hard to manage and to keep synchronized. This complex
workflow proves that current solutions are not sufficient [29].

© Bruno Ferreira and António Menezes Leitão;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 7; pp. 7:1–7:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bruno.b.ferreira@tecnico.ulisboa.pt
https://orcid.org/0000-0001-8227-2648
mailto:antonio.menezes.leitao@tecnico.ulisboa.pt
https://orcid.org/0000-0001-7216-4934
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

7:2 Context-Oriented Algorithmic Design

Some tools like Rosetta [20] address these issues by offering portable AD programs
between different CAD applications and, more recently, BIM applications [6] and analysis
tools [18]. Nevertheless, Rosetta does not offer a unifying description capable of producing
both the geometrical and the analytical models with the same AD program, which can lead
to the cluttering of the current program in an effort to reduce the number of files to maintain.

To solve these problems, we propose the use of COP to develop a computational model
capable of adapting itself to the required context, which in this case is defined by the
requirements of modeling applications and analysis software, allowing the production of
different models with a change of context.

1.1 Context-Oriented Programming
COP was first introduced as a new programming approach that takes context into account [7].
According to a more recent depiction of this approach, COP aims to give users ways to deal
with context in an explicit way in their programs, making it accessible to manipulate through
software with features that are usually lacking in mainstream programming languages [12].

With this approach, users can express different behaviors in terms of the context of the
system. This context is composed of the actors of the system, which can determine how the
system is used, the environment in which the system is, which can restrict or influence its
functionality, and the system itself, whose changes might lead to different responses.

Although there are different implementations of COP, which will be presented later in
this paper, according to [12] necessary properties must be addressed by all of them:

behavioral variation: implementations of behavior for each context;
layers: a way to group related context-dependent variations;
activation and deactivation of layers: a way to dynamically enable or disable layers, based
on the current context;
context: information that is accessible to the program and can be used to determine
behavioral variations;
scoping: the scope in which layers are active or inactive and can be controlled.

With these features, layers can be activated or deactivated dynamically in arbitrary
places in the code, resulting in behaviors that fit the different contexts the program goes
through during its execution. If analyzed in terms of multi-dimensional dispatch [27], it
is possible to say that COP has four-dimensional dispatch, since it considers the message,
the receiver, the sender, and the context to determine which methods or partial method
definitions are included or excluded from message dispatch. These method definitions are
used to implement behavioral variations in layers, which can be expressed differently in the
different COP implementations. In some, the adopted approach is known as class-in-layer,
in which layers are defined outside the lexical scope of modules [1], in a manner similar to
aspects from Aspect-Oriented Programming (AOP) [17]. In others, a layer-in-class approach
is used, having the layer declarations within the lexical scope of the modules.

In addition to the base concepts, each implementations has its own operators and strategies
that might expand the capabilities of COP. The advantages and disadvantages of each of
these implementations will be discussed later in the paper.

1.2 Objectives
The main objectives of this paper are: (1) present and compare the different implementations
for COP that have been proposed by the research community, and (2) present two simple
case studies that show how COP can be applied in AD. The case studies consist of previously

B. Ferreira and A.M. Leitão 7:3

developed AD programs that we re-implemented with our proposed solution and then used
to produce different models according to different context. Finally, the results of our solution
are compared to the ones obtained previously.

In the next section, we start by presenting the related work, as well as a comparison
between the different implementations of COP.

2 Related Work

In this section, we introduce several paradigms that served as basis for COP, namely AOP
and Subject-Oriented Programming (SOP), as well as the more relevant implementations of
COP. We end this section with a comparison between these implementations.

2.1 Aspect-Oriented Programming
Most programming paradigms, such as Object-Oriented Programming (OOP), offer some
way to modularize the concerns necessary to implement a complex system. However, it is
common to encounter some concerns that do not fit the overall decomposition of the system,
being scattered across several modules. These concerns are known as crosscutting concerns.

AOP was created to deal with these crosscutting concerns, introducing ways to specify
them in a modularized manner, called aspects. Aspects can be implemented with proper
isolation and composition, making the code easier to maintain and reuse [17]. Using AOP,
it is possible to coordinate the crosscutting concerns with normal concerns, in well defined
points of the program, known as join points.

In addition to these concepts, AOP implementations, such as AspectJ, introduce addi-
onal ones, such as pointcuts, which are collections of join points, and advices, which are
implementations of behavior attached to pointcuts [16]. An aspect is then a module that
implements a crosscutting concern, comprised of pointcuts and advices. AspectJ also offers
cflow constructs, that allow the expression of control-flow-dependent behavior variations,
making it possible to conditionally compose behavior with if pointcuts [16].

There are similarities between AOP and COP: both make it possible to define behavior
that depends on a condition, which can, in itself, be considered a context. However, while
AOP aims to modularize crosscutting concerns, this is not mandatory in COP, since the
use of layer-in-class approaches scatters the code across several modules. In addition, COP
allows the activation and deactivation of layers in arbitrary pieces of code, while AOP triggers
pointcuts at very specific join points that occur in the rest of the program [12]. This makes
COP more flexible in dealing with behavioral variation.

2.2 Subject-Oriented Programming
SOP is a programming paradigm that introduces the concept of subject to facilitate the
development of cooperative applications. These are defined by the combination of subjects,
which describe the state and behaviors of objects that are relevant to them [10].

The Subjects’ goal is to introduce a perception of an object, such as it is seen by a given
application. Subjects do so by adding classes, state, and behavior, according to the needs
of that application. By doing this, each application can use a shared object through the
operations defined for its subject, not needing to know the details of the object described by
other subjects [10].

Subjects can also be combined in groups called compositions, which define a composition
rule, explaining how classes and methods from different subjects can be combined. These
can then be used through subject-activation, which provides an executable instance of the
subject, including all the data that can be manipulated by it.

SLATE 2018

7:4 Context-Oriented Algorithmic Design

Due to the introduction of all these concepts, SOP offers what is known as Subjective
Dispatch [27]. This extends the dispatch introduced by OOP, by adding the sender dimension,
in addition to the message and the receiver. This was later expanded by COP, which
introduces a dimension for context, as mentioned previously.

It is possible to see that, similarly to the other analyzed paradigms, SOP also supports
behavior variations in the form of subjects. However, if we consider that each subject might
have different contexts of execution, we need an extra dimension for dispatch, which is what
COP offers.

2.3 COP Implementations

COP was proposed as an approach that allows the user to explore behavioral variations
based on context. Although this approach introduces concepts such as layers and contexts,
each of the implementations address the concepts differently, sometimes due to the support of
the host language in which the COP constructs are implemented. In this section we present
the different implementations available.

2.3.1 ContextL

ContextL was one of the first programming language extensions to introduce support for COP.
It implements the features discussed previously by taking advantage of the Common-Lisp
Object System (CLOS) [4].

The first feature to be considered is the implementation of layers, which are essential to
implement the remaining features available in ContextL [5]. These layers can be activated
dynamically throughout the code, since ContextL uses an approach called Dynamically
Scoped Activation (DSA), where layers are explicitly activated and a part of the program is
executed under that activation. The layer is active while the contained code is executing,
becoming inactive when the control flow returns from the layer activation.

Regarding the activation of multiple layers, it is important to note that the approach
introduced in ContextL, as well as in other implementations that support DSA, follows a
stack-like discipline. Also, in ContextL this activation only affects the current thread.

By taking advantage of layers, it is then possible to define classes in specific layers, so
that the classes can have several degrees of detail in different layers, introducing behavior
that will only be executed when specific layers are activated. The class behavior can also be
defined with layered generic functions. These take advantage of the generic functions from
CLOS, and are instances of a generic function class named layered-function [5].

In addition, ContextL supports contextual variations in the definition of class slots as well.
Slots can be declared as :layered, which makes the slot accessible through layered-functions.
This introduces slots that are only relevant in specific contexts.

By looking at the constructs implemented in ContextL, it is possible to conclude that
behavioral variations can be implemented in specific classes or outside of them. This means
that ContextL supports both layer-in-class and class-in-layer approaches. The former allows
the definition of partial methods to access private elements of enclosing classes, something that
the latter does not support, since class-in-layer specification cannot break encapsulation [1].

Finally, it should be noted that ContextL follows a library implementation strategy: it
does not implement a source-to-source compiler, and all the constructs that support the
COP features are integrated in CLOS by using the Metaobject Protocol [15].

B. Ferreira and A.M. Leitão 7:5

2.3.2 PyContext and ContextPy
PyContext was the first implementation of COP for the Python programming language.
Although it includes most of the COP constructs in a similar manner to other implementations,
it also introduces new mechanisms for layer activation, as well as to deal with variables.

Explicit layer activation is an appropriate mechanism for several problems but, sometimes,
this activation might violate modularity. Since the behavioral variation may occur due to a
state change that can happen at any time during the program execution, the user needs to
insert verifications in several parts of the program, increasing the amount of scattered code.
To deal with this, PyContext introduces implicit layer activation. Each layer has a method
active, which determines if a layer is active or not. This, in combination with a function
layers.register_implicit, allows the framework to determine which layers are active during a
method call, in order to produce the correct method combination [30].

Regarding variables, PyContext offers contextual variables, which can be used with a
with statement in order to maintain their value in the dynamic scope of the construct. These
variables are called dynamic variables. These are globally accessible, and their value is
dynamically determined when entering the scope of a with construct [30]. In conjunction
with specific getters and setters, it is possible to get the value of the variable, change it in
a specific context, and then have it restored when exiting the scope of that context. It is
important to note that this feature is thread-local.

As for the other features, PyContext does not modify the Python Virtual Machine,
being implemented as a library. Layers are implemented using meta-programming, and
layer activation mechanisms take advantage of Python’s context handlers. As for the partial
definition of methods and classes, PyContext follows a class-in-layer approach.

More recently, ContextPy was developed as another implementation of COP for the
Python language. This implementation follows a more traditional approach to COP, offering
Dynamically Scoped Layer activation, using the with statement, which follows a stack-like
approach for method composition. For partial definitions, ContextPy follows a layer-in-class
approach, taking advantage of decorators to annotate base methods, as well as the definitions
that replace those methods when a specific layer is active [13]. Finally, similarly to PyContext,
ContextPy is offered as a library that can be easily included in a Python project.

2.3.3 ContextJ
ContextJ is an implementation of COP for the Java programming language, and one of the
first implementations of this approach for statically typed programming languages.

ContextJ is a sorce-to-source compiler solution that introduces all the concepts of COP
in Java by extending the language with the layer, with, without, proceed, before and after
terminal symbols [2]. Layers are included in the language as a non-instantiable type, and
their definitions follows a layer-in-class approach. Each layer is composed of an identifier and
a list of partial method definitions, whose signature must correspond to one of the methods
of the class that defines the layer. Also, to use the defined layers, users must include a layer
import declaration on their program, in order to make the layer type visible.

As for partial method definitions, they override the default method definition and can be
combined, depending on the active layers. The before and after modifiers can also be used in
partial method definitions, in order to include behavior that must be executed before and
after the method execution. In addition, the proceed method can be used to execute the
next partial definition that corresponds to the next active layer, allowing the combination of
behavioral variations [2].

SLATE 2018

7:6 Context-Oriented Algorithmic Design

Regarding layer activation, ContextJ supports dynamically scoped layer activation by
using a with block. Layers are only active during the scope of the block, and the activation
is thread-local. With blocks can be nested, and the active layer list is traversed according
to a stack approach. This, in combination with the proceed function, allows the user to
compose complex behavior variations. In addition, it is possible to use the without block
to deactivate a layer during its scope, in order to obtain a composition without the partial
method definitions of that specific layer.

Finally, ContextJ also offers a reflection Application Programming Interface (API) for
COP constructs. It includes classes for Layer, Composition, and PartialMethod, along with
methods that support runtime inspection and manipulation of these concepts.

2.3.4 Other COP Implementations
The implementations described in the previous sections present the major strategies and
features that are currently used with COP. Nevertheless, there are more implementations
for other languages, which we briefly describe in this section.

Besides ContextJ, there are other implementations of COP for Java, namely JCop [3]
and EventCJ [14], which use join-point events to switch layers, cj [25], a subset of ContextJ
that runs on an ad hoc Java virtual machine, and JavaCtx [22], a library that introduces
COP semantics by weaving aspects.

There are also COP implementations for languages such as Ruby, Lua, and Smalltalk,
namely ContextR [26], ContextLua [31], and ContextS [11] respectively. ContextR introduces
reflection mechanisms to query layers, while ContextLua was conceived to introduce COP in
games. ContextS follows the more traditional COP implementations, such as ContextL.

In addition, some implementations, such as ContextErlang, introduce COP in different
paradigms, like the actor model. ContextErlang also introduces different ways to combine
layers, namely per-agent variation activation and composition [24].

Regarding layer combination and activation, there are also implementations that offer
strategies that differ from dynamic activation. One example is ContextJS [19] that offers a
solution based on open implementation, in which layer composition strategies are encapsulated
in objects. These strategies can add new scoping mechanisms, disable layers, or introduce a
new layer composition behavior that works better with a domain-specific problem [19].

More recently, Ambience [9], Subjective-C [8], and Lambic [28] were developed. Ambience
uses the amOS language and context objects to implement behavioral variations, with the
context dispatch made through multi-methods. Subjective-C introduces a Domain Specific
Language (DSL) that supports the definition of constraints and the activation of behaviors
for each context. Finally, Lambic is a COP implementation for Common Lisp that uses
predicate dispatching to produce different behavioral variations.

In the next section we present a comparison between all these implementations, as well
as the advantages and disadvantages of using each one.

2.4 Comparison
Table 1 shows a comparison between the analyzed COP implementations.

As it is possible to see, most of the analyzed implementations are libraries, with source-to-
source compilers being mostly used in statically typed programming languages. The library
implementation has advantages when trying to add COP in an already existing project,
since it does not change the language and uses the available constructs. On the other hand,
source-to-source compilers, such as ContextJ, introduce new syntax that simplifies the COP
mechanics.

B. Ferreira and A.M. Leitão 7:7

Table 1 Comparison between the COP implementations. DSA stands for Dynamically Scoped
Activation, LIC for layer-in-class, and CIL for class-in-layer. Lambic uses predicate dispatching
instead of layers, so the last two columns do not apply. Adapted from [23].

Base Language Implementation Layer Activation Modularization

ContextL Common Lisp Library DSA LIC, CIL
ContextErlang Erlang Library Per-agent Erlang Modules
ContextJS JavaScript Library Open Implementation LIC, CIL

PyContext Python Library DSA, Implicit Layer
Activation CIL

ContextPy Python Library DSA LIC
ContextJ Java Source-to-Source Compiler DSA LIC

JCop Java Source-to-Source and Aspect Compiler DSA, declarative layer composition,
conditional composition LIC

EventCJ Java Source-to-Source and Aspect Compiler DSA LIC
JavaCtx Java Library and Aspect Compiler DSA LIC
ContextR Ruby Library DSA LIC
ContextLua Lua Library DSA CIL
ContextS Smalltalk Library DSA, indefinite activation CIL
Ambience AmOS Library DSA, global activation CIL
Lambic Common Lisp Library - -
Subjective-C Objective-C Preprocessor Global Activation LIC

As for layer activation, the most common strategy is DSA. However, to increase flexibility,
some solutions introduce indefinite activation, global activation, per agent activation or, in
the case of ContextJS, an open implementation, allowing users to implement an activation
mechanism that best fits the problem they are solving. Although DSA is appropriate for
most problems, other strategies might be best suited for multi-threaded applications or
problems whose contexts depend on conditions that cannot be captured with the default
layer activation approach.

Finally, regarding modularization, it is possible to see that most implementations use
the class-in-layer or the layer-in-class approach. The former allows users to create modules
with all the concerns regarding a specific context, while the latter places all the behaviors
on the class affected by the contexts. Hence, class-in-layer reduces code scattering, while
layer-in-class simplifies program comprehension. There are implementations that support
both approaches, such as ContextL, but usually the supported approach is restricted by the
language’s features. Nevertheless, there are cases, such as ContextPy and PyContext, that
operate on the same programming language but follow different principles regarding the
COP concepts.

All these implementation support the COP paradigm, although they offer different
variations of the relevant concepts. Choosing the most appropriate implementation requires a
careful examination of their distinct features, and how they help in fulfilling the requirements
of the problem at hand.

3 Context-Oriented Algorithmic Design

In this section, we propose to combine COP with AD, introducing what we call Context-
Oriented Algorithmic Design. Since it is common for architects to produce several different
models for the same project, depending on the intended use (e.g., for analysis or rendering),
we define these different purposes as contexts. By doing this, it is possible to explicitly say
which type of model is going to be produced.

In addition, we introduce definitions for the design primitives using COP as well. For
each primitive, we can define different behavioral variations, depending on the model we

SLATE 2018

7:8 Context-Oriented Algorithmic Design

want to produce. For example, since some analysis models require surfaces instead of solids,
a primitive function like Wall would produce a box in a 3D context and a simple surface in
an analysis context.

Finally, since COP allows the combination of layers, we can take advantage of that to
combine concepts, such as Level of Detail (LOD) with the remaining ones. This allows more
flexibility while exploring variations, since it does not only support the exploration in several
contexts, but also the variation of LOD inside the same context, as architects might want
lesser detail in certain phases to obtain quicker results.

3.1 Implementation
To test our solution we created a working prototype, taking advantage of Khepri, an existing
implementation of AD, and ContextPy to introduce the COP concepts. Khepri is a portable
AD tool, similar to Rosetta [20], that allows the generation of models in different modeling
back-ends, such as Rhinoceros or Revit, and offers a wide range of modeling primitives for
the supported applications. This tool offers a native implementation in Python, a popular
programming language among architects, and also a language with a COP implementation,
making it easier to extend.

As for the choice of the COP implementation to use, we decided for ContextPy. This
implementation is a library, making it easier to include in existing projects and tools, such
as Khepri. Also, since AD programs are usually single-threaded, and we can easily indicate
the scope to be affected by the context, Dynamic Layer Activation is a good approach to
solve the problem. Finally, the code should be as easy to understand as possible, so an
implementation with a layer-in-class approach would fit our needs, since all the variations
are included in the module they modify. All of this is supported by ContextPy.

Having these two tools, we implemented a new library, that extends Khepri, and introduces
design elements with contextual awareness. Since the behavioral variations produce the
results on the selected modeling tool, this new layer uses Khepri’s primitive functions to
produce the results. The functions to use depend on the context. For instance, the program
uses those that produce surfaces in analysis contexts, and those that produce solids on 3D
contexts. For each new modeling element of our library, we define a class with basic behavior
and a variation for each possible context, which are defined as layers in the library as well.

Listing 1 shows a simplified definition of the Slab object. This definition has a default
behavior, and variations for a 3D, 2D, and analysis contexts, which are identified by the
layers in the decorators. In each of these methods, Khepri functions are used, in order to
produce the results in the modeling tools.

In the next section, we introduce two case studies used to evaluate our approach.

4 Evaluation

For the evaluation of our COP library we started by using an algorithmic model of a shopping
mall originally used for evacuation simulations. The model was produced with an algorithmic
solution, which we modified to use our library.

We chose this case study because the original implementation required a plan view of
the model, which had to be produced in addition to the usual 3D view. To take advantage
of the same algorithm, the original developers provided two versions of the shop function
which produces each of the shops available in the mall. One is a 2D version that creates
lines, and the other is a 3D version that creates solids. In order to switch between them,
a couple lines of code were commented and some variables were changed as well. Listing 2

B. Ferreira and A.M. Leitão 7:9

Listing 1 Definition of a simplified Slab object in ContextPy.
class Slab:

def __init__ (self , path , thickness):
self.path = path
self. thickness = thickness

@around (a3DLayer)
def generate (self):

return extrusion (surface_from (self.path), self. thickness)

@around (a2DLayer)
def generate (self):

return self.path

@around (anAnalysisLayer)
def generate (self):

return surface_from (self.path)

Listing 2 Simplified version of the code with the definition of both shops and the selection of one.
def shop2d (p, v, l, w):

...
rectangle (...)
line (...)
...

def shop3d (p, v, l, w):
...
cuboid (...)
...

#shop = shop2d
shop = shop3d

shows a simplified definition of both 2D and 3D versions of the shop function, as well as the
commented line of code needed to activate the 2D version, and the active line of code that
selects the 3D version.

This approach has several disadvantages, namely the need to change the code when it is
necessary to change the type of model, and having to comment and uncomment several lines
of code when we want to change from 2D to 3D. Both of these tasks are error prone, since
developers might forget to do some of them.

Our COP-based solution eliminates the aforementioned problems. Using our library, we
re-implemented parts of the algorithm, namely the shop function. Since we have different
implementations for the elements, such as walls, available in different contexts, we do not
require two versions of the same function. Listing 3 shows a simplified definition of the COP
version of the shop function, using the Wall and Door elements of our library.

SLATE 2018

7:10 Context-Oriented Algorithmic Design

Listing 3 Simplified version of the COP version of the shop function.
def shop(p, v, l, w):

...
w1 = Wall(p1 , p2 , wall_thickness , wall_height)
w2 = Wall(p2 , p3 , wall_thickness , wall_height)
w3 = Wall(p3 , p4 , wall_thickness , wall_height)
w4 = Wall(p4 , p1 , wall_thickness , wall_height)
d1 = Door(w4 , p5 , p6 , door_height)

Listing 4 Activation of the desired layer.
with activelayer (a3DLayer):

mall(xy(0,0), 100000 , 12000 , 25000 , 7000 , 7000 , 4)

Figure 1 3D model of the shopping mall, produced with COP in AutoCAD. On the right it is
possible to see that the walls are 3D elements.

To shift between contexts, we eliminated the commented lines of code and introduced a
with activelayer construct, which receives the layer corresponding to the model we want
to produce, and the expression that generates the entire shopping mall, as seen in listing 4.

Since we wanted to produce a plan view and a 3D model, and those correspond to layers
that we support in the library, we could generate both of them by introducing a3Dlayer or
a2Dlayer as arguments of the with construct. The results can be seen in figures 1 and 2. In
addition, since we support a layer that produces only surfaces for analysis purposes, namely
radiation analysis, we were able to produce another model simply by changing the context.
By using anAnalysisLayer as argument for the with construct, we produced a model for
analysis (visible in Figure 3) without any changes to the algorithm.

With our solution, we were able to reduce the code that produces the models and introduce
a more flexible way to both change the context and produce different views of the model.
This did not required any additional functions, except the with construct, as seen in listing 4.
In addition, by simply introducing new contexts, our algorithms are capable of producing
new models without any changes.

We also re-implemented another case study, which generated a private house. Due to
energy requirements, the generated house had to be analyzed regarding solar radiation. Since
this analysis only required part of the model and the substitution of all solid elements with
surfaces, the original code had several functions that produced each of the required variations,
similarly to the previous example.

B. Ferreira and A.M. Leitão 7:11

Figure 2 2D model of the shopping mall, produced with COP in AutoCAD.

Figure 3 Model of the mall produced for analysis, in AutoCAD. All the walls were replaced with
surfaces, as it is possible to see in more detail on the right.

To simplify the algorithmic description of the house, we introduced two new COP layers
in the program: (1) the floorAnalysisLayer, which only generates the ground floor and
replaces elements with surfaces; and (2) the fullModelLayer, which produces the complete
model in 3D. Both of these layers are used in combination with the layers described in the
previous example, in order to define a contextual-dependant definition of the house function.
When the house function is used with fullModelLayer, the a3DLayer is activated and all the
elements of the house are produced in 3D, as seen in figure 4. If the floorAnalysisLayer is
used instead, anAnalysisLayer is activated and all the elements are produced as surfaces.
In addition, the layer only generates the necessary elements for analysis, as seen in figure 5.

This case study illustrates another advantage of our proposed approach, which is the
ability to change layers dynamically during the program execution. This feature offers more
flexibility to developers, allowing the production of simplified models for analysis purposes,
and more complex ones for 3D visualization. With COP this can be achieved by simply
defining and changing layers, instead of using multiple functions with complex conditional
statements.

5 Conclusions and Future Work

Currently, algorithmic approaches are used in Architecture to create complex models of
buildings that would otherwise be difficult to produce. Moreover, AD also simplifies and
automates tasks that were error-prone and time-consuming, and allows an easier exploration
of variations. Nevertheless, when architects need to produce different views of the same
model, the algorithmic representations must be adapted, creating different versions that
increase maintenance efforts.

SLATE 2018

7:12 Context-Oriented Algorithmic Design

Figure 4 3D model of a house, produced with COP in AutoCAD.

Figure 5 Simplified 3D model of the house for analysis, produced with COP in AutoCAD.

In this paper, we explore the combination of AD with COP, a paradigm that dynamically
changes the code’s behavior depending on the active context. There are multiple imple-
mentations of COP for different programming languages, namely ContextL, ContextJ, and
ContextPy, among others, all of which have different features and advantages.

In our solution, we took advantage of ContextPy, a library implementation for the Python
programming language, that uses DSA, and a layer-in-class approach. All these features
fit the needs of AD problems, and the use of Python simplifies the introduction of COP in
existing tools, such as Khepri.

To test our solution, we used our COP library in existing AD programs that produced
models for different types of analysis. The programs included multiple definitions of the
same functions to produce different views of the model, which were activated by commenting
and uncommenting code. Both programs were re-implemented with COP, which eliminated
the multiple definitions and the commented code. This allowed the production of the models
for several different contexts without additional changes in the program.

With these examples, we can conclude that COP can be combined with AD and it can
be useful when exploring different views of the models, which require different behaviors
from the same program.

As future work, we will continue to expand our library with more building elements. We
will also introduce more contexts, giving users more layers for the production of different
kinds of models.

In addition, we will explore the combination of layers. One idea is to explore a LOD layer
in combination with the others, in order to produce simpler models in an exploration phase,
and more complex ones in later stages of development.

B. Ferreira and A.M. Leitão 7:13

Finally, we want to research the methodology that users should follow to use our approach,
as well as the features that should be included in a development environment to simplify the
use of this approach by non-expert users, such as architects.

References

1 Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and Michael Perscheid.
A comparison of context-oriented programming languages. In International Workshop on
Context-Oriented Programming, pages 6:1–6:6, 2009. doi:10.1145/1562112.1562118.

2 Malte Appeltauer, Robert Hirschfeld, Michael Haupt, and Hidehiko Masuhara. ContextJ:
Context-oriented programming with Java. Information and Media Technologies, 6(2):399–
419, 2011.

3 Malte Appeltauer, Robert Hirschfeld, Hidehiko Masuhara, Michael Haupt, and Kazunori
Kawauchi. Event-specific software composition in context-oriented programming. In Soft-
ware Composition, volume 6144, pages 50–65, 2010.

4 Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor
Kiczales, and David A. Moon. Common Lisp object system specification. ACM-SIGPLAN
Notices, 23, 1988.

5 Pascal Costanza and Robert Hirschfeld. Language constructs for context-oriented program-
ming: an overview of contextL. In Symposium on Dynamic languages, pages 1–10, 2005.

6 Sofia Feist, Guilherme Barreto, Bruno Ferreira, and António Leitão. Portable generative
design for building information modelling. In Living Systems and Micro-Utopias: Towards
Continuous Designing - 21st International Conference of the Association for Computer-
Aided Architectural Design Research in Asia, pages 147–156, 2016.

7 Michael L. Gassanenko. Context-oriented programming. In EuroForth’98 Conference, 1998.
8 Sebastián González, Nicolás Cardozo, Kim Mens, Alfredo Cádiz, Jean-Christophe Lib-

brecht, and Julien Goffaux. Subjective-C: Bringing context to mobile platform program-
ming. In International Conference on Software Language Engineering, pages 246–265, 2010.

9 Sebastián González, Kim Mens, and Alfredo Cádiz. Context-oriented programming with
the ambient object system. Journal of Universal Computer Science, 14(20):3307–3332,
2008. doi:10.3217/jucs-014-20-3307.

10 William Harrison and Harold Ossher. Subject-oriented programming: a critique of pure
objects. SIGPLAN Notices, 28(10):411–428, 1993. doi:10.1145/167962.165932.

11 Robert Hirschfeld, Pascal Costanza, and Michael Haupt. An introduction to context-
oriented programming with ContextS. In Generative and Transformational Tech-
niques in Software Engineering II, pages 396–407. Springer, 2008. doi:10.1007/
978-3-540-88643-3_9.

12 Robert Hirschfeld, Pascal Costanza, and Oscar Nierstrasz. Context-oriented programming.
Journal of Object Technology, 7(3):125–151, 2008.

13 Robert Hirschfeld, Michael Perscheid, Christian Schubert, and Malte Appeltauer. Dynamic
contract layers. In ACM Symposium on Applied Computing, pages 2169–2175, 2010.

14 Tetsuo Kamina, Tomoyuki Aotani, and Hidehiko Masuhara. Designing event-based context
transition in context-oriented programming. In 2nd International Workshop on Context-
Oriented Programming, pages 2:1–2:6, 2010. doi:10.1145/1930021.1930023.

15 Gregor Kiczales, Jim Des Rivieres, and Daniel Gureasko Bobrow. The art of the metaobject
protocol. MIT press, 1991.

16 Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William Gris-
wold. An overview of AspectJ. In European Conference on Object-Oriented Programming,
pages 327–354, 2001.

SLATE 2018

http://dx.doi.org/10.1145/1562112.1562118
http://dx.doi.org/10.3217/jucs-014-20-3307
http://dx.doi.org/10.1145/167962.165932
http://dx.doi.org/10.1007/978-3-540-88643-3_9
http://dx.doi.org/10.1007/978-3-540-88643-3_9
http://dx.doi.org/10.1145/1930021.1930023

7:14 Context-Oriented Algorithmic Design

17 Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In European Conference
on Object-Oriented Programming, pages 220–242, 1997.

18 Ant]onio Leitão, Renata Castelo Branco, and Carmo Cardoso. Algorithmic-based analysis
- design and analysis in a multi back-end generative tool. In Protocols, Flows, and Glitches:
22nd CAADRIA Conference, pages 137–147, 2017.

19 Jens Lincke, Malte Appeltauer, Bastian Steinert, and Robert Hirschfeld. An open im-
plementation for context-oriented layer composition in ContextJS. Science of Computer
Programming, 76(12):1194–1209, 2011.

20 José Lopes and António Leitão. Portable generative design for CAD applications. In 31st
Conference of the Association for Computed Aided Design in Architecture, pages 196–203,
2011.

21 Jon McCormack, Alan Dorin, and Troy Innocent. Generative design: a paradigm for design
research. Proceedings of Futureground, Design Research Society, 2004.

22 Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. JavaCtx: seamless toolchain in-
tegration for context-oriented programming. In 3rd International Workshop on Context-
Oriented Programming, pages 4:1–4:6, 2011. doi:10.1145/2068736.2068740.

23 Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. Context-oriented programming: A
software engineering perspective. Journal of Systems and Software, 85(8):1801–1817, 2012.
doi:10.1016/j.jss.2012.03.024.

24 Guido Salvaneschi, Carlo Ghezzi, and Matteo Pradella. ContextErlang: introducing
context-oriented programming in the actor model. In 11th International Conference
on Aspect-oriented Software Development, pages 191–202, 2012. doi:10.1145/2162049.
2162072.

25 Hans Schippers, Michael Haupt, and Robert Hirschfeld. An implementation substrate for
languages composing modularized crosscutting concerns. In ACM Symposium on Applied
Computing, pages 1944–1951, 2009.

26 Gregor Schmidt. ContextR & ContextWiki. Master’s thesis, Hasso-Plattner-Institut, Pots-
dam, 2008.

27 Randall B Smith and David Ungar. A simple and unifying approach to subjective objects.
Theory and Practice of Object Systems, 2(3):161–178, 1996.

28 Jorge Vallejos, Sebastián González, Pascal Costanza, Wolfgang De Meuter, Theo D’Hondt,
and Kim Mens. Predicated generic functions. In Software Composition, volume 6144, pages
66–81, 2010.

29 Ramon van der Heijden, Evan Levelle, and Martin Riese. Parametric building informa-
tion generation for design and construction. In Computational Ecologies: Design in the
Anthropocene - 35th Annual Conference of the Association for Computer Aided Design in
Architecture, pages 417–429, 2015.

30 Martin Von Löwis, Marcus Denker, and Oscar Nierstrasz. Context-oriented programming:
beyond layers. In Proceedings of the 2007 international conference on Dynamic languages:
in conjunction with the 15th International Smalltalk Joint Conference 2007, pages 143–156.
ACM, 2007.

31 Benjamin Hosain Wasty, Amir Semmo, Malte Appeltauer, Bastian Steinert, and Robert
Hirschfeld. ContextLua: dynamic behavioral variations in computer games. In 2nd
International Workshop on Context-Oriented Programming, pages 5:1–5:6. ACM, 2010.
doi:10.1145/1930021.1930026.

http://dx.doi.org/10.1145/2068736.2068740
http://dx.doi.org/10.1016/j.jss.2012.03.024
http://dx.doi.org/10.1145/2162049.2162072
http://dx.doi.org/10.1145/2162049.2162072
http://dx.doi.org/10.1145/1930021.1930026

Abcl: Abc music notation with rich chord support
José João Almeida
Departamento de Informática / Centro Algoritmi
Universidade do Minho, Campus de Gualtar, Braga, Portugal
jj@di.uminho.pt

https://orcid.org/0000-0002-0722-2031

Abstract
It is well known the relevance of accompany chords but there is a lack of tools capable of auto-
matically generating sound from them.

In this paper we describe a domain specific language (Abcl) aimed to be a prototyping envir-
onment for new experimental music operators. Currently Abcl: (1) adds support for accompany
chords (chordmode, instruments, chord-lines); (2) adds clearer support for percussion (drums,
drum-machine) (3) adds a support for variables and functions.

Abcl tool is a syntactic-preprocessor that produces Abc. The DSLToolkit, used to create
Abcl, is also briefly presented and discussed in the paper.

2012 ACM Subject Classification Software and its engineering → Domain specific languages

Keywords and phrases music, Abc music notation, domain specific language

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.8

Category Short Paper

1 Introduction

Texts with lyrics and chords are often used as an easy way of give musicians the minimal
information necessary to accompany a music. Adding (guitar) chords to lyrics is a popular
way of helping in the process of learning a music and learning how to play it, how to
provide the musical accompaniment for singer or a musical ensemble. Most of the times,
documents with chords and lyrics don’t provide all the necessary information to be possible
to automatically generate sound.

Consider the example in Listing 1. It should be enough for a musician if she already
knows the music, but to automatically generate sound, we need to define:

the measure (3/4);
the general velocity (1/4=100);
the duration of each chord;
what instrument should be used to play the chords and the bass;
how should the set of nodes of the chord be played during each bar.

This word was developed in the context of the Abc music notation community and we
intended to discuss a set of extensions to better support accompany chords and drums. The
approach taken was to develop a notation (Abcl DSL) and build a syntactic preprocessor
to extend Abc. This way we built an experimental prototype that we can use in our music
projects, where syntax can easily changed and discussed. When we obtain a more stable
version, we plan to submit a proposal for the next version of abc notation standard.

In this rest of this section we will briefly introduce Abc music notation, and the ex-
perimental accompany chord primitives already existent in some Abc processing tools. In

© José João Almeida;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 8; pp. 8:1–8:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jj@di.uminho.pt
https://orcid.org/0000-0002-0722-2031
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

8:2 Abcl: Abc music notation with rich chord support

Listing 1 A 20th century folia by J.Berthier.
T: Laudate Dominum
C: Jacques Ber th i e r

La [Am] udate do [E]minum ,
La [Am] udate do [G]minum ,
O[C]mnes , ge [G] ntes ,
A[Am] l e [F] lu [Dm] i a [E]

La [Am] udate do [E]minum ,
La [Am] udate do [G]minum ,
O[C]mnes , ge [G] ntes ,
A[Am] l e [Dm] lu [E] i a [Am]

Listing 2 Example of the Abc notation for the score presented in Figure 1.
X:101
T:Verbum caro factum e s t
C: Anonimous , 16 th century
M:3/4
L:1/8
K:G
V:1 c l e f=t r eb l e −1 name="Soprano " sname="S . "
G4 G2 | G4 F2 |A4 A2 | B4 z2 | : B3 A GF| E2 D2 EF| G4 F2 | G6 ! f i n e ! : |
w: Ver− bum| ca− ro | fac− tum | e s t | Por − que ∗ | to − dos ∗ | hos sa l −| v e i s

Verbum caro factum est (part 1, soprano)

Anonymous, 16th century

Soprano

Ver bum ca ro fac tum est Por que to dos hos sal veis

4
3

FINE

Figure 1 Music score for the Abc in Listing 2.

Section 2 we will present some of the features of Abcl tool and in Section 3 we will discuss
the development of the syntactic preprocessor.

1.1 Abc music notation
Abc [13, 7, 4] is used as the base notation throughout all of this paper. The extract presented
in Listing 2 illustrates the use of Abc notation, and Figure 1, its corresponding score and
MIDI.

Music languages are linguistically different from programming languages. In general music
description languages tend to be a merge of several sublanguages like: information fields
and metadata, lyrics, tunes (notes and duration), annotations, accompany chords symbols,
typesetting geometry. Each sublanguage has a different linguistic flavor.

Naturally, the power of Abc is strongly connected with its processing tools [12, 1, 3, 10]
and related projects [5, 2].

Although Abc standard has just a very simple support for chords, the tool Abc2midi[1]
has a set of extensions that cover some relevant chord accompany properties:

J. J. Almeida 8:3

Laudate Dominum

Jacques Berthier

= 100 Am E Am G C G Am F Dm E1

4
3

Am Dm E Am Am E Am G C G Am F Dm E Am Dm E Am2 1 2

Laudate’ dominu’m,
Laudate’ dominu’m,
Omne’s, gente’s,
Alelu’ia

Figure 2 Music score output for Abcl code from Listing 3.

%%MIDI chordprog n, to define the instrument used for the accompany;
%%MIDI bassprog n, to define the instrument for the bass notes;
%%MIDI chorvol n, to set the volume of the chord notes;
%%MIDI bassvol n, to set the volume of the bass notes;
%%MIDI chordname, to define e chord variant;
%%MIDI gchordon, to turn on chord sounds;
%%MIDI gchordoff, to turn off chord sounds;
%%MIDI gchord ..., to define the arpeggiate notes for a bar;
%%MIDI gchordbars n, to express that gchord arpeggiate notes are to be extended for n

bars.
The use of these MIDI primitives is cryptic and hard to read and master.

1.2 Accompany Chords
Accompany chords play a very important role in partial music. They are a popular way
of starting to learn music but can also be a support for musical improvisation, a way to
prepare band rehearsal, to create simple karaoke, and a starting point to several relevant
music activities. Several projects discuss [11], teach and guess [6] chords.

1.3 In this paper
In this paper we describe a domain specific language [9, 8] – Abcl – that is a syntactic
preprocessor that: (1) adds clearer support for accompany chords (chordmode, instruments,
chord-lines) (2) adds clearer support for percussion (drums, drum-machine) and (3) adds a
reduced support for variables and functions. Abcl internally is written in Perl+DisLex.

As usual, we will call Abcl to the language and abcl to the compiler that converts Abcl
to Abc.

2 Abcl by example

Example 1

Consider the Abcl example from Listing 3. Executing “abcl ex.abcl > ex.abc” we get
the output presented in Figure 2.

SLATE 2018

8:4 Abcl: Abc music notation with rich chord support

Listing 3 Abcl example.
chordmode 3 gui =b2c2ih gu i t a r
chordmode 3 gui1=c3 gu i t a r
chordmode 3 gui2=ccc gu i t a r

X: 1
T: Laudate Dominum
C: Jacques Ber th i e r
M: 3/4
L : 1/4
Q: 100
K: Am
ch :
| : \3 gui { Am|E|Am|G|C|G |1
\3 gui2 Am F Dm | \3 gui1 E : | 2
\3 gui2 Am Dm E | \3 gui1 Am }→\v1
| : \3 gui1 \v1 |
W: Laudate ’ dominu ’m,
W: Laudate ’ dominu ’m,
W:Omne’ s , gente ’ s ,
W: Alelu ’ i a

Garota de Ipanema

Antonio Carlos Jobim

Fmaj7 G7 Gm7 G 7 Fmaj7 G 7 Fmaj7 G 71 2

4
4

B7 F m7 D7 Gm7 E 7 Am7 D7 Gm7 C7 Fmaj7 G7 Gm7 G 7 Fmaj7

Figure 3 Music score generated for “Garota de Ipanema”.

In this example, we can see the use chordmode instructions to define the arpeggios to
be used. We can also see and ear the use of different solutions to build different spaces for
improvisation.

The notation { music }→\id is used to store music in a variable \id, to be reused
whenever useful. Abcl also provides other ways of defining variables (see Appendix A) and
functions.

Although not much relevant, the generates Abc (file ex.abc) is presented in Listing 4.

Example 2

In the following example we discuss some challenges related to Bossa Nova unpredictable
rich rhythms. In this example we define a set of chords for “Garota de Ipanema”. The
generated accompany midi (completely unacceptable!) is using the default values of arpeggio,
as presented in Figure 3.

In order to improve it a “Bossa Nova beginner’s guide” was consulted. Figure 4 is an
exercise for students that are learning how to accompany this type of songs. Please notice
the always changing rhythm. Please note that this example is not the best choice for “Garota

J. J. Almeida 8:5

Listing 4 Generated Abc file from code in Listing 3.
X: 1
T: Laudate Dominum
C: Jacques Ber th i e r
M: 3/4
Q: 100
K: Am
z3 | :
%%MIDI gchordbars 1
%%MIDI gchord b2c2ih
%%MIDI chordprog 24
%%MIDI bassprog 24
"Am" z3 |
"E" z3 |
"Am" z3 |
"G" z3 |
"C" z3 |
"G" z3 | 1

%%MIDI gchordbars 1
%%MIDI gchord ccc
. . . and more 70 s im i l a r l i n e s

Figure 4 Example of an exercise of “Bossa Nova”.

de Ipanem”.
In Listing 5 we used two sub-patterns: “bn1 = first 2 bars ; bn4 = first 4 bars”.

Clearly these arpeggios introduce a relevant change in the MIDI, and can be a starting point
to discuss the use of guitar/piano in Bossa Nova.

3 Abcl preprocessor tool

As we said before, our project deals with enriching a musical language with new functionality
and clearer syntax. We want to be able to prototype experimental operators and syntax.
Music tends to be the merge of multi sublanguage with different linguistic flavor. This raised
some DSL-building challenges.

In the first experiences, we tried the set of lexical preprocessor. These tools cover pre-
parsing textual substitution (macro), file inclusion and conditionals. Although useful the most
popular open-source preprocessor like Gpp (GNU preprocessor) or CPP (C preprocessor)
were almost impossible to use without introduce deep changes in the language. Generic
lexical preprocessors like m4 also prove to be difficult for the current task.

In addition to lexical-preprocessors functionality, for the current project, we needed:

SLATE 2018

8:6 Abcl: Abc music notation with rich chord support

Listing 5 Sub-pattern usage.
chordmode bn1= fczc−bzcz | bzcc−f c c z gu i t a r
chordmode bn2= c gu i t a r
chordmode bn3= gzcz−zczc gu i t a r
chordmode bn4= fczc−bzcz | bzcc−f c c z | f c zc−bzcz | bzcc−f c z c piano

X: 1
T: Garota de Ipanema
C: Antonio Car los Jobim
M: 4/4
L : 1/4
K: F
ch : \bn1 Fmaj7 | |G7 | |Gm7|Gb7 | 1 Fmaj7 | \ bn2 Gb7 : | 2 Fmaj7 | | |
\bn3 Gb7 | | B7 | |F#m7| |D7 | |Gm7| | Eb7 | |Am7|D7 |Gm7|C7 | |
\bn4 Fmaj7 | |G7 | |Gm7|Gb7 | Fmaj7 | | |

State conditions (like the ones presented in Flex) in order to deal with sublanguage
heterogeneous syntax.
Regular-expressions tools: in order textually rewrite new syntax.
reflexive capabilities (runtime definition of functions).

In this context we choose to build a DSL prototyping toolkit, with a Flex-inspired
language processor (DisLex), aimed to support syntactic preprocessors.

DisLex: a Flex-inspired language processor

DisLex is a Flex-flavored lexical analyzer for Perl. It is part of Parse::DSLUtils, a Perl
module aimed to help in the construction of DSL. In complement, Parse::DSLUtils also
covers Parse::Yapp simplification, and templates functionality.

Following some relevant features of DisLex tool:
By default, input is slurped to a variable ($yyfile).
Regular-expression based using \G and pos($yyfile) to keep current position in a
efficient way.
(RegExp, Perl-action) rules are the basic building blocks. Perl’s regular-expressions
offers a very rich group capture functionality that proved to be very effective. In flex
group capture is not available.
Full Unicode expressions available
Greedy and non-greedy regular-expressions operators available.
No support for chooser-longest-match disambiguation rule.
State conditions: to help in implementation of automata, using:

BEGIN state to change states
REC state and DONE to change and came back (similar to Flex yy_push_state(state),
yy_pop_state() functions)

It includes a large set of predefined regular-expressions, covering some non-regular patterns
like:

curly-bracket blocks, XML elements, Latex environments

When used as a lexical analyzer, DisLex typically, uses rules like

(\d+) return("INT",$1))

J. J. Almeida 8:7

It provides directives (syntactic sugar) to skip white spaces and comments:

%white [\ \t]+
%comments #.+

Some less common functionality:
Return many – sometimes is easier to return several tokens (using a queue of symbols to
be returned)
\+= { returnmany([’=’,’=’],["INT",1],[’+’,’+’]);}

a predefined yylexdebug(func,file) to help testing and debugging lexical analyzer’s
behavior.

A set of predefined functions is provided to cover some simplified cpp-like functionality
(includes, defines).

4 Conclusions

Although in an initial stage, from our experience, Abcl tool proves to be useful for:
providing support for modeling arpeggios for specific styles of music;
practice improvisation supported by neutral chord bases;
experimentation on accompany solutions.

The use DisLex and Parse::DSLUtils were crucial to obtain a working prototype in a very
short time.

We are currently working with Abcl with multi-voice chords, and multi-voice drums and
we already have interesting examples of the use of chords and percussion using Abcl DSL
language.

References
1 James Allwright and Seymour Shlien. abc2midi: Abc to midi translator. http://abc.

sourceforge.net/abcMIDI/. Tool.
2 José João Almeida, Nuno Ramos Carvalho, and José Nuno Oliveira. Wiki::Score a collab-

orative environment for music transcription and publishing. Information, Services and Use
(ISU), 31(3-4/2011):177–187, 2012. doi:10.3233/ISU-2012-0647.

3 Bruno M. Azevedo and José João Almeida. Abc with a unix flavor. In 2nd Symposium
on Languages, Applications and Technologies (SLATE), volume 29, pages 203–218, 2013.
doi:10.4230/OASIcs.SLATE.2013.203.

4 Abc Comunity. Abc musical notation – standard version 2.2, 2013. Standard. URL:
http://abcnotation.com/wiki/abc:standard:v2.2/.

5 Michael Scott Cuthbert and Ben Houge. Music21 - a toolkit for computer-aided musicology.
http://web.mit.edu/music21/. Toolkit’s Homepage.

6 W. Bas de Haas, José Pedro Magalhães, and Frans Wiering. Improving audio chord tran-
scription by exploiting harmonic and metric knowledge. In 13th International Society for
Music Information Retrieval Conference (ISMIR), 2012.

7 Guido Gonzato. Making music with abc2 - a pratical guide, 2018. URL: http://abcplus.
sourceforge.net/abcplus_en.html.

8 Tomaž Kosar, Sudev Bohra, and Marjan Mernik. Domain-specific languages: a systematic
mapping study. Information and Software Technology, 71:77–91, 2016.

SLATE 2018

http://abc.sourceforge.net/abcMIDI/
http://abc.sourceforge.net/abcMIDI/
http://dx.doi.org/10.3233/ISU-2012-0647
http://dx.doi.org/10.4230/OASIcs.SLATE.2013.203
http://abcnotation.com/wiki/abc:standard:v2.2/
http://web.mit.edu/music21/
http://abcplus.sourceforge.net/abcplus_en.html
http://abcplus.sourceforge.net/abcplus_en.html

8:8 Abcl: Abc music notation with rich chord support

9 Tomaž Kosar, Nuno Oliveira, Marjan Mernik, Maria João Varanda Pereira, Matej Čre-
pinšek, Daniela da Cruz, and Pedro Rangel Henriques. Comparing general-purpose and
domain-specific languages: An empirical study. Computer Science and Information Sys-
tems, 7(2):247–264, 2010. doi:10.2298/CSIS1002247K.

10 Nils Liberg et al. EasyABC abc editor, 2016. URL: http://easyabc.sourceforge.net/.
11 José Pedro Magalhães and Hendrik Vincent Koops. Functional generation of harmony

and melody. In 2nd ACM SIGPLAN International Workshop on Functional Art, Music,
Modeling and Design, pages 11–21, 2014. doi:10.1145/2633638.2633645.

12 Jean-François Moine. abcm2ps - abc to postscript/eps/svg translator. http://moinejf.
free.fr/. Tool.

13 Chris Walshaw. Abc notation. http://abcnotation.com/. Musical Notation.

A Cannon

Example of a very simple use of tune variables: the structure of a 2 voice cannon (Frere
Jacques).

\p1={CDEC | CDEC}
\p2={EFG2 | EFG2 | G/2A/2 G/2F/2E C | G/2A/2 G/2F/2E C}
\p3={DG,C2 | DG,C2}

X:1
T: Frere Jacques (2 vo i c e)
M: 4/4
L : 1/4
K: C
[V: 1] \p1 | : \p2 | \p3 | 1 \p1 : | 2 Z2 |]
[V: 2] Z2 | : \p1 | \p2 | 1 \p3 : | 2 \p3 |]

Frere Jacques (2 voice)

4
4

4
4

1 2

1 2

http://dx.doi.org/10.2298/CSIS1002247K
http://easyabc.sourceforge.net/
http://dx.doi.org/10.1145/2633638.2633645
http://moinejf.free.fr/
http://moinejf.free.fr/
http://abcnotation.com/

Asura: A Game-Based Assessment Environment
for Mooshak
José Carlos Paiva
CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto, Portugal
up201200272@fc.up.pt

https://orcid.org/0000-0003-0394-0527

José Paulo Leal
CRACS & INESC-Porto LA, Faculty of Sciences, University of Porto, Portugal
zp@dcc.fc.up.pt

https://orcid.org/0000-0002-8409-0300

Abstract
Learning to program is hard. Students need to remain motivated to keep practicing and to
overcome their difficulties. Several approaches have been proposed to foster students’ motivation.
As most people enjoy playing games of some kind and play on a regular basis, the use of games
is one of the most widely spread approaches. However, taking full advantage of games to teach
specific concepts of programming requires much effort. This paper presents Asura, a game-based
assessment environment built on top of Mooshak that challenges students to code Software Agents
(SAs) to play a game, allowing them to test the SAs against each others’ SAs and watch a movie
of the test. Once the challenge development stage ends, teachers are able to organize game-
like tournaments among SAs. One of the key features of Asura is that it provides a means to
reduce the required effort of building game-based challenges up to that of creating traditional
programming exercises.

2012 ACM Subject Classification Applied computing → Interactive learning environments, So-
cial and professional topics → Computational science and engineering education

Keywords and phrases games, programming, learning, graphical feedback, tournament

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.9

Category Short Paper

Funding This work is partially funded by the ERDF through the COMPETE 2020 Programme
within project POCI-01-0145-FEDER-006961, by National Funds through the FCT as part of
project UID/EEA/50014/2013, and by FourEyes. FourEyes is a Research Line within project
“TEC4Growth – Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact
/NORTE-01-0145-FEDER-000020” financed by the North Portugal Regional Operational Pro-
gramme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the
European Regional Development Fund (ERDF).

1 Introduction

In the past recent years, the demand for programmers in the job market has grown rapidly,
raising the popularity of programming courses among future undergraduate students who seek
for a rewarding career [16]. However, learning to program is hard. Introductory programming
courses are considered difficult by many students [4] and often linked to high dropout and
failure rates [1]. Many educators consider the lack of abstraction and problem-solving skills
as the main sources of difficulties for novice programmers [7]. Nevertheless, these difficulties

© José Carlos Paiva and José Paulo Leal;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 9; pp. 9:1–9:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:up201200272@fc.up.pt
https://orcid.org/0000-0003-0394-0527
mailto:zp@dcc.fc.up.pt
https://orcid.org/0000-0002-8409-0300
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

9:2 Asura: A Game-Based Assessment Environment for Mooshak

can be mitigated if students have enough motivation to keep practicing and struggling to
overcome them [10].

Consequently, several approaches to foster the engagement of students in programming
activities, such as problem-based learning, storytelling, simulations, and competition-based
learning, have been proposed and evaluated. Yet, one of the most successful and widespread
approaches is gamification, which consists of using game elements and mechanics to engage
users in non-game contexts. The most common methods of gamification just give rewards
(e.g., badges, experience points, or gifts) to students when they succeed or complete a task.
However, rewards are generally weak motivators and its use is controversial, since many
argue that they can harm intrinsic motivation and arise long-term educational issues [11].
Other game aspects such as graphical feedback, competitive challenges, goals, collaboration,
or abstraction of the physical world, are, typically, much more attractive than rewards. In
this sense, some proposals replace the learning activity completely by a game, as is the case
of CodeRally1 and RoboCode [6] which have demonstrated the success of this approach.
Unfortunately, the implementation of complete games to teach a specific concept is very
costly in terms of time and money.

This paper presents Asura, a game-based assessment environment built on top of
Mooshak [9], a system for managing programming contests on the web. Specifically, it
integrates into the computer science languages learning environment of Mooshak 2.0, named
Enki [13], providing game-based programming challenges to any Enki course. Each challenge
asks the student to code a Software Agent (SA) to play a game, requiring the student to
understand the rules and goals of the game. After the “break the ice phase”, students are
challenged to improve their SAs insomuch that they defeat every opponent. While performing
this task, students can take advantage of facing any of the existing opponents in a private
match, and watch how the match unfolds in a game-like movie. Once the time to solve the
challenge ends, educators can organize tournaments, similar to those found on traditional
games and sports, among SAs. The tournament is displayed in an interactive GUI, allowing
the viewers to control which games they want to see, navigate through stages, and check the
ranking. Furthermore, one of the key goals of Asura is to enable teachers to build games
with a similar complexity to that of creating an ICPC-like problem. These games can be
very simple, such as a number guessing game, or more complex than CodeRally or Robocode.
For that, Asura provides a set of helpers including a Java framework and a Command-Line
Interface (CLI) tool to support the authoring of challenges.

The remainder of this paper is organized as follows. Section 2 reviews the systems and
tools in which Asura lies on as well as environments with characteristics common to Asura.
Section 3 describes Asura, its architecture and components. Section 4 provides the guidelines
of the experiment that will be conducted to validate Asura. Finally, Section 5 summarizes
the contributions of this paper, the expected results of the validation, and the next steps of
this work.

2 State-of-the-Art

Asura is a game-based assessment environment designed to integrate into an already existing
computer science languages learning environment of Mooshak 2.0, named Enki. The environ-
ment aims to offer a way to motivate students to program and overcome their difficulties
through practice, requiring from teachers an effort similar to that of creating an ICPC-like

1 https://www.ibm.com/developerworks/mydeveloperworks/blogs/code-rally

https://www.ibm.com/developerworks/mydeveloperworks/blogs/code-rally

J. C. Paiva and J. P. Leal 9:3

problem. It engages students by challenging them to code an SA to play a game, supporting
them with graphical game-like feedback to visualize how the SA performs against other SAs.
The final goal of an Asura challenge is to win a tournament, like those found on traditional
games and sports, among all submitted SAs.

There are already tools in the literature providing some of these features separately.
For instance, competition is not a new paradigm in programming learning [2, 8]. Students
are increasingly facing programming contests after leaving universities as a part of the
recruitment process for top technology companies. So, providing a learning experience with
focus on competition may help them in the future. One of the first types of systems to foster
competition among programming learners were automatic judges, such as DOMJudge2, PKU
JudgeOnline3, and Mooshak [9]. Even if these systems were developed for international
and regional competitions, teachers of undergraduate programming courses found them
useful also as teaching assistant tools [5, 3] to promote competitive programming learning
environments and give instant feedback on laboratory classes and exams. In particular, the
increasing interest shown on using Mooshak for learning has motivated the development of
several extensions, such as quiz evaluation and exam policies.

Recently, Mooshak was completely reimplemented in Java with Graphic User Interfaces
(GUIs) using the Google Web Toolkit (GWT). This reimplementation was labeled as Mooshak
2.04. Beyond the changes in the code-base, Mooshak 2.0 gives special attention to computer
science learning. For instance, it now includes a specialized computer science languages learn-
ing environment – Enki [13] – , which not only supports exercises using typical programming
languages, but also diagramming exercises, quizzes, among others. Enki blends assessment
and learning, integrating with several external tools, such as a gamification service – Odin [12]
– to support the creation of leaderboards, reward students for their successes, among others,
and an educational resources sequencing service – Seqins [14] – to offer different learning
paths according to the skills of each student.

Currently, there are many other web-based learning platforms that focus on competition
to motivate learners, such as HackerRank5, in which competition is based on leaderboards
that consider the number of solved problems and time spent solving them, and CodeFights6,
in which a player “fights” against other player or a bot developed by a company, to complete
a set of challenges before the opponent.

Also, game-based approaches for teaching programming have already been applied in
several cases. Rajaravivarma [15] proposes a course with a set of challenges, in which
the students have to program their own games. Sui et al. [17] presents a browser-based
environment that combines gamification and peer-to-peer interaction. This environment
challenges the students to write SAs to play simple board games, allowing them to test
these SAs against SAs developed by other peers. The environment also provides a debugger
interface, which allows the student to check the state of the SA step-by-step.

There are also a few online platforms using games as the central source of engagement,
such as CodinGame7 and Leek Wars8. CodinGame proposes several puzzles for learners to
practice their coding skills. Most of them require the user to develop an SA to control the

2 https://www.domjudge.org/
3 http://poj.org/
4 https://mooshak2.dcc.fc.up.pt/
5 https://hackerrank.com/
6 https://codefights.com/
7 https://codingame.com
8 https://leekwars.com

SLATE 2018

https://www.domjudge.org/
http://poj.org/
https://mooshak2.dcc.fc.up.pt/
https://hackerrank.com/
https://codefights.com/
https://codingame.com
https://leekwars.com

9:4 Asura: A Game-Based Assessment Environment for Mooshak

EnkiAsura
Viewer

Asura
Evaluator

game.jarAsura
Builder

produces

Asura
Tournament
Manager

MoviePlayer Analyzer Analyzer

Figure 1 Diagram of components of the architecture of Asura.

behavior of a character in a game environment, and provide a 2D game-like graphical feedback.
Leek Wars is a serious game where the player controls a character (a leek) through coding.
The goal of the game is to beat other players’ leeks during fights, awarding points to climb
to the top of the ranking. The result of the fight is displayed as a 2D frame-by-frame movie.

3 Asura

Asura is an environment for game-based assessment in programming learning. Its main
features include the graphical game-like feedback, the tournament-based assessment, and the
framework and tools that it offers regarding the simplification of the process of building Asura
challenges. This environment leverages the SAs evaluation on Mooshak 2.0’s program analysis,
extending it to support multiple submissions running in the same evaluation environment.
This allows students to code their SAs in any programming language supported in Mooshak.
On the client side, the Graphic User Interface (GUI) is embedded into Enki’s GUI, allowing
any course created in Enki to provide Asura challenges out-of-the-box.

The architecture of Asura, presented in Figure 1, is composed of four components: Asura
Builder, Asura Viewer, Asura Tournament Manager and Asura Evaluator. The Builder,
Viewer, and Tournament Manager are completely new components, whereas the Evaluator is
a component that extends Mooshak 2.0 program analysis to support game assessment. In this
architecture, Enki makes the bridge between the server and the client, requesting evaluation
to the Evaluator and loading the feedback into the Viewer. Each of the next subsections
describes a component of Asura, including its role and some implementation details.

3.1 Evaluator
The evaluator engine of Mooshak grades a submission by following a set of rules while
generating a report of the evaluation for further validation from a human judge. This
evaluation follows a black-box approach. The process consists of two types of analysis: static,
which checks for integrity of the source code of the program and produces an executable
program; and dynamic, that involves the execution of the program with each test case loaded
with the problem.

The Evaluator component of Asura inherits the static analysis of the Mooshak’s evaluator
engine. The only difference is that the compile command line can include a language-specific
player wrapper, present in the game.jar file, for complex games. However, the dynamic
analysis is completely reimplemented. Instead of test cases with input and output text files,
Asura Evaluator receives as input a list of paths of the selected opponents’ submissions that
generate the input and consume the output of each other. Since these submissions are already
compiled (when necessary), the component just initializes a process for each of them. After
that, it organizes matches containing the current submission and a distinct set of the selected
opponents’ submissions. The length of this set depends on the minimum and maximum
number of players per match, which are specified by the game manager. At this point, the
evaluation proceeds on an instance of the specific game manager, which is instantiated from

J. C. Paiva and J. P. Leal 9:5

the game.jar, as well as the game state object. The game manager receives the list of
player processes indexed by the player ID and starts the game. The execution of the game
is completely controlled by the game manager, which is responsible for keeping the SA’s
informed about the state of the game, querying the SAs for their state update at the right
time, ensuring that the game rules are not broken, managing the state of the game, and
classifying and grading submissions. If an SA fails to comply with the rules, the match ends
and the SA receives a “Wrong Answer”.

During the game, any updates to the state object can passed on to the movie builder.
The state object provides the following methods that can be used by the manager to control
its lifecycle: prepare(movieBuilder, players) which initializes the state and sets up the
metadata of the movie, execute(movieBuilder, playerId, playerUpdate) that updates
the game state with the action of a certain player, endRound(movieBuilder) which ends
a round of actions, and finalize(movieBuilder) which finalizes the game, adding the
submission results in the movie, among other things.

Finally, the status obtained from the matches containing the observations, mark, classific-
ation and feedback are compiled into a single status which is added to the submission report,
and sent to the client.

3.2 Builder
The Builder component is a Java framework for building Asura challenges, providing a
game movie builder, a general game manager, several utilities to exchange complex state
objects between the manager and the SAs, and general wrappers for players in many different
programming languages. The framework is accompanied by a Command-Line Interface (CLI)
tool to easily generate Asura challenges and install specific features, such as support for a
particular programming language, a default turn-based game manager, among others.

Much of the necessary effort for building video games is spent on graphics. To simplify
this task, Asura introduces the concept of game movie. A game movie consists of a set
of frames, each of them containing a set of sprites together with information about their
location and applied transformations, and metadata information, such as title, background,
width, height, fps, and players (i.e., player names indexed by their ID). Furthermore, the
concept of game movie is formally defined in a JSON schema9. To allow the manager to easily
build the JSON data, the game movie builder provides several methods, such as: setters for
each metadata field, addFrame() which adds a frame to the movie, addItem(sprite, x, y,
rotate, scale) which adds a sprite to the current frame in position (x, y) with the given
rotation and scale, addMessage(playerId, message) which adds a message to the player,
setters for observations and classification, and saveFrame()/restoreFrame() which allow
to add a frame state to a stack to restore it later.

The abstract game manager provided by the Builder defines the “contract” of the managers,
and provides the necessary utilities for dealing with input/output streams of the processes.
Specialized managers must implement the method manage(state, players), determining
the order to play, and managing the state of the game accordingly. Some of these specialized
managers, such as a turn-based game manager, are already developed and can be easily used
in a challenge.

The exchange of state updates between the SAs and the manager is done through JSON.
Depending on the programming language, this can be a hurdle and make it very complex

9 https://mooshak2.dcc.fc.up.pt/asura/static/match.schema.json

SLATE 2018

https://mooshak2.dcc.fc.up.pt/asura/static/match.schema.json

9:6 Asura: A Game-Based Assessment Environment for Mooshak

Tournament

- manager : GameManager
- stages: List<Stage>

+ addStage(stage: Stage)
+ run(players: Map<String,Process>)
+ toFile(stream: OutputStream)
+ toString() : String

Stage

- manager : GameManager
- rounds: List<Round>

+ prepare(players: Map<String, ProcessBuilder>)
+ run()
+ gePoints() : List<Map<String,Integer>>
+ getJson() : JsonObject

11 .. *

RoundRobin SwissStage Knockout...

11 .. *

Round

- manager : GameManager
- matches: List<Match>

+ run()
+ getPoints() : Map<String,Integer>
+ getJson() : JsonObject

Match

- manager : GameManager
- players: Map<String,Process>

+ run()
+ getPoints() : Map<String,Integer>
+ getJson() : JsonObject

11 .. *

Figure 2 UML class diagram of the Tournament Manager.

for SA’s to process it. For that, there are wrappers for players providing several methods to
process JSON. Moreover, each game can define its own wrappers providing methods specific
to the game, which can be used by SAs.

The documentation for the very first release of Asura Builder is available online10 and
has already been followed by some peers who volunteered to test the system.

3.3 Tournament Manager
The Tournament Manager is the component responsible for managing and running tour-
naments. A tournament can have any number of stages, each with its own type (pools or
knockout) and format (e.g., round-robin, swiss type, knockout, double knockout, among
others). Stages are populated with a set of players, those who qualified in the previous
stage, which will compose the matches of every round of the current stage. The assignment
of players to matches is a task of the class implementing the specific tournament format.
These tournaments can be organized in the administrator GUI of Mooshak 2.0, through a
wizard developed specifically for this task. This wizard allows to select players individually,
add/remove stages, and set some properties of the tournament, such as the number of players
per match, the number of qualified players in each stage, and the points awarded to a
win/draw/loss.

Figure 2 presents the UML class diagram of the implementation of the Tournament
Manager. This implementation contains a class for the tournament as well as for each of its
phases: stages, rounds, and matches. These classes have very similar methods, such as run()
which executes the phase, and getPoints() which returns either a list of players’ points,
in group stages, or the players’ points. Each match of the tournament is executed in the
Evaluator component.

3.4 Viewer
Asura Viewer is a GWT widget with two modes: match and tournament. Figure 3 presents
both modes side-by-side. In the tournament mode, it expects a JSON file following the
Tournament JSON Schema11. This data contains a reference to each match’s movie, organized
by stages and rounds, as well as partial and complete rankings of each phase. The tournament
mode widget consists of an interactive GUI, allowing students to navigate through the stages
of a tournament, visualize specific matches or the whole course of a player, and check the
rankings of each stage.

The match mode displays the game movie JSON produced during the evaluation phase.
The GUI mimics that of a media player, containing a slider, a play/stop button, buttons to

10 https://mooshak2.dcc.fc.up.pt/asura/static/asura-builder-documentation.pdf
11 https://mooshak2.dcc.fc.up.pt/asura/static/tournament.schema.json

https://mooshak2.dcc.fc.up.pt/asura/static/asura-builder-documentation.pdf
https://mooshak2.dcc.fc.up.pt/asura/static/tournament.schema.json

J. C. Paiva and J. P. Leal 9:7

Figure 3 Asura Viewer display modes. Tournament mode (on the left) displays a knockout stage
of a tournament. Match mode (on the right) presents the graphical feedback provided to a slalom
skier.

Figure 4 Asura Viewer integrated in the GUI of Enki after the validation of the SA.

navigate through the current play-list, a full-screen button, a box to display messages, and a
canvas where the movie is drawn. The movie is completely resizeable keeping the original
aspect ratio.

This component can be embedded in any environment, provided that the JSON data
passed to it adheres to the defined JSON schemas for tournaments and matches. Figure 4
presents a screenshot of the Asura Viewer integrated in the GUI of Enki, after a player
validated its SA against an existing SA.

4 Experiment Guidelines

An experiment with Asura will be conducted in the laboratory classes of an undergraduate
Object-Oriented Programming (OOP) course at Escola Superior de Media Artes e Design
(ESMAD) – a school of the Polytechnic Institute of Porto. The purpose of this course is
to introduce Javascript and some OOP concepts integrated into its ECMAScript 6 version
to students with little to none programming background. The course is composed of two
distinct laboratory classes which will be labeled hereafter as Control Group (CG) and
Experimental Group (EG), respectively. The homogeneity of the groups will be checked
using students’ Grade Point Average (GPA). Both groups will have access to an online
course in Enki containing a set of programming activities to assimilate knowledge obtained

SLATE 2018

9:8 Asura: A Game-Based Assessment Environment for Mooshak

during expository classes. However, CG will have to solve traditional programming exercises,
whereas EG will have to develop players for Asura games. These activities will be created by
a group of three teachers, pertaining to the same institution as the students, with a single
requirement that both sets of activities have identical difficulty. The course will be available
online during two weeks, in which students are free to access in and after class.

At the end of the experiment, students and teachers will be asked to fill in online
questionnaires about the usefulness of the learning environment. Teachers will have specific
questions regarding the difficulty of developing problems for Asura. Students will have
questions to assess the level of engagement obtained while using the environment. The
results obtained from the online questionnaires as well as usage data collected during the
preparation and execution of the course will be analyzed in order to draw conclusions about
the effectiveness of Asura. This usage data includes a number of variables, such as the
number of solved exercises, the number of submissions per problem, the time spent per
exercise, and the number of different strategies used per problem (identified by a threshold
on the number of different characters).

5 Conclusions and Future Work

This paper presents Asura, an environment that aims to provide engaging game-based
activities with graphical game-like feedback as well as to facilitate the creation of those
activities by teachers. From the students’ perspective, the main idea of Asura is to challenge
students to code an SA that plays a game, taking advantage of the graphical feedback on its
performance against other SAs. Once the SA development period ends, teachers can organize
tournament amongst SAs. With regard to teachers, Asura provides a Java framework that
supports the creation of game-based challenges, particularly in the process of building the
game movie.

Asura is a work in progress. It is currently in the final development stage, just lacking the
implementation of a few types of tournament stages and some minor improvements in the
Builder. The design of each component of Asura, including the way of integrating them with
the existing work, is already done. Several game-based challenges were already developed
using the framework provided by the Builder.

The next phase encompasses the execution of the experiment described in Section 4.
It is expected that students in EG will spend considerably more time in activities, trying
different strategies to beat up their colleagues, which would indicate greater engagement.
However, some students may be negatively affected by losing and show their displeasure
in the questionnaire’s responses. Students in the CG will not spend more time in the
environment than the necessary amount to solve all problems once. Also, some exercises
may not be solved by the end of the experiment. In respect to teachers, they will notice a
small increase in difficulty while creating the games, since they need to be familiar with Java
and to understand the framework beforehand. The amount of time that they spend doing
the graphics is also unpredictable since it highly depends on the quality that they want to
reach. Nevertheless, this should not result in a significant difference in terms of time, when
comparing with the time of setting up an ICPC-like problem, if they already know Java.

One of the major points of improvement already identified is in the Asura Builder. Many
teachers are not familiar with Java, but the framework requires its use. This will certainly
prevent or make it very difficult for these teachers to work with Asura. For this reason, the
Builder component will be extended to support language-agnostic creation of games.

J. C. Paiva and J. P. Leal 9:9

References
1 Jens Bennedsen and Michael E. Caspersen. Failure rates in introductory programming.

SIGCSE Bulletin, 39(2):32–36, 2007. doi:10.1145/1272848.1272879.
2 Juan C. Burguillo. Using game theory and competition-based learning to stimulate student

motivation and performance. Computers & Education, 55(2):566–575, 2010. doi:10.1016/
j.compedu.2010.02.018.

3 Ginés Gárcia-Mateos and José Luis Fernández-Alemán. A course on algorithms and data
structures using on-line judging. SIGCSE Bulletin, 41(3):45–49, 2009. doi:10.1145/
1562877.1562897.

4 Anabela Gomes and António José Mendes. Learning to program-difficulties and solutions.
In International Conference on Engineering Education (ICEE), 2007.

5 Pedro Guerreiro and Katerina Georgouli. Enhancing elementary programming courses
using e-learning with a competitive attitude. International Journal of Internet Education,
10(1):27–42, 2008.

6 Ken Hartness. Robocode: Using games to teach artificial intelligence. Journal of Computing
Sciences in Colleges, 19(4):287–291, 2004.

7 Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. A study of the difficulties
of novice programmers. SIGCSE Bulletin, 37(3):14–18, 2005. doi:10.1145/1151954.
1067453.

8 Ramon Lawrence. Teaching data structures using competitive games. IEEE Transactions
on Education, 47(4):459–466, 2004. doi:10.1109/te.2004.825053.

9 José Paulo Leal and Fernando Silva. Mooshak: A web-based multi-site programming contest
system. Software: Practice and Experience, 33(6):567–581, 2003. doi:10.1002/spe.522.

10 Scheila Wesley Martins, António José Mendes, and António Dias Figueiredo. A strategy
to improve student’s motivation levels in programming courses. In Frontiers in Education
Conference, pages F4F–1–F4F–7, 2010. doi:10.1109/FIE.2010.5673366.

11 Wilbert J. McKeachie. The rewards of teaching. New Directions for Teaching and Learning,
1982(10):7–13, 1982. doi:10.1002/tl.37219821003.

12 José Carlos Paiva, José Paulo Leal, and Ricardo Queirós. Odin: A service for gamifica-
tion of learning activities. In International Symposium on Languages, Applications and
Technologies, pages 194–204, 2015. doi:10.1007/978-3-319-27653-3_19.

13 José Carlos Paiva, José Paulo Leal, and Ricardo Alexandre Queirós. Enki: A pedagogical
services aggregator for learning programming languages. In Conference on Innovation and
Technology in Computer Science Education, pages 332–337, 2016. doi:10.1145/2899415.
2899441.

14 Ricardo Queirós, Paulo José Leal, and José Campos. Sequencing educational resources
with Seqins. Computer Science and Information Systems, 11(4):1479–1497, 2014. doi:
10.2298/csis131005074q.

15 Rathika Rajaravivarma. A games-based approach for teaching the introductory program-
ming course. SIGCSE Bulletin, 37(4):98–102, 2005. doi:10.1145/1113847.1113886.

16 Anthony Robins, Janet Rountree, and Nathan Rountree. Learning and teaching pro-
gramming: A review and discussion. Computer Science Education, 13(2):137–172, 2003.
doi:10.1076/csed.13.2.137.14200.

17 Li Sui, Jens Dietrich, Eva Heinrich, and Manfred Meyer. A web-based environment for
introductory programming based on a bi-directional layered notional machine. In Confer-
ence on Innovation and Technology in Computer Science Education, pages 364–364, 2016.
doi:10.1145/2899415.2925487.

SLATE 2018

http://dx.doi.org/10.1145/1272848.1272879
http://dx.doi.org/10.1016/j.compedu.2010.02.018
http://dx.doi.org/10.1016/j.compedu.2010.02.018
http://dx.doi.org/10.1145/1562877.1562897
http://dx.doi.org/10.1145/1562877.1562897
http://dx.doi.org/10.1145/1151954.1067453
http://dx.doi.org/10.1145/1151954.1067453
http://dx.doi.org/10.1109/te.2004.825053
http://dx.doi.org/10.1002/spe.522
http://dx.doi.org/10.1109/FIE.2010.5673366
http://dx.doi.org/10.1002/tl.37219821003
http://dx.doi.org/10.1007/978-3-319-27653-3_19
http://dx.doi.org/10.1145/2899415.2899441
http://dx.doi.org/10.1145/2899415.2899441
http://dx.doi.org/10.2298/csis131005074q
http://dx.doi.org/10.2298/csis131005074q
http://dx.doi.org/10.1145/1113847.1113886
http://dx.doi.org/10.1076/csed.13.2.137.14200
http://dx.doi.org/10.1145/2899415.2925487

CaVaDSL: Virtual Learning Spaces Formal
Specification
Ricardo Giuliani Martini
Centro Algoritmi / Departamento de Informática
Universidade do Minho, Campus de Gualtar, Braga, Portugal
rgm@algoritmi.uminho.pt

https://orcid.org/0000-0001-5217-6110

Pedro Rangel Henriques
Centro Algoritmi / Departamento. de Informática
Universidade do Minho, Campus de Gualtar, Braga, Portugal
prh@di.uminho.pt

https://orcid.org/0000-0002-3208-0207

Abstract
In the context of Cultural Heritage, memory institutions build exhibition rooms to expose their
assets and disseminate knowledge through these learning spaces. CaVa project aims at facilitating
the process of learning spaces construction on the web to implement virtual museums. This
paper presents CaVaDSL, an external Domain-Specific Language (DSL) designed to specify virtual
Learning Spaces enabling their automatic generation. To introduce CaVaDSL language, the paper
runs a case study, Museu Virtual Interativo da Fotografia (MVIF), presenting the specification for
the museum’s exhibiting rooms and their final layout. The process that analyzes and transforms
the formal specification into the virtual Learning Spaces is briefly described to present the core
engine of CaVa platform.

2012 ACM Subject Classification Software and its engineering → Domain specific languages

Keywords and phrases domain-specific languages, formal specification, context free grammars,
virtual museums, virtual learning spaces

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.10

Category Short Paper

Funding This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT
– Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013.

1 Introduction

To preserve objects that belong to the assets of memory institutions, like museums or archives,
and to disseminate the enclosed knowledge (the so-called cultural heritage), people is resorting
more and more to the digital format and computer-based systems. In particular, Internet is
an appealing vehicle for imparting knowledge; the related technology has changed the manner
of reading, thinking, writing, and learning [1]. According to [6], the rapid and continuing
advances in information and communication technologies are changing the ways people share,
use, develop and process information. In this context a new concept emerged years ago and
is gaining popularity: virtual museum [3]; CaVa project, that is discussed along this paper,
was born to automatically create those museums. Associated with it, we decided to call
virtual Learning Space (vLS) the website containing the information related with the museum
belongings (its digital objects) that will be seen and explored by the visitor so that he can

© Ricardo Giuliani Martini and Pedro Rangel Henriques;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 10; pp. 10:1–10:10

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rgm@algoritmi.uminho.pt
https://orcid.org/0000-0001-5217-6110
mailto:prh@di.uminho.pt
https://orcid.org/0000-0002-3208-0207
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

10:2 CaVaDSL: Virtual Learning Spaces Formal Specification

learn through it. These new web Learning Spaces are the exhibition rooms of the traditional
(physical) museums [5].

This paper presents an approach to automatically build these virtual Learning Spaces
formally specified in a specially tailored language (CaVaDSL) that resorts to a domain
ontology. That Domain Specific Language was designed aiming at being easily used by
museum Curators and other non-programmers, experts in Cultural Heritage areas – so, as
we will illustrate with a running-example along the paper, CaVaDSL has a light syntax and is
focussed on the process of planning and mounting museum exhibits. The ontology schema1,
at the core of CaVa system and underlying approach, is defined with two purposes: first, to
give formal semantics to the digital object repository, using an high-level and abstract schema
independent of the final use; second, to describe the information that must be displayed in
the envisaged virtual Learning Space.

Our main goal in this paper is to discussed as a properly designed language – based on
an appropriate vocabulary (defined for a specific knowledge domain) – can effectively facilite
the mission of people working in memory institutions. From specifications written according
to our ontological approach in CaVaDSL language, the system we developed, CaVa [2, 4, 5],
is able to automate the creation of web-based virtual exhibition rooms (vLS) to display
cultural, material or immaterial, objects.

This paper is organized as follows. The next Section 2 introduces our case study: Museu
Virtual Interativo da Fotografia (MVIF for short). Section 3, the main one, introduces
CaVaDSL language, and Subsection 3.1 continues its presentation outlining the specification
of MVIF virtual LS with CaVaDSL. In order to process the formal specification written in
CaVaDSL and generate the MVIF exhibition rooms, Section 4 describes CaVagen, a set of
web-application generators. Section 5 presents the result of rendering the files generated
by CaVagen, the desired MVIF. Finally, Section 6 concludes and gives the directions for
future work.

2 MVIF at a glance

MVIF is a virtual museum developed by Ricardo Ravanello. The museum exposes the
techniques, equipments, ideas and characters of the history of photography [8]. In the work
underlying this paper, the idea is not to reproduce the museum faithfully 2, but just to
use MVIF specification and implementation to illustrate our proposal presenting a concrete
example of a CaVaDSL museum description. To store the MVIF assets, a relational database
was built. Some tables of that database can be seen at the MVIF website3 clicking on the
left side menu “MVIF DB TABLES”.

To reproduce the MVIF museum in CaVa, it is necessary to describe the context domain
in which it is enclosed. For that and according to the CaVa ontological basis, we designed an
ontology describing the MVIF concepts and relations; a part of it will be presented. Figure 1
shows the two main concepts related to the MVIF domain, Technique and Period, and four
subclasses of the later. Notice that those two concepts abstract precisely the data enclosed
in the two tables shown in the museum’s link referred above). Four attributes (datatype
properties) for the concept Period are also displayed.

1 Ontology defined at the abstract level of concepts and relations, without instances.
2 Actually the museum’s web site available is the original one, by Ravanello, and not a web site generated

by CaVa environment.
3 Available at http://www4.di.uminho.pt/~gepl/cava/MVIF/

http://www4.di.uminho.pt/~gepl/cava/MVIF/

R.G. Martini and P. R. Henriques 10:3

Figure 1 A portion of the “Museu Virtual Interativo da Fotografia” ontology.

To relate the abstract concepts of the MVIF ontology with their instances stored in the
relational database structure, it is necessary a mapping between the two – that mapping will
create a pavement to enable querying the database using the abstract vocabulary established
by the ontology. For this purpose, the Ontop4 framework based on the Ontology-Based Data
Access (OBDA) axioms was used. The mapping for this concrete case is available at the
MVIF website on the left side menu “MVIF MAPPING”.

3 CaVaDSL Language

Aiming at an easy generation of virtual Learning Spaces for the use of the person in charge
of archives or museums, an external DSL was designed. CaVaDSL was developed to describe,
in an abstract level, virtual exhibition rooms in the museum Curator’s perspective, giving
the Curator the possibility to specify the virtual LS based on a domain ontology vocabulary.
CaVaDSL focuses on the exhibition rooms, so the main component of the language is a list
of exhibitions. The syntax of CaVaDSL is similar to that of the JSON (JavaScript Object
Notation) language, because it is based on the ‘key-value pair’ format and it is easy for
humans to read and write. The structure of CaVaDSL is split into four main blocks that
specify: the main configuration, the header, the content, and the footer of the virtual Learning
Space, as specified by the derivation rule p0.

[p0] cava: mainConfig header content footer ;

The details of that language will be presented in the next subsection using MVIF as a
running example.

3.1 MVIF specified in CaVaDSL

This section presents the specification of the MVIF museum organized according to the four
main blocks of CaVaDSL.

The mainconfig defines the virtual Learning Space title and main description, as well
as, other components (e.g., carousel of images) related to the entire LS (not only about a
specific page, like an exhibition, for example); this configuration is written according to the
production rule p1 of Listing 1:

4 Accessible at http://ontop.inf.unibz.it/

SLATE 2018

http://ontop.inf.unibz.it/

10:4 CaVaDSL: Virtual Learning Spaces Formal Specification

Listing 1 Production rule p1: mainConfig.
1 [p1] mainConfig: ’mainconfig’ ’[’ learningSpaceTitle learningSpaceAbout?

learningSpaceCarousel? ’]’ ;

Listing 2 Example applying the production rule p1: mainConfig.
1 mainconfig [
2 LS title: "Museu Virtual Interativo da Fotografia",
3 about [
4 p: "O museu virtual da fotografia se propõe a organizar as informações

históricas dentro de temáticas
5 curatoriais apresentadas em cronologia.",
6 p: "Partimos de uma convicção: não é possível compreender a importância, as

possibilidades, o presente e o
7 futuro da fotografia sem compreende as ideias e os conceitos, os

equipamentos e as tecnologias, as práticas e
8 os usos, os personagens e suas trajet órias pelos quais e por onde a

fotografia passou para chegar onde
9 chegou nos dias de hoje.",

10]
11 carousel [
12 interval: 5,
13 images [
14 caption: "Author - Ricardo Ravanello", src: "imagem-capa-mvif.png",

active,
15 caption: "Fornalha de um Hammam - Marrocos, 2015 (Ricardo Ravanello)",

src: "imagem2-mvif.jpg",
16]
17]
18]

Listing 3 Production rule p2: menu.
1 [p2] header: ’menu’ ’[’ (optionHeader)+ ’]’ ;
2 optionHeader: brand | backgroundColor | fontColor | behaviourStat | items ;

Listing 2 is a part of the CaVaDSL MVIF specification written according to the derivation
rule p1.

The non-terminal grammar symbol menu defines the main menu of the virtual Learning
Space that is composed of: brand, background and foreground colors; behaviour (fixed menu
or moving following the page scroll); type of the menu links (simple or dropdown), containing
the label and the link. Production rule p2 in Listing 3 formalizes this composition.

The part of the CaVaDSL MVIF specification in Listing 4 is written according to the
derivation rule p2.

Production rule p3 in Listing 5 states that the non-terminal symbol exhibitions (a part of
the content block and the main component of CaVaDSL) is a list of exhibition rooms. Each
exhibition is composed of: title, short description and icon; additional info with a title and
a description; behaviour (collapsed or expanded); exhibition type (permanent, temporary5,
future, or special); query operator – all (search for all occurrences of a determined ontology

5 If the type is set up to ‘temporary’, it is possible to configure a notification to the visitor based on the
exhibition expiration date.

R.G. Martini and P. R. Henriques 10:5

Listing 4 Example applying the production rule p2: menu.
1 menu [
2 brand: "Museu Virtual Interativo da Fotografia",
3 background color: green,
4 foreground color: white,
5 behavior: fixed,
6 options [
7 label: "Exibições", dropdown [
8 dropdown label: "Permanentes", url: "permanentes",
9 dropdown label: "Temporárias", url: "temporarias",
10 dropdown label: "Especiais", url: "especiais",
11 dropdown label: "Futuras", url: "futuras",
12]
13 # "Temáticas" dropdown menu
14 label: "Sobre", url: "sobre_mvif", extension: php,
15]
16]

Listing 5 Production rule p3: exhibitions.
1 [p3] exhibitions: ’exhibitions’ ’[’ (exhibition)+ ’]’ ;
2 exhibition: ’exhibition’ ’[’ (optionExhibition)+ ’]’ ;
3 optionExhibition: exhibitionTitle | exhibitionShortDescription |

exhibitionIcon
4 | exhibitionBehaviour | exhibitionAdditionalInfo | exhibitionType

| exhibitionNotification | (queryOperators | sparql) ;

Listing 6 Production rule p4: queryOperators.
1 [p4] queryOperators: all | one ;
2 all: CONCEPT ’->’ ’all’ ’(’ parametersAll ’)’ labelsOptions ;
3 parametersAll: listName ’,’ mappingOrTriplesFileName ’,’ ontologyFileName ;
4 listName: TEXT ;
5 mappingOrTriplesFileName: TEXT ;
6 ontologyFileName: TEXT ;
7 labelsOptions: ’[’ (labelsExhibitionRoom)+ ’]’ ;
8 labelsExhibitionRoom: elem (’,’ elem)* ;
9 elem: TEXT ;

Listing 7 Production rule p5: sparql.
1 [p5] sparql: ’SPARQL’ ’[’ sparqlStatement ’]’ ’[’ labelsOptions ’]’ ;

concept declared and returns the set of instances); or one (search for only one object (first
instance) that corresponds to the conditional parameter and the ontology concept) – or
SPARQL query (specified according to the production rule p5).

The queryOperators non-terminal symbol defines the operator that shall be used to
query the database repository using the ontology vocabulary. The production rule p4 in
Listing 6 formalizes the alternatives and the components of such operators, crucial to extract
the information to exhibit in each museum’s room.

The rule p5 in Listing 7 defines the non-terminal symbol sparql that offers another
operator to write a query resorting directly to the SPARQL query language.

The non-terminal sparqlStatement corresponds to a declaration based on the SPARQL
grammar.

SLATE 2018

10:6 CaVaDSL: Virtual Learning Spaces Formal Specification

Listing 8 Example applying the production rule p3 and p4: exhibitions and queryOperators.
1 exhibitions [
2 exhibition [
3 title: "Técnicas da Fotografia",
4 short description: "Dividimos a história da fotografia em três grandes

períodos. Essa classificação se
5 justifica não apenas pela mudança dos suportes ou das técnicas, mas

também pelo fato de que é possível
6 diferenciar drasticamente todo o sistema em torno da fotografia em cada

um dos três momentos.",
7 icon: "camera-retro",
8 additional info [
9 title: "1672-2010",

10 description: "Período",
11]
12 behavior: expanded,
13 type: permanent,
14 Technique->all("Técnicas", "mvif.obda", "http://semanticweb.org/
15 rgm/2017/mvif/")[headerOfEachElement:"Técnica", "Década", "Descrição", "

Período"],
16]
17]

Listing 9 Production rule p6: footer.
1 [p6] footer: ’footer’ ’[’ (optionFooter)+ ’]’ ;
2 optionFooter: footerImage | footerFormatDate | footerDeveloper |

footerBehavior | footerStyle ;

To demonstrate how the production rules p3 and p4 are applied, an MVIF specification
example is presented in Listing 8. Notice that the terminal symbol CONCEPT used in production
rule p4 (Listing 6) must denote a concept belonging to the ontology.

At last, the non-terminal symbol footer is used to specify an area at the bottom of the
LS, containing: images and date; company or developer name; behaviour (fixed footer or
moving according to the page scroll); style (simple footer with the data above mentioned or
extended with an array of links with title, subtitle, URL, icon, etc.6). This is formalized by
production rule p6 in Listing 9.

The fourth part of the CaVaDSL MVIF specification, written according to the derivation
rule p6, is presented in Listing 10 to illustrate its use.

Notice that each block and component specification starts with the left bracket “[” and
closes with the right bracket “]”, always embracing pairs consisting of plain text or built-in
terms.

4 CaVagen

CaVagen is a component of CaVa system as fully documented in [4, 5]. As can be seen in the
block diagrams shown in the previously referred website at http://www4.di.uminho.pt/
~gepl/cava/MVIF/, this CaVa component consist of four processors, namely CaVastructure,

6 The extended footer is good for addresses, social network links and other important information related
to the virtual Learning Space.

http://www4.di.uminho.pt/~gepl/cava/MVIF/
http://www4.di.uminho.pt/~gepl/cava/MVIF/

R.G. Martini and P. R. Henriques 10:7

Listing 10 Example applying the production rule p6: footer
1 footer [
2 images [
3 image: "cava_logo.png",
4 alignment: right,
5]
6 format date: "Y",
7 developer [
8 name: "Ricardo Martini",
9 alignment: left,
10]
11 behavior: fixed,
12 style: condensed,
13]

CaVaqueries CaVaqueriesTriple (the laternative to deal with triples datastorage, instead of
mappings), and CaVarun7.

The first one is responsible for the generation of the static content of the virtual LS.
Moreover, CaVastructure has the task of executing the CaVaqueries (or CaVaqueriesTriple) pro-
cessor when, at least, one query operator is set up in the CaVaDSL Specification. The second
and third modules have the duty of assembling the ontology queries based on the query
operator(s) specified in the CaVaDSL description. They shall handle the mapping or other
intermediate file that links the ontology to the database (e.g., an OBDA mapping file, a Terse
RDF Triple (turtle) file, etc). The last one, CaVarun, is responsible for executing the queries
mounted by CaVaqueries (or CaVaqueriesTriple) processor and generates the queries results file
to be used by the LS Scripts.

The purpose of CaVagen processors is to get the LS Specification (CaVaDSL) as input and
transform it into several scripts possibly written in more than one web language (e.g., HTML,
PHP, JS, template engines, CSS, etc.) and other kind of documents (e.g., state files8), that
together make up multiple web pages, i.e., the complete virtual Learning Space.

CaVagen processors have two objectives: (1) parsing the CaVaDSL specification of a virtual
LS that was manually written by the enduser9 according to CaVagrammar; (2) generating/set-
ting up the LS scripts component of CaVarender, that comprises the configuration and script
files necessary to be rendered by the web browser10.

Figure 2 shows a simple CaVagen workflow involving the three steps that shall be followed
to achieve the main goal of this work: Specification of a virtual Learning Space in CaVaDSL;
Automatic generation and assembly of queries; Automatic generation of static and dynamic
content of LS Scripts.

From step 1, if there is at least one query operator specified at any exhibition room of
the CaVaDSL specification, step 2 is executed, followed by step 3; otherwise, after step 1, step
3 is executed (excluding step 2), generating only the static content of the LS. After executing
these steps, the web browser (comprised in CaVarender) will receive the necessary script files
aiming at interpreting and rendering the final virtual Learning Space specified.

7 Due to space constraints, we can’t include here the block diagrams that depict the system architecture;
this is way we direct the Reader to the project website and papers.

8 State files contain data to be used by the processors of CaVa system in order to retrieve important
information to proceed with the execution and generation of the virtual LS.

9 the Museum Curator or another expert in cultura heritage information.
10To produce the desired the virtual Learning Space.

SLATE 2018

10:8 CaVaDSL: Virtual Learning Spaces Formal Specification

Figure 2 CaVa workflow: from the CaVaDSL Specification to the virtual LS automatic generation
in three steps.

Figure 3 Main configuration rendered.

5 Generating and Rendering MVIF virtual LS with CaVagen

Based on the process explained in Section 4, CaVagen analyzes the MVIF specification,
written in CaVaDSL (as discussed in Section 3), and transforms it into several scripts
that together constitute the envisage exhibition rooms of that virtual museum. Figures 3
to 6 illustrate the effect of rendering, via an web browser, the generated MVIF program
and data files. For the sake of space, only some generated web pages will be shown
(namely mainconfig, menu, and exhibitions); more details are available from the website
http://www4.di.uminho.pt/~gepl/cava/MVIF/.

Figure 3 shows the MVIF entrance all (actually the homepage) after rendering the
files generated from the main configuration part of the CaVaDSL specification. Notice in
Figure 3 the main components (LS title, about and carousel) for the museum’s web pages
created according to that specification.

Based on the menu part of the MVIF specification (CaVaDSL code shown in Listing 3), the
museum’s menus are rendered as illustrated in Figure 4. According to that specification, the
bar on the top of the museum’s window, exhibits the LS name (Museu Virtual Interativo
da Fotografia), and three menu options: two buttons corresponding to dropdown lists
(named Exibições and Temáticas), and a simple button named Sobre.

The exhibitions running in the museum are group in four type. As only one, of permanent
type, was specified in our the running example, it will be the only available in the menu button
Exibições under the option Permanentes. Figure 5 shows the exhibition room rendered
using the files generated from the exhibitions part of the MVIF CaVaDSL specification.

In Figure 5 it is possible to see the exhibition attributes specified as visible: title, short
description, icon (camera-retro), additional info (1672-2010 Período) and behavior
(expanded, denoted by the chevron-up icon in the top right corner).

http://www4.di.uminho.pt/~gepl/cava/MVIF/

R.G. Martini and P. R. Henriques 10:9

Figure 4 MVIF Menu rendered.

Figure 5 Exhibitions list rendered.

Figure 6 Permanent exhibition room rendered.

The final exhibition room rendered, containing the data retrieved from the knowledge
repository by the query performed, can de seen in Figure 6. All the details of the webpage
shown were rigorously defined in the MVIF specification listed previously (see Section 3.

6 Conclusion

In this paper CaVaDSL language was presented. This language was specifically designed to
allow the curators of memory institutions to describe rigorously virtual Learning Spaces
aiming at their automatic generation. CaVagen [4], the engine developed to process CaVaDSL

specifications, was also introduced briefly in the paper.
The language itself was specified by a typical context-free grammar written in ANTLR

notation [7]. Its complex processor was generated automatically by the compilers-generator
system ANTLR from a translation grammar defined by a set of Java Listeners written over
the CFG referred above. So the CaVaDSL development process is not worthwhile for further
discussion in the present context. The objective of the paper was, on one hand, to introduce
the language design tuned for an easy usage in cultural environments, and on the other

SLATE 2018

10:10 CaVaDSL: Virtual Learning Spaces Formal Specification

hand, to emphasize the power of automatic generation of programs, describing a complex
application domain.

Although not discussed in the paper, CaVaDSL was applied to three different Cultural
Heritage scenarios, specifying and creating virtual Learning Spaces complying with their
needs as defined by the respective ontologies [3].

To proceed, we intend to extend CaVaDSL to incorporate more powerful elements, like
more sophisticated query operators, variables or functions, that will increase the language
expressiveness and improve its usability. We also consider important to investigate the
possibility to use YAML or other host language, instead of building it from the scratch; this
approach could enable the reuse of some YAML features for free. Furthermore, we plan to
work soon on the improvement of: the generated User Interface; the portability of the system;
and the system performance. The most important and sensible future work direction is the
design and conduction of experiments to assess the system’s usability and collect end-user
feedback. This is a crucial step to properly move CaVa project onwards.

References
1 Janna Quitney Anderson. Challenges and Opportunities: The Future of the Internet. Cam-

bria Press, 2010.
2 Ricardo G. Martini, Cristiana Araújo, Pedro Rangel Henriques, and Maria João Varanda

Pereira. CaVa: an example of the automatic generation of virtual learning spaces. In
Trends and Advances in Information Systems and Technologies, volume 1, pages 633–643.
Springer, 2018.

3 Ricardo Giuliani Martini. Formal Description and Automatic Generation of Learning
Spaces based on Ontologies. PhD thesis, University of Minho, 2018. (to be discussed).

4 Ricardo Giuliani Martini and Pedro Rangel Henriques. Automatic generation of virtual
learning spaces driven by CaVaDSL: An experience report. AMC SIGPLAN Notices,
52(12):233–245, 2017. doi:10.1145/3170492.3136046.

5 Ricardo Giuliani Martini, Giovani Rubert Librelotto, and Pedro Rangel Henriques. Formal
description and automatic generation of learning spaces based on ontologies. Procedia
Computer Science, 96:235–244, 2016. doi:10.1016/j.procs.2016.08.136.

6 Melbourne declaration on educational goals for young australians, 2008. Min-
isterial Council for Education, Early Childhood Development and Youth Affairs.
URL: http://www.curriculum.edu.au/verve/_resources/National_Declaration_on_
the_Educational_Goals_for_Young_Australians.pdf.

7 Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd edition, 2013.
8 Ricardo Brisólla Ravanello. Narrativa para bens culturais: tecnologias e aplicabilidades da

fotografia digital expandida em museus virtuais. PhD thesis, Universidade do Minho, 2018.

http://dx.doi.org/10.1145/3170492.3136046
http://dx.doi.org/10.1016/j.procs.2016.08.136
http://www.curriculum.edu.au/verve/_resources/National_Declaration_on_the_Educational_Goals_for_Young_Australians.pdf
http://www.curriculum.edu.au/verve/_resources/National_Declaration_on_the_Educational_Goals_for_Young_Australians.pdf

Non-LR(1) Precedence Cascade Grammars

José-Luis Sierra
Fac. Informática. Universidad Complutense de Madrid
C/ Prof. José García Santesmases 9. 28040 Madrid, Spain
jlsierra@ucm.es

https://orcid.org/0000-0002-0317-0510

Abstract
Precedence cascade is a well-known pattern for writing context-free grammars (CFGs) that model
the syntax of expression languages. According to this method, precedence levels are represen-
ted by non-terminals, and operators’ attributes are used to write syntax rules properly. In
most cases, the resulting precedence cascade grammar (PCG) has neat properties that facilitate
its implementation. In particular, many PCGs are LR(1) grammars, which serve as input for
conventional bottom-up parser generators. However, for some cumbersome operator tables the
method does not produce such neat grammars. This paper focuses on these cumbersome operator
tables by identifying several conditions leading to non-LR(1) PCGs.

2012 ACM Subject Classification Software and its engineering → Syntax

Keywords and phrases grammarware, expression grammars, grammar patterns, grammar ambi-
guity, LR grammars

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.11

Category Short Paper

Funding This work is supported by the project grants TIN2014-52010-R and TIN2017-88092 R.

1 Introduction

Most computer languages include an expression sub-language as their most distinctive feature.
This sub-language allows users to begin with a repertoire of primitive expressions and create
more complex expressions by combining simpler ones. Such a combination is carried out by
operators [13].

In this paper we will focus only in the most common classes of operators: binary infix,
and unary prefix and postfix operators. In addition, we will adopt the conventions of the
Prolog language to describe the attributes for these operators [5]:

Each operator will have a name (e.g., +, −, ∗ . . .). It will be possible to overload this
name, allowing different operator definitions to share such a name.
Each operator will belong to a precedence level. Each precedence level will be represented
by a positive natural number. Operators in lower precedence levels will take priority over
(i.e., will bind tighter than) operators in higher ones1. In addition, when an operator
is used to build an expression, this expression will take the precedence level for that
operator. Precedence levels for basic expressions will be 0.

1 That is, following Prolog conventions, in this paper precedence and priority of operators will be
contravariant properties.

© José-Luis Sierra;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 11; pp. 11:1–11:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jlsierra@ucm.es
https://orcid.org/0000-0002-0317-0510
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

11:2 Non-LR(1) Precedence Cascade Grammars

Name Precedence Type

⊗ 3 fy
⊕ 3 xfy
� 2 yfx
⊗ 2 xfx
⊗ 1 yf

(a) Operator table for a sample expression
language.

E3 → ⊗E3 | E2 ⊕ E3 | E2

E2 → E2 � E1 | E1 ⊗ E1 | E1

E1 → E1⊗ | E0

E0 → a | (E3)

(b) PCG for the descriptions in Table 1a; it is
an LR(1) grammar.

Figure 1 An operator table and its associated PCG.

Operators will constrain the precedence levels of their arguments to be: (i) lower than
their own precedence level (denoted by x in the description of the operator’s argument),
or (ii) lower or equal than such a precedence level (which will be denoted by y).

The fixity and the arguments’ allowed precedences will together form the operator’s
syntactic type. Following Prolog convention, this type will be one of the following forms:
(i) for infix operators, yfx, xfy, xfx; (ii) for prefix operators, fy, fx; and (iii) for postfix
operators, yf , xf . This way, yfx operators are left-associative, xfy right-associative, and
xfx non-associative. In turn, fy and yf are associative, while xf and fx are non-associative
unary (prefix and postfix) operators. All this information can be condensed into an operator
table for the language. Table 1a gives an example of an operator table2.

To model the syntax of this kind of expression languages, it is possible to use a precedence
cascade pattern, which is described to a greater or lesser extent in any typical textbook on
compiler construction (e.g., [3, 8]). In order to describe the pattern, we will introduce the
following notation:

By ↓ (i) we will denote the precedence level immediately smaller than i, or 0 if i is the
smallest precedence level.
By > we will denote the greatest precedence level.

The pattern itself is based on the following conventions (Figure 1b shows the CFG that
results from applying these conventions to the Table 1a):

Each precedence level i has a non-terminal Ei associated with it that represents expressions
built with operators at that level.
Each operator � in level i has a rule associated with it that characterizes the syntax of
the expressions formed with that operator. This rule depends on the operator’s type: (i)
Ei → Ei�E↓(i) if the type is yfx; (ii) Ei → E↓(i)�Ei if it is xfy; (iii) Ei → E↓(i)�E↓(i)
if xfx; (iv) Ei → �Ei if fy; (v) Ei → �E↓(i) if fx; (vi) Ei → Ei� if yf ; and (vii)
Ei → E↓(i)� if the type is xf .
There is an additional rule Ei → E↓(i) for each level i.
Finally, there is a non-terminal symbol E0 that models the basic (i.e., literals, variables,
function calls, etc.) and parenthesized expressions. In the sequel we will abstract all the
basic expressions with a single a symbol. Thus, there will be an additional pair of rules
E0 → a | (E>)

2 Notice that, according to this operator table, an expression like “⊗a⊕ a⊕ a⊗ a⊗” will mean “⊗(a⊕
(a⊕ (a⊗ (a⊗))))”, while another one like “a⊕⊗a” will be ill-formed (it should be written “a⊕ (⊗a)”).

J. L. Sierra 11:3

Name Prec. Type

� 2 yfx
� 1 xfx

(a) Operator table with multiple
definitions of the infix operator �.

E2 → E2 � E1 | E1

E1 → E0 � E0 | E0

E0 → a | (E2)

(b) PCG resulting of the oper-
ator table presented in Table 2a.

E2

E2

E1

E0

a

� E1

E0

a

E2

E1

E0

a

� E0

a

(c) Two different parse trees for “a�
a”.

Figure 2 Example regarding multiple operator definitions with the same name and fixity.

We will refer to the CFGs produced by this pattern as precedence cascade grammars
(PCGs). A well-known example of using this pattern for a real programming language is Jeff
Lee’s YACC grammar for ANSI C3.

For most operator tables, the PCGs are LR(1) grammars [6] suitable for typical bottom-
up, YACC-like, parser generators (this is the case, for instance, of the PCG in Figure 1b)4.
However, there are also operator tables that lead to non-LR(1) grammars. Most of the time,
this is due to contradictory operator definitions, which in turn produce ambiguous PCGs.
Other times, such contradictions do not exist, but even so the resulting PCGs require more
than one look-ahead symbol. In this paper we address these concerns by identifying common
situations leading to non-LR(1) PCGs.

The rest of the paper is structured as follows. Section 2 describes the problems caused by
multiple operator definitions with the same name and fixity. Section 3 addresses the problems
caused by operators with opposite associativities at the same precedence level. Section 4
analyzes the concerns caused by the overloading of an operator in infix and postfix forms.
Section 5 analyzes potential ambiguities caused by operators overloaded simultaneously in
infix, prefix and postfix forms. Section 6 summarizes some work related to ours. Finally,
Section 7 presents some conclusions and lines of future work.

2 Multiple operator definitions with the same name and fixity

Operator tables containing multiple operator definitions with the same name and fixity, but
with different types and/or different precedence levels are intrinsically ambiguous, since any
occurrence of the multiple-defined operator names can be explained indistinctly for either
one or another definition. Therefore, the resulting PCG will be ambiguous.

Figure 2 illustrates the problems caused by this kind of tables. Notice that, since there are
two definitions of the infix operator �, it is not possible to discern which version of � is used.
In consequence, the resulting PCG (Figure 2b) is ambiguous (and, therefore, non-LR(1)), as
illustrated by the two different parse trees for the witness expression “a� a” in Figure 2c .

Finally, notice that the conditions reported in this section only affect multiple operator
definitions with the same name and fixity. On the other hand, it is perfectly feasible to have
multiple definitions with the same name, but with different fixities, and still obtain LR(1)
PCGs (e.g., infix, prefix and postfix ⊗ in Figure 1).

3 https://www.lysator.liu.se/c/ANSI-C-grammar-y.html
4 These and other similar assertions on the LR(1) condition of particular CFGs can be verified, for

instance, with the tools available online at http://smlweb.cpsc.ucalgary.ca/.

SLATE 2018

https://www.lysator.liu.se/c/ANSI-C-grammar-y.html
http://smlweb.cpsc.ucalgary.ca/

11:4 Non-LR(1) Precedence Cascade Grammars

Name Prec. Type

� 1 yfx
� 1 xfy

(a) Operators precedence table.

E1 → E1 � E0 | E0 � E1 | E0

E0 → a | (E1)

(b) PCG for the operators described in Table 3a.
E1

E0

a

� E1

E1

E0

a

� E0

a

E1

E1

E0

a

� E1

E0

a

� E0

a

(c) Two different parse trees for “a� a� a”.

Figure 3 Example regarding two operators with opposite associativies at the same precedence
level.

3 Opposite associativities at the same precedence level

Another cause of non-LR(1) PCGs is the confluence, in the same precedence level, of two
operators with opposite associativites, i.e., (i) one operator of type xfy with another one of
type yfx or yf ; (ii) a yfx operator with one of type fy; or (iii) a fy operator with a yf one.
This confluence leads to ambiguity.

This situation is illustrated, for instance, by the operator Table 3a, which includes at
the same precedence level a � operator of type yfx and another one � of type xfy. The
resulting PCG is shown in Figure 3b. Thus, an expression like “a � a � a” will have two
possible interpretations, depending on which of the two operators is applied first: “(a�a)�a”
if � is applied first, or “a� (a� a)” if it is � that is applied first. As a result, the PCG in
Figure 3b is ambiguous, as is proven in Figure 3c, which gives two different parse trees for
“a� a� a”. The other aforementioned unsuitable combinations due to opposite associatives
can be illustrated in similar terms.

Finally notice that the existence of operators with different associativies at the same level
only proves cumbersome for the aforementioned combinations. In this way, it is possible to
find associative and non-associative operators at the same precedence level (e.g., � and infix
⊗ in Figure 1), as well as several operators with the same associativity direction (e.g., ⊕ and
prefix ⊗ in Figure 1), and still obtain LR(1) PCGs.

4 Overloading an operator with infix and postfix fixities

Definitions of an operator � as an infix and a postfix one leads, in most of the situations, to
non-LR(1) PCGs. Table 1 summarizes the different combinations and whether the resulting
PCGs are LR(1) or not. These facts can be readily verified by providing the corresponding
definitions, and generating and checking the resulting grammars5.

5 In particular, to check the LR(2) condition we used SLK (http://www.slkpg.com/), a parser generator
that supports arbitrary look-ahead to resolve LR conflicts, and JikesPG (http://jikes.sourceforge.
net/), another parser generator supporting arbitrary LALR(k) grammars.

http://www.slkpg.com/
http://jikes.sourceforge.net/
http://jikes.sourceforge.net/

J. L. Sierra 11:5

Table 1 Classes of PCGs for tables overloading a � operator in infix (precedence level li) and
postfix (precedence level lp) forms (LR(1): the resulting grammar is LR(1); LR(2): the resulting
grammar is LR(2), but not LR(1); AMB: the resulting grammar is ambiguous).

τi = yfx

τp = yf

τi = yfx

τp = xf

τi = xfy

τp = yf

τi = xfy

τp = xf

τi = xfx

τp = yf

τi = xfx

τp = xf

lp > li LR(2) LR(1) LR(2) LR(2) LR(2) LR(2)
lp = li LR(1) LR(2) AMB LR(1) LR(2) LR(1)
lp < li LR(2) LR(2) LR(1) LR(2) LR(1) LR(2)

Therefore, most of the combinations produce non-LR(1) PCGs. However, unlike previous
scenarios, and with the exception of the case corresponding to the same precedence and yf
and xfy types, which as indicated in the previous section leads to ambiguity, the resulting
PCGs that are non-LR(1) are not ambiguous. On the contrary, they are LR(2) grammars.

Finally, remember that, as indicated in Table 1, there is also room for LR(1) PCGs for
operator tables involving the infix and postfix forms of an operator. Indeed, an example is
given in Figure 1, which overloads the ⊗ operator in infix and postfix forms.

5 Overloading an operator with infix, prefix and postfix fixities

The combinations of two operator definitions do not exhaust the conditions hindering LR(1)
PCGs. Indeed, the overloading of an operator � in infix, prefix and postfix forms can lead to
ambiguity. The reason is that, in an expression like “a��a”, it is possible to consider: (i)
the first occurrence of � as a postfix operator and the second as an infix one; or (ii) the first
as the infix operator and the second as a prefix one. In consecuence, let li be the precedence
level of the infix definition, let τi be its type, let lpre be the precedence level of the prefix
definition, and lpost that of the postfix one. Then, any of the following conditions lead to an
ambiguous PCG 6:

τi = xfy, lpost < li, lpre 6 li.
τi = yfx, lpost 6 li, lpre < li.
τi = xfx, lpost < li, lpre < li.

Figure 4 illustrates one of these cumbersome combinations. The resulting PCG (Figure 4b)
is ambiguous, as Figure 4c makes apparent. The ambiguity of the PCGs produced by the
other cumbersome combinations can be illustrated in an analogous way.

Finally, notice that, by avoiding the cumbersome combinations described in this and the
previous sections, it is possible to find tables with an operator overloaded in infix, prefix and
postfix forms that lead to LR(1) PCGs. Again an example is given by the ⊗ operator in
Figure 1.

6 Related work

As illustrated in this paper, ambiguity caused by cumbersome combinations of operator
attributes is one of the main causes of non-LR(1) PCGs. In [7], starting from a characterization
of the expression languages defined through precedence relations between operators, it is
proved that, in the absence of operator overloading, ambiguity can be prevented by avoiding

6 Any of these conditions make the ambiguous sentence “a��a” a valid expression of the language.

SLATE 2018

11:6 Non-LR(1) Precedence Cascade Grammars

Name Prec. Type

� 3 xfx
� 2 fx
� 1 xf

(a) Operator table.

E3 → E2 � E2 | E2

E2 → �E1 | E1

E1 → E0� | E0

E0 → a | (E3)

(b) Resulting PCG.

E3

E2

E1

E0

a

�

� E2

E1

E0

a

E3

E2

E1

E0

a

� E2

� E1

E0

a

(c) Two parse trees for “a��a”

Figure 4 Example regarding the overloading of an operator with infix, prefix and postfix fixities..

cycles in the operators’ dependence graph. For the operators considered in our work these
cycles only can arise between operators with the same precedence level and with opposite
associativities. Therefore, this result is reflected in section 3. The work described in [1]
proves that the syntax of expression languages without operator overloading in which each
operator belongs to a different precedence level can be readily described with unambiguous
CFGs. It is consistent with our analysis, since it leaves out all the cumbersome situations
analyzed in the previous sections.

To a greater or lesser extent, languages with user-defined operators must cope with the
aspects analyzed in this paper. Some representative examples of languages of this kind are
Haskell, Scala, Sparrow and Prolog. For instance, Haskell [9] only provides support for user-
defined infix operators with 10 precedence levels. No syntactic operator overloading is allowed.
In addition, it is possible to find opposite associativies at the same precedence level, but
expressions chaining left and right associative operators with the same precedence are rejected
during parsing time. Scala [10] supports user-defined infix and postfix operators. It also
supports a predefined set of prefix operators. Precedences are structured in two pre-established
precedence classes (one class for prefix operators, another for infix ones), and each precedence
class at a pre-established set of precedence levels. Actual precedence level and associativities
are not literally declared but are derived from the operator’s name. Associativity conflicts are
managed as in Haskell. A similar approach is followed in Sparrow [14], although this language
also allows user-defined prefix operators as well as the explicit declaration of precedences and
associativies within each precedence class. Finally, as mentioned earlier, Prolog [5] supports
definitions of operators analogous to those considered in this paper. In addition, the language
includes some constraints on user-defined operators that, on one hand, avoid ambiguities and,
on the other hand, facilitate parsing by limiting look-ahead. Specifically, it is not possible
to define two operators with the same name and the same fixity (any attempt to do so
redefines the operator instead of overloading it). It avoids the shortcomings described in
section 2. Also, it is not possible to overload an operator as both an infix and a prefix one,
which, on one hand avoids situations requiring more than one look-ahead symbol (like that
described in section 4), and, on the other hand, avoids the potential ambiguities described in
section 5. Finally, it solves the ambiguities derived from opposite associativities by making
left-associative operators take priority over right-associative ones at the same precedence
level. Therefore, as analyzed in this paper, all these languages exclude some perfectly valid
combinations of operators from the point of view of unambiguity and limited (one symbol)
look-ahead.

J. L. Sierra 11:7

Finally, the implementation techniques for languages with user-defined operators are also
relevant in the context of the current paper, since these techniques must also deal with valid
and disallowed combinations of operator attributes. The work described in [11] describes how
to use YACC to implement a parser for an expression language with arbitrary user-defined
(not only prefix, postfix or infix) disfix operators. The approach does not support operator
overloading. In addition, prefix operators always have a greater precedence level than infix
ones, which in turn always belong to a greater level than the other dixfix operators, the
ones with the highest priority. The work in [12] extends the approach based on ambiguous
grammars and disambiguating rules in [2] by allowing the addition of new disambiguation
rules during parsing time, which enables user-defined operators. It also provides some
constraints to avoid cumbersome operator tables (that can lead to ambiguity or demand
more than one look-ahead symbol), which are more restrictive than those posed by Prolog
and those analyzed in the previous sections (for instance, one of the constraints requires all
the overloaded operators to belong to the same precedence level). Finally, the work reported
in [4] describes how to support dixfix operators by instantiating a PCG-like grammar scheme
from precedence graphs that provide partial orderings on the precedence of the operators
(instead of the total ordering provided by precedence levels). It also shows how, under the
assumptions described in [7], the resulting CFG is unambiguous. Once again, none of these
approaches accept all the legal combinations of operators identified in this paper.

7 Conclusions and Future work

In this paper we have explored the conditions under which the PCGs that model the syntax
of expression languages become non-LR(1) CFGs. For this purpose, we have carried out
a systematic analysis of combinations of two and three operator definitions, and we have
characterized several problematic scenarios in grammatical terms. Most of them concern
ambiguity in operator descriptions, which reflects ambiguous PCGs. Others expose the
need for more than one look-ahead symbol. Although scenarios are avoided in most of the
languages that support user-defined operators, from our analysis it is apparent that these
design decisions could have been further refined (e.g., while Prolog prohibits overloading an
operator in infix and prefix forms to limit the need for look-ahead, in this paper we have
found that only certain combinations of this type of definitions lead to grammars which are
not LR (1), but LR (2)). These findings also enable the direct analysis of operator tables, in
order to diagnose potential problems and to explain such problems at the level of operator
definitions (instead of, for instance, at the level of parsing conflicts in the generated PCGs).

While the set of combinations identified seems broad enough, the analysis performed has
been fundamentally empirical. It is not possible, therefore, to affirm that an assertion like
“if an operator table does not contain any of the problematic combinations analyzed, then the
resulting grammar will be LR(1)” has been proved, but only that evidence in favor of it has
been provided. It is necessary to carry out a more formal work oriented to proving this result
or another similar to it, completing the catalog of problematic combinations if necessary.
Another line of work is to consider where the resulting PCGs can be successfully transformed
into appropriate CFGs for top-down parsing, as well as what the classes of these CGFs are
(specially when these transformed CFGs are LL(1), or when they require more than one
look-ahead symbol). Finally, we plan to run a similar analysis on the specifications based on
ambiguous grammars plus disambiguating rules like those described by Aho et al [2].

SLATE 2018

11:8 Non-LR(1) Precedence Cascade Grammars

References
1 Annika Aasa. Precedences in specifications and implementations of programming languages.

Theoretical Computer Science, 142(1):3–26, 1995. doi:10.1016/0304-3975(95)90680-J.
2 Alfred. V. Aho, Sethi Johnson, and Jeffrey D. Ullman. Deterministic parsing of ambigu-

ous grammars. In ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, pages 1–21, 1973. doi:10.1145/512927.512928.

3 Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 2nd edition, 2006.

4 Nils Anders Danielsson and Ulf Norell. Parsing mixfix operators. In 20th International
Conference on Implementation and Application of Functional Languages, pages 80–99, 2011.

5 Pierre Deransart, AbdelAli Ed-Dbali, and Laurent Cervoni. Prolog syntax. In Pro-
log: The Standard: Reference Manual, pages 221–238. Springer, 1996. doi:10.1007/
978-3-642-61411-8_9.

6 Donald E. Knuth. On the translation of languages from left to right. Information and
Control, 8(6):607–639, 1965.

7 Wafik Boulos Lotfallah. Characterizing unambiguous precedence systems in expressions
without superfluous parentheses. International Journal of Computer Mathematics, 86(1):1–
20, 2009. doi:10.1080/00207160802166499.

8 Kenneth C. Louden. Compiler Construction: Principles and Practice. PWS Publishing,
1997.

9 Simon Marlow, editor. Haskell 2010 Language Report. Haskell Community, 2010.
10 Martin Odersky. The Scala language specification, version 2.9. Technical report, Program-

ming Methods Laboratory, EPFL, 2014.
11 Simon L. Peyton Jones. Parsing distfix operators. Communications of the ACM, 29(2):118–

122, 1986. doi:10.1145/5657.5659.
12 Kjell Post, Allen Van Gelder, and James Kerr. Deterministic parsing of languages with

dynamic operators. In International Symposium on Logic Programming, pages 456–472,
1993.

13 Ravi Sethi. Programming Languages: Concepts and Constructs. Addison-Wesley, 1989.
14 Lucian Radu Teodorescu, Vlad Dumitrel, and Rodica Potolea. Flexible operators in Spar-

row. International Journal of Research in Engineering and Technology, 3(17):40–45, 2014.

http://dx.doi.org/10.1016/0304-3975(95)90680-J
http://dx.doi.org/10.1145/512927.512928
http://dx.doi.org/10.1007/978-3-642-61411-8_9
http://dx.doi.org/10.1007/978-3-642-61411-8_9
http://dx.doi.org/10.1080/00207160802166499
http://dx.doi.org/10.1145/5657.5659

ASAPP 2.0: Advancing the state-of-the-art of
semantic textual similarity for Portuguese
Ana Alves
CISUC / ISEC, Polytechnic Institute of Coimbra, Portugal
ana@dei.uc.pt

https://orcid.org/0000-0002-3692-338X

Hugo Gonçalo Oliveira
CISUC / Department of Informatics Engineering, University of Coimbra, Portugal
hroliv@dei.uc.pt

https://orcid.org/0000-0002-5779-8645

Ricardo Rodrigues
CISUC / ESEC, Polytechnic Institute of Coimbra, Portugal
rmanuel@dei.uc.pt

https://orcid.org/0000-0002-6262-7920

Rui Encarnação
CISUC, University of Coimbra, Portugal
race@dei.uc.pt

https://orcid.org/0000-0002-5176-4137

Abstract
Semantic Textual Similarity (STS) aims at computing the proximity of meaning transmitted
by two sentences. In 2016, the ASSIN shared task targeted STS in Portuguese and released
training and test collections. This paper describes the development of ASAPP, a system that
participated in ASSIN, but has been improved since then, and now achieves the best results in
this task. ASAPP learns a STS function from a broad range of lexical, syntactic, semantic and
distributional features. This paper describes the features used in the current version of ASAPP,
and how they are exploited in a regression algorithm to achieve the best published results for
ASSIN to date, in both European and Brazilian Portuguese.

2012 ACM Subject Classification Computing methodologies → Natural language processing

Keywords and phrases natural language processing, semantic textual similarity, semantic rela-
tions, word embeddings, character n-grams, supervised machine learning

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.12

Funding This work was partially financed by the ERDF European Regional Development Fund
through the COMPETE Programme (operational programme for competitiveness) and by Na-
tional Funds through the FCT Fundação para a Ciência e a Tecnologia (Portuguese Foundation
for Science and Technology) within project REMINDS – UTAP-ICDT/EEI-CTP/0022/2014.

1 Introduction

Computing the similarity of words or sentences in terms of their meaning is an active area of
research in Natural Language Processing (NLP) and understanding (NLU). This is confirmed
by related shared tasks, such as SemEval STS [2, 1, 8], which required the manual compilation
of annotated data for benchmarking this specific task. Most successful approaches for English

© Ana Alves, Hugo Gonçalo Oliveira, Ricardo Rodrigues and Rui Encarnação;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 12; pp. 12:1–12:17

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ana@dei.uc.pt
https://orcid.org/0000-0002-3692-338X
mailto:hroliv@dei.uc.pt
https://orcid.org/0000-0002-5779-8645
mailto:rmanuel@dei.uc.pt
https://orcid.org/0000-0002-6262-7920
mailto:race@dei.uc.pt
https://orcid.org/0000-0002-5176-4137
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

12:2 ASAPP 2.0: Advancing the state-of-the-art of Portuguese STS

learn a similarity function with ensembles of classifiers that combine different metrics, such
as n-gram, word or chunk overlap, semantic relations, or distributional similarity [29, 32].

SemEval STS task targets English since 2012 and we can thus say that, for this language,
STS is becoming mature. Spanish and Arabic were included in recent editions [1, 8], which
have also targeted cross-lingual pairs. For other languages, STS is still in its early days.
Until recently, there was not a public dataset for computing semantic similarity between
Portuguese sentences. But, in 2016, a collection for STS in Portuguese was released in the
scope of the ASSIN shared evaluation [12].

Following the participation of our ASAPP system [4] in ASSIN, we kept working towards
the improvement of our results and advancing the state-of-the-art of Portuguese STS. This
paper presents a post-evaluation approach to ASSIN, based on supervised machine learning.

The paper describes ASAPPV2.0 and focuses on the features currently extracted, many
inspired by related work for English, but adapted for Portuguese. For some, we present the
results achieved without supervision which, in some cases, were surprisingly high. Yet, the
best results are obtained after learning a regression function, based in a varied set of lexical,
syntactic, semantic and distributional features. In the end, we were able to improve not
only the previous results of ASAPPv1.5 [14], but also outperform the best official results in
ASSIN by two and four points, respectively in the European (PTPT) and Brazilian (PTBR)
Portuguese collections.

The remainder of this paper starts by presenting some related work, in section 2, namely
a brief overview of the best results for English STS, together with commonly used features,
then focusing in Portuguese STS, mostly around the ASSIN task, its collections and best
approaches. In section 3, all the exploited features are described and several are illustrated
in examples, ending with some results obtained with different feature sets, but without
supervision. In section 4, extracted features are exploited to learn a similarity function, this
time with supervision, using not only different regression algorithms, but also using the
training collections differently, towards the best results in the ASSIN task.

2 Related Work

The SemEval shared evaluations include STS tasks since 2012 [2]. Results are typically
assessed by the Pearson correlation (hereafter ρ, between −1 and 1) and the Mean Squared
Error (MSE) between values computed by the system and those based on the opinion of
several human judges, for the same collection of pairs.

Most successful approaches are supervised. To learn a similarity function, they rely on
an ensemble of classifiers and exploit different features, some of which as basic as token or
n-gram overlap, but also similarity measures computed in WordNet [10], topics and deep
semantic models (see, e.g., [29, 32]). For English, the best ρ has ranged from 0.618, in
SemEval 2013, to 0.854 in SemEval 2017. For the adopted baseline – the cosine of the vectors
that represent the words in each sentence of the pair – ρ has ranged from 0.311, in 2012, to
0.728, in 2017. For Spanish STS, the best system [32] in SemEval 2017 achieved ρ = 0.856,
with similar features as the English version.

ASAP [3], which was the starting point of ASAPP, was originally developed for the
Evaluation of Compositional Distributional Semantic Models on Full Sentences through
Semantic Relatedness task [23], in SemEval 2014, but participated one year later in SemEval
2015 STS [5], though with modest results.

An earlier approach to Portuguese STS [27] exploited a knowledge base to identify
related words in different sentences. The proposed measure was tested in natural language

A. Alves, H. Gonçalo Oliveira, R. Rodrigues and R. Encarnação 12:3

Table 1 Examples from the training collections.

Collection Id Pair Sim

PTPT 2675 t: O Chelsea só conseguiu reagir no final da primeira parte. 1.25
h: Não podemos aceitar outra primeira parte como essa.

PTPT 315 t: Todos que ficaram feridos e os mortos foram levados ao hospital. 3.00
h: Além disso, mais de 180 pessoas ficaram feridas.

PTBR 1282 t: As multas previstas nos contratos podem atingir, juntas, 23 milhões de reais. 5.00
h: Somadas, as multas previstas nos contratos podem chegar a R$ 23 milhões.

descriptions of bugs in software engineering projects, which had their similarity annotated by
two humans. But it was not until 2015 that a collection was publicly released for computing
STS in Portuguese, with the goal of being used in the ASSIN shared task [12], which targeted
Semantic Similarity and Textual Entailment in Portuguese. Training data comprised 3,000
sentence pairs for PTBR, and another 3,000 for PTPT. Test data comprised 2,000 PTBR
pairs and 2,000 PTPT pairs. While recent editions of English STS have used text from
varied sources, sentences in the ASSIN collections were obtained exclusively from Google
News. Table 1 shows three pairs in the ASSIN training collections, including ids, sentences (t,
for text, h, for hypothesis), and the average similarity given by four human judges that
followed the same guidelines. Similarity values range from 1 (completely different sentences,
on different subjects) to 5 (sentences mean essentially the same).

ASSIN had 6 participating teams, which submitted 14 runs for the STS task in PTBR
and 17 in PTPT. Distinct systems achieved the best official results for PTPT and PTBR.
For PTBR, the best run [17] achieved ρ = 0.70 with MSE = 0.38, obtained by computing
the cosine similarity of a vector representation of each sentence, based on the sum of the
TF-IDF scores and word2vec [25] vectors of each word. For PTPT, the best run [11] achieved
ρ = 0.73 with MSE = 0.61, obtained after learning a similarity function with a Kernel Ridge
Regression using several similarity metrics as input, computed between the two sentences of
each pair, including overlap and set similarity measures on multiple text representations (e.g.,
lowercase, character trigrams). ASAPP [4], an adaptation of ASAP to Portuguese, also
participated, with best runs achieving ρ = 0.65 and MSE = 0.44, for PTBR, and ρ = 0.68
and MSE = 0.70 for PTPT.

As the collections of ASSIN are available1, work on Portuguese STS continued, even after
the evaluation, using those collections as benchmarks. This included our previous work [14],
where we report on gradual improvements as features and techniques are added, though
without outperforming the best results. An important conclusion was that the best test
results (ρ = 0.711 for PTPT, and ρ = 0.697 for PTBR) were obtained after training the
model on both the PTPT and PTBR collections. But other recent works tackled Portuguese
STS and relied on the ASSIN collection for evaluation [18, 7]. Hartmann et al. [18] tested a
broad range of distributional similarity models of Portuguese (word embeddings) for different
NLP tasks, including STS on the ASSIN collection. The best results obtained are quite
low (ρ = 0.60 for PTBR, using Wang2vec skip-gram with 1,000 dimensions; ρ = 0.55 for
PTPT, using word2vec CBOW with 600 and 1,000 dimensions), but their main goal was to
compare the models, also developed by them. Their results suggest that relying on a single
feature, even on large quantities of data, or on a small set of features of the same kind is not

1 http://nilc.icmc.usp.br/assin/

SLATE 2018

http://nilc.icmc.usp.br/assin/

12:4 ASAPP 2.0: Advancing the state-of-the-art of Portuguese STS

enough to achieve high STS scores. Cavalcanti et al. [7] used a regression algorithm that
exploited four features: the cosine similarity between the sentence vectors weighted with
TF-IDF; word2vec similarity based on a three-layer sentence representation; word overlap;
length of the shortest sentence divided by the length of the longest. They outperformed
the best results for PTBR, with ρ = 0.71 and MSE = 0.37, and achieved ρ = 0.70 and
MSE = 0.57, for PTPT.

3 Features for Semantic Textual Similarity in Portuguese

In order to compute their semantic similarity, several features are extracted from the ASSIN
sentence pairs. A broad range of features was exploited, including lexical, syntactic, semantic
and distributional features. Some were already used in previous versions of ASAPP [4, 14],
but new features are new in ASAPPV2.0, namely the dependency-based and distributional
features. Although these were later used to learn a model of STS, in the end of this section,
we reveal a selection of unsupervised results, obtained with some subsets of related features.

Several features were extracted with the NLPPort [28] tools, developed in our group and
freely available2. Those include TokPORT, a tokenizer; TagPORT, a part-of-speech tagger;
ChkPORT, a syntactic chunker; LemPORT, a lemmatizer; and EntPORT, a named entity
recognizer. In addition, PTStemmer3 was used for obtaining the stems of each token. To
acquire the semantic features, we resort to a set of Portuguese lexical knowledge bases (LKBs),
enumerated in Section 3.3. Syntactic dependencies and distributional features were extracted
with the spaCy toolkit4.

3.1 Lexical Features

The following lexical features, related to words at the surface level, were exploited:
Number of common tokens, after tokenization with TokPort.
Number of negation words (não, nada, nenhum, de modo algum, . . .) in each sentence of
the pair and their absolute difference.
Number of common lemmas, obtained with LemPORT.
Number of common stems, obtained with PTStemmer.

Set similarity metrics were computed to devise their integration in the feature set. Those
metrics included the Jaccard, Overlap, Dice coefficient, plus the Cosine Similarity, computed
according to equations 1, 2, 3, 4, respectively, for the sets of the tokens, lemmas and stems,
in each sentence of the pair (T and H).

Jaccard(T,H) = |T ∩H|
|T ∪H|

(1)

Overlap(T,H) = |T ∩H|
|min(T,H)| (2)

Dice(T,H) = |T ∩H|
|T |+ |H| (3)

Cos(T,H) = |T ∩H|√
|T |

√
|H|

(4)

2 NLPPort is available from https://github.com/rikarudo/
3 PTStemmer is available from https://code.google.com/archive/p/ptstemmer/
4 https://spacy.io/

https://github.com/rikarudo/
https://code.google.com/archive/p/ptstemmer/
https://spacy.io/

A. Alves, H. Gonçalo Oliveira, R. Rodrigues and R. Encarnação 12:5

(t) Ricky Álvarez voltou hoje, dia 17 de Setembro, a ser associado à equipa do Futebol Clube do Porto.
NP: [Ricky Álvarez], [17 de Setembro], [a equipa], [o Futebol Clube do Porto]
VP: [voltou], [dia]*, [ser associado]
PP: [a], [a], [de]
ADVP: [hoje]

(h) Nas suas três temporadas na equipa de Milão, Ricky participou em 90 jogos e apontou 14 golos.
NP: [as suas três temporadas], [a equipa], [Milão], [Ricky], [90 jogos], [14 golos]
VP: [participou], [apontou]
PP: [em], [em], [de], [em]

Non-Zero Features values

t h |#t - #h|

NP 4 6 2
VP 3 2 1
PP 3 4 1

ADVP 1 0 1

Figure 1 Extraction of noun, verbal, propositional and adverbial phrases and related features.

3.2 Syntactic Features
The set of syntactic features exploited included the number of noun, verb, prepositional
and adverbial phrases in each sentence of the pair and their absolute difference. Figure 1
illustrates the chunk-based features, with their computation in a pair of sentences.

In ASAPPv2.0, syntactic dependencies are also exploited, namely the Jaccard coefficient
between the dependencies in the first sentence of the pair and those in the second sentence.
Syntactic dependencies were computed with spaCy’s dependency parser. Each sentence is
converted to a list of triples related to the arcs in the dependency tree, ignoring just the
punctuation tokens. Each triple – (token1, token2, DEPENDENCY) – contains two connected
tokens (head and child) and the syntactic dependency name that labels the relation. The
Jaccard similarity of the two lists is then computed to measure the similarity of the pair
of sentences, as in equation 5. The computation of the previous feature is illustrated in
Figure 2.

Jaccard_Dep(T,H) = |Dep(T) ∩Dep(H)|
|Dep(T) ∪Dep(H)| (5)

When computed with this feature, alone, semantic similarity is poor, but it captures
some relations that are not covered by the other features used in previous versions of ASAPP.
Namely, it aims at capturing the dissimilarity between sentences such as: {“The tiger killed
the man.”, “The main killed the tiger”}. Besides their strong overlapping and exact matches
of noun phrases and verbal phrases, their outcome is significantly different.

3.3 Semantic Features
Given not only their importance for understanding the meaning of a sentence, but also
their frequent presence in the ASSIN collection, named entities in the sentences of the pair
were extracted and classified into one of nine types (abstraction, product, event, number,
organization, person, place, thing and time). The number of named entities of each type in
the sentences is used as features, plus their absolute difference, which makes a total of 27
features. Figure 3 illustrates the computation of those features.

SLATE 2018

12:6 ASAPP 2.0: Advancing the state-of-the-art of Portuguese STS

(t) Sebastian Vettel garantiu a pole-position para o Grande Prémio de Singapura de Fórmula 1.
(‘Sebastian’, ‘Vettel’, FLAT:NAME), (‘garantiu’, ‘Sebastian’, NSUBJ), (‘garantiu’,
‘pole’, OBJ),
(‘pole’, ‘a’, DET), (‘pole’, ‘position’, APPOS), (‘postion’, ‘Grande’, NMOD)
(‘Grande’, ‘para’, CASE), (‘Grande’, ‘o’, DET), (‘Grande’, ‘Prémio’,
FLAT:NAME), (‘Grande’, ‘Singapura’, NMOD)
(‘Singapura’, ‘de’, CASE), (‘Singapura’, ‘Fórmula’, NMOD)
(‘Fórmula’, ‘de’, CASE), (‘Fórmula’, ‘1’, FLAT:NAME)

(h) O Grande Prémio de Singapura de Fórmula 1 tem início marcado para as 13h00 de domingo.
(‘Grande’, ‘o’, DET), (‘Grande’, ‘Prémio’, FLAT:NAME), (‘Grande’,
‘Singapura’, NMOD)
(‘Singapura’, ‘de’, CASE), (‘Singapura’, ‘Fórmula’, NMOD)
(‘Fórmula’, ‘de’, CASE), (‘Fórmula’, ‘1’, FLAT:NAME)
(‘tem’, ‘Grande’, NSUBJ), (‘tem’, ’início’, OBJ), (‘início’, ‘marcardo’, ACL), (‘mar-
cardo’, ‘ 13h00’, OBL)
(‘13h00’, ‘para’, CASE), (‘13h00’, ‘as’, DET), (‘13h00’, ‘domingo’, NMOD, (‘doming’,
‘de’, CASE)

Jaccard_Dep(T,H) = 7
22 ≈ 0.3182

Figure 2 Extraction of syntactic dependencies with the spaCy toolkit and its related feature.

Language is flexible in such a way that the same idea can be transmitted through different
words, generally related by well-known semantic relations, such as synonymy or hypernymy.
These relations are implicitly mentioned in dictionaries, and explicitly encoded in LKBs, such
as WordNet [10]. We decided to use LKBs currently available for Portuguese, namely three
wordnets – WordNet.Br [9] (which covers only verbs), OpenWordNet-PT (OWN.PT) [26] and
PULO [30]; two synonymy-based thesauri – TeP [24] and OpenThesaurus.PT5; three lexical
networks extracted from Portuguese dictionaries – PAPEL [15] and relations from Dicionário
Aberto [31] and Wiktionary.PT6; and the semantic relations in a set of linguistic resources
– Port4Nooj [6]. All of these LKBs cover synonymy relations (e.g., realçar synonym-of
sublinhar) , all but OpenThesaurus.PT, WordNet.Br, and Port4Nooj cover antonymy (e.g.,
tristeza antonym-of alegria) , all but TeP and OT cover hypernymy relations (e.g., mover
hypernym-of tremer) , in addition to relations of other types, covered only by some LKBs,
such as part-of (e.g., núcleo part-of átomo), causation (e.g., frio causation-of crestar) , or
purpose (e.g., polir purpose-of lixa) , among others.

The aforementioned LKBs have substantially different sizes and the creation of most
involved some degree of automation, which means that they contain noise, including rarely
used words and meanings, not so useful relations, and also actual errors. Therefore, we rely
on redundancy to build more reliable and useful semantic networks [13], namely Redun2 and
Redun3, which include all the relation instances respectively in at least two or three LKBs.
They were exploited in different ways (see Section 3.5), but the final model only considered
the following features:

Set similarity metrics considering semantic relations in Redun3 LKB: after computing
the overlap of the similarity of the stems, the metrics were adjusted as in equation 6.

5 http://paginas.fe.up.pt/~arocha/AED1/0607/trabalhos/thesaurus.txt
6 http://pt.wiktionary.org

http://paginas.fe.up.pt/~arocha/AED1/0607/trabalhos/thesaurus.txt
http://pt.wiktionary.org

A. Alves, H. Gonçalo Oliveira, R. Rodrigues and R. Encarnação 12:7

(t) Ricky Álvarez voltou hoje, dia 17 de Setembro, a ser associado à equipa do Futebol Clube do Porto.
Person: [Ricky Álvarez]
Time: [17 de Setembro]
Org: [Futebol Clube do Porto]

(h) Nas suas três temporadas na equipa de Milão, Ricky participou em 90 jogos e apontou 14 golos.
Person: [Ricky]
Place: [Milão]
Numeric: [90], [14]
Event: [jogos]

Non-Zero Features values

t h |#t - #h|

Person 1 1 0
Time 1 0 1

Organization 1 0 1
Place 0 1 1

Numeric 0 2 2
Event 0 1 1

Figure 3 Extraction of named entities and related features.

There, γ was set according to equation 7 and Sim was computed according to equation 8.
Constants were empirically set to α = 0.75 and β = 0.05.

Jaccard+(T,H) = |T ∩H|+ γ

|T ∪H|
(6)

γ =
|T ′|∑
i=1

|H′|∑
j=1

Max(Sim(T ′
i , H

′
j)) (7) Sim(T ′

i , H
′
j) =

α, if dist(T ′

i , H
′
j) = 1

β, if dist(T ′
i , H

′
j) = 2

0, otherwise
(8)

A feature for each of four relation groups considered (synonymy, hypernymy, antonymy
and other) in each LKB, which would be the number of semantic relations of those types
held, in the target LKB, between lemmas in one sentence of the pair and lemmas in the
other, normalized after division by the sum of the number of open-class words (nouns,
verbs, adjectives and adverbs) in sentences t and h. Although these features would clearly
not be enough for computing similarity all alone, our belief is that they would be a useful
complement to the other.

Figure 4 illustrates the computation of the Jaccard+ feature with the Redun3 network.

3.4 Distributional Features
In ASAPPv2.0, distributional features are also exploited, namely word and character n-gram
distribution, and models of distributional similarity. For convenience reasons, these features
were extracted with Python tools, in opposition to all the others, extracted with tools in
Java.

Set similarity features already covered the similarity of n-grams of size 1. Yet, the new
features considered n-grams of size 2 with additional restrictions. Character n-grams were
also considered, as they are known for capturing features at different levels, and can be

SLATE 2018

12:8 ASAPP 2.0: Advancing the state-of-the-art of Portuguese STS

Sentences:
(t) Os Estados Unidos anunciaram oficialmente esta sexta-feira o abandono de um plano

que visava treinar e equipar rebeldes na Síria.
(h) Os Estados Unidos anunciaram esta sexta-feira que interrompe o projeto de treino de

rebeldes sírios.

Relations in Redun3 connecting words in t with words in h:
plano synonym-of projeto
Síria place-of sírio

Synonymy (1): 1
|openClassW ords(t)+|openClassW ords(h)|

Other relations (1): 1
|openClassW ords(t)+|openClassW ords(h)|

Jaccard+(T,H) = lemmas(t) ∩ lemmas(h) + α+ β

lemmas(t) ∪ lemmas(h) = 9 + 0.75 + 0.05
23 ≈ 0.39

Figure 4 Computation of Jaccard+ feature with Reund3 as the semantic network.

extremely useful in morphologically-rich languages, such as Portuguese. Among other text
classification tasks, character n-grams revealed to be successful in author attribution [21].
This adds to the simplified pre-processing steps, which require no specific tools or detailed
linguistic knowledge.

The exploitation of n-grams resulted in three features – NG1, NG2, NG3 – obtained after
computing the cosine similarity of two vectors containing the following information:

NG1: vectors with the binary term-frequency (TF) in which the vocabulary corresponds
to the set of n-grams of words, with n ∈ {1, 2}, in lowercase, stemmed with the Portuguese
RSLP stemmer available in the NTLK toolkit7, after removing stopwords, and considering
only n-grams that occur in more than one sentence (document_frequency > 1).

NG2: vector with binary TF for character n-grams, with n ∈ {1, 3}, within the limits
of word boundaries, in lowercase, and considering only n-grams that occur in more
than one sentence (document_frequency > 1) and a maximum of 50% of the sentences
(max_document_frequency = 0.5×#Dataset_Sentences).

NG3: vectors with binary TFs for char n-grams, with n ∈ {1, 3}, not considering word
boundaries, in lowercase, and considering only n-grams that occur in more than one
document (document_frequency > 1) and a maximum of 40% of documents (max_docu-
ment_frequency = 0.4×#Dataset_Sentences).

We also followed the current trend of using word embeddings, learned from a large corpus
with a neural network, in semantic similarity tasks. For this purpose, we resorted to the
NILC embeddings [18], which offer a wide variety of pre-trained embeddings, learned with
different models in a large Portuguese corpus, and freely available8.

7 RSLP stemmer available from http://www.nltk.org/_modules/nltk/stem/rslp.html
8 NILC embeddings available from http://nilc.icmc.usp.br/embeddings

http://www.nltk.org/_modules/nltk/stem/rslp.html
http://nilc.icmc.usp.br/embeddings

A. Alves, H. Gonçalo Oliveira, R. Rodrigues and R. Encarnação 12:9

More precisely, two different features were computed from the embeddings, both after
the conversion of each sentence into a vector computed from the vectors of its tokens. The
difference occurs on how this vector is created.

In the first feature, the sentence vector is obtained from the sum of the token vectors;
In the second feature, it is computed from the weighted sum of the token vectors, using
the TF-IDF value of each token as the weight.

In both, the similarity of each pair of sentences is computed as the cosine similarity between
their vectors.

The previous features were initially extracted using different embeddings. The results of
using only these features were analysed (see Section 3.5), and only one model of embeddings
was used in the final set of features.

3.5 Unsupervised Results
Before moving to a supervised approach, the correlation of some of the extracted features was
computed when used alone to predict STS. This would give valuable hints on the relevance
of each feature and, at the same time, set baselines. Three groups of features were tested:
(i) set similarity combined with semantic networks; (ii) word embeddings; and (iii) n-grams.
While the first group has been used since our first approach to ASSIN [4], the second and
third were only recently added to our feature set.

3.5.1 Set similarity and LKBs
First, all the combinations of set similarity features were tested in the training collections,
with different kinds of normalization (none, stemming and lemmatisation). The previous
measures were then tested when combined with the semantic relations in each of the exploited
LKBs, as described in Section 3.3. Table 2 shows a selection of the best results at this stage.
The best results with Jaccard+ and Cosine+ were obtained with the Redun3 LKB, and are
presented here. Additional results can be found in our previous approach [14], where we
also concluded that using all words, instead of just open-class, and not requiring a match
of parts-of-speech would improve the correlation ρ. Another conclusion was that stemming
would lead to better results than lemmatisation and that using the LKBs could lead only to
minor improvements.

Based on those conclusions, the selection of approaches to use in the test collections was
narrowed to two, Cosine+ and Jaccard+, on Redun3, computed after stemming. Their results
are presented in table 3, together with a baseline that computes the cosine of the stems in
both sentences of the pair. It is worth noticing that Cosine+ would be the fifth and third
best run in ASSIN, respectively for PTPT and PTBR, which corresponds to the fourth and
second best system.

3.5.2 N-grams
All the three n-gram features were tested, first in the training, then on the test collection.
Results, presented in table 4, are quite surprising, especially for the character n-grams (features
NG2 and NG3). The power of these features, even when used alone, would result in technical
ties with the second best run for PTPT and with the best run for PTBR, in the official
evaluation. As mentioned earlier, character n-grams carry a mix of lexical, syntactic, and
even author style content. Without any normalization, different forms of the same word are
considered completely different tokens. This is often solved with stemming, which ends up

SLATE 2018

12:10 ASAPP 2.0: Advancing the state-of-the-art of Portuguese STS

Table 2 Set similarity results in the training collections.

Normalization Measure PTPT PTBR

ρ MSE ρ MSE

None Jaccard 0.661 1.220 0.587 1.168
None Cosine 0.664 0.552 0.587 0.591

Stems Jaccard 0.700 1.140 0.625 0.853
Stems Cosine 0.706 0.443 0.626 0.467

Lemmas Jaccard 0.695 1.131 0.610 0.921
Lemmas Cosine 0.698 0.446 0.610 0.484

Stems Jaccard+ 0.717 1.049 0.632 0.778
Stems Cosine+ 0.721 0.388 0.631 0.453

Lemmas Jaccard+ 0.709 1.116 0.621 0.843
Lemmas Cosine+ 0.712 0.431 0.620 0.464

Table 3 Test results when semantic networks are exploited, plus the Cosine baseline.

Normalization Measure PTPT PT-PBR

ρ MSE ρ MSE

Stems Jaccard+ 0.669 0.723 0.666 0.825
Stems Cosine+ 0.677 0.686 0.667 0.454

(baseline) Stems Cosine 0.656 0.658 0.653 0.445

Table 4 Results for n-gram features in the training and test collections.

Features
Train Test

PTPT PTBR PTPT PTBR

ρ MSE ρ MSE ρ MSE ρ MSE

NG1 0.664 0.470 0.580 0.537 0.600 0.748 0.600 0.514
NG2 0.743 0.395 0.685 0.429 0.696 0.608 0.696 0.425
NG3 0.743 0.454 0.688 0.483 0.699 0.597 0.695 0.488

considering them equal. So, character n-grams provide a more precise representation of word
proximity, because the sets of n-grams for forms of the same word have much in common,
but are not equal.

3.5.3 Word embeddings
Though there are many NILC embeddings, we compared only those with 300-sized vectors, a
commonly used dimension. As mentioned earlier, two different features were extracted, one
relying on the TF to compute the sentence vectors, and another relying on TF-IDF for the
same purpose. Table 5 shows the results when using only these features, with the different
tested embeddings.

From those results, we decided to use only the word2vec CBOW model, which got the best
ρ in the training collection of PTPT, using TF, and the lowest MSE in all the other collections,
with TF and TF-IDF. Another option would have been to select fastText SKIP-GRAM,

A. Alves, H. Gonçalo Oliveira, R. Rodrigues and R. Encarnação 12:11

Table 5 Results for embedding features in the training collections.

Model Weights PTPT PTBR

ρ MSE ρ MSE

word2vec CBOW TF 0.592 0.614 0.511 0.755
word2vec SKIP-GRAM TF 0.551 1.379 0.491 2.195

fastText CBOW TF 0.408 1.400 0.350 1.570
fastText SKIP-GRAM TF 0.566 2.647 0.521 2.830

Wang2vec CBOW TF 0.557 2.336 0.511 2.484
Wang2vec SKIP-GRAM TF 0.559 2.625 0.508 2.784

GloVe TF 0.507 2.076 0.444 2.299

word2vec CBOW TF-IDF 0.609 0.572 0.550 0.682
word2vec SKIP-GRAM TF-IDF 0.587 1.073 0.524 1.266

fastText CBOW TF-IDF 0.451 1.649 0.402 1.772
fastText SKIP-GRAM TF-IDF 0.639 2.393 0.591 2.526

Wang2vec CBOW TF-IDF 0.626 1.951 0.578 2.054
Wang2vec SKIP-GRAM TF-IDF 0.622 2.280 0.577 2.382

GloVe TF-IDF 0.528 1.871 0.502 2.036

Table 6 Results for embedding features in the test collections.

Model Weights PTPT PTBR

ρ MSE ρ MSE

word2vec CBOW TF 0.548 1.125 0.538 0.749
word2vec CBOW TF-IDF 0.555 1.072 0.572 0.665

but the results of this model has always a very high MSE. Table 6 shows the results of the
selected model in the test collections.

These results are not much different from those by Hartmann et al. [18], who used all
the NILC embeddings in the test collections of ASSIN. It should also be noted that they
are lower than all the other unsupervised results here, which shows that, when it comes
to STS, this kind of embeddings alone are definitely not enough for achieving high results.
Alternative ways for representing sentences as distributional vectors have to be devised in the
future. Nevertheless, these two features were included in our feature set, where, combined
with the others, should have a positive impact.

4 Learning a model for Portuguese STS

For improving the unsupervised results, the selected features were used together to learn
a STS function from each training collection and, later, from both. Here, we describe the
learning algorithms used, and report on the training and test results achieved, which beat
the best performances in ASSIN to date, thus setting the state-of-the-art of Portuguese STS.

SLATE 2018

12:12 ASAPP 2.0: Advancing the state-of-the-art of Portuguese STS

Table 7 Weka setup for the three learning algorithms used.

M5Rules
weka.classifiers.rules.M5Rules -M 4.0

RandomSubspace w/ M5
weka.classifiers.meta.RandomSubSpace -P 0.5 -S 1 -num-slots 1 -I 10 -W
weka.classifiers.trees.M5P – -M 4.0

Gaussian Process w/ RBF Kernel
weka.classifiers.functions.GaussianProcesses -L 1.0 -N 0 -K
"weka.classifiers.functions.supportVector.RBFKernel -G 0.01 -C 250007"

4.1 Regression Algorithms

Several regression algorithms, provided by the Weka [16] machine learning toolkit, were
selected to learn a STS function. Table 7 presents the setup of the three best-performing
algorithms, after an exhaustive set of runs. The used algorithms are:

M5Rules [20] generates a decision list for regression problems using a separate-and-conquer
strategy. In each iteration, it builds a model tree using the M5 algorithm and turns the
“best” leaf into a rule.
Random Subspace [19] is an ensemble learning algorithm that builds a decision tree
classifier. It consists of random subspacing regression ensembles composed of multiple
trees constructed systematically by pseudo-randomly selected subsets of components of
the feature vector.
Regression algorithm based on Gaussian Processes [22], with a Radial Basis Function
(RBF) Kernel as the Gaussian function. This implementation is simplified in Weka:
it does not apply hyper-parameter-tuning and uses normalization to the target class
(similarity value), so the features simplify the choice of a noise level.

4.2 Training and Testing

Each of the selected regression algorithms was used for learning two STS models, for PTPT
and for PTBR, based on the respective training collections. Table 8 shows the average
training performance with the current set of features (v2) for the three regression algorithms,
in a 10-fold cross validation, for PTPT and PTBR. When compared to our previous results
(v1.5) [14], in the same table, there are improvements in training.

The learned models were then used for computing STS in the respective test collections.
Table 9 shows the test results of the new models, again side-by-side with our previous results,
and also with the systems that achieved the best official results, for PTBR and PTPT, in
ASSIN, respectively Solo Queue [17] and L2F/INESC-ID [11]. Our current results are clearly
better than our best unsupervised results and also than our previous results, which means
that the new features had a positive impact. Furthermore, when compared to the best official
ASSIN results, there are also improvements in ρ and MSE. More precisely, for PTPT, ρ is
0.02 points higher and MSE is 0.03 points lower than the best, and, for PTBR, ρ is 0.04
higher and MSE is 0.03 points lower. We can thus see these results as the new state-of-the-art
of Portuguese STS.

A. Alves, H. Gonçalo Oliveira, R. Rodrigues and R. Encarnação 12:13

Table 8 Performance when training in the PTPT and PTBR collections between previous (v1)
and present (v2) ASAPP systems.

Method PTPT PTBR

ρ MSE ρ MSE

M5Rules 0.742 0.472 0.657 0.518
v1.5 RandomSubspace 0.756 0.457 0.662 0.515

GaussianProcess 0.739 0.479 0.658 0.520
M5Rules 0.778 0.440 0.723 0.480

v2 RandomSubspace 0.784 0.432 0.723 0.479
GaussianProcess 0.776 0.444 0.722 0.481

Table 9 Test results for models trained in the respective training collection compared with the
state-of-the-art systems.

Method PTPT PTBR

ρ MSE ρ MSE

M5Rules 0.703 0.714 0.678 0.411
v1.5 RandomSubspace 0.709 0.698 0.686 0.403

GaussianProcess 0.694 0.725 0.683 0.406

M5Rules 0.740 0.590 0.730 0.350
v2 RandomSubspace 0.750 0.580 0.740 0.350

GaussianProcess 0.740 0.620 0.730 0.350

Solo Queue [17] 0.700 0.660 0.700 0.380
L2F/INESC-ID [11] 0.730 0.610 - -

4.3 Training on both collections
Since they are just variants of the same language, instead of training independent models
for PTPT and PTBR, we concatenated the training collections and learned new (variant-
ignoring) models from the resulting larger collection, which comprised 6,000 pairs. Tables 10
and 11 show, respectively, the training performance of the same learning algorithms on a
10-fold cross-validation in the larger collection, and the results of the new models in each
test collection. These are compared with the best official results in ASSIN.

Although with our previous feature set (v1.5) training with a single collection lead to
improvements, with the current set, ρ was similar to the one obtained with a collection
trained for each variant. Only MSE was lower. Still, this shows that a single model could be
used for computing STS in the PTPT and PTBR collection.

5 Concluding Remarks

We have described the most recent developments on ASAPP. In addition to features used in
our previous work, which already considered the presence of negations, token, lemma, stem,
chunk and named entity overlap, plus semantic relations, new features were added: syntactic
dependencies, word and character n-gram similarity, and distributional similarity.

SLATE 2018

12:14 ASAPP 2.0: Advancing the state-of-the-art of Portuguese STS

Table 10 Training performance in a collection with both PTPT and PTBR training pairs between
previous and present ASAPP systems.

Method ρ MSE

M5Rules 0.705 0.493
v1.5 RandomSubspace 0.713 0.486

GaussianProcess 0.701 0.493

M5Rules 0.756 0.456
v2 RandomSubspace 0.760 0.451

GaussianProcess 0.754 0.459

Table 11 Test results for models trained with both PTPT and PTBR training pairs compared
with the state-of-the-art systems.

Method PTPT PTBR

ρ MSE ρ MSE

M5Rules 0.702 0.648 0.690 0.505
v1.5 RandomSubspace 0.711 0.657 0.697 0.499

GaussianProcess 0.691 0.678 0.684 0.509

M5Rules 0.740 0.540 0.730 0.350
v2 RandomSubspace 0.750 0.540 0.740 0.340

GaussianProcess 0.740 0.560 0.730 0.350

Solo Queue 0.700 0.660 0.700 0.380
L2F/INESC-ID 0.730 0.610 - -

Interesting results can be achieved with some of the previous features alone, where we
highlight the good performance of character n-grams. Yet, the best results were obtained
using all the previous features to learn a STS function from the training collections of ASSIN.
Three different regression algorithms were tested for this purpose, and all outperformed the
best official results of ASSIN – Pearson ρ of 0.75 and 0.74, MSE of 0.54 and 0.34, respectively
for European and Brazilian Portuguese. This means that we can see the approach reported
here as the current state-of-the-art of Portuguese STS. Moreover, we have confirmed that a
single model, learned from training collections in both variants, obtains very similar results
than two different models, each trained and tested on a variant-dependent collection.

Given the Pearson ρ of the human annotation of the ASSIN collections [12] – 0.74 – ,
trying to improve these results further is probably unrealistic, and possibly not very useful.
Nevertheless, there is work to do, especially regarding an analysis of feature relevance, and
the integration of all features in a single pipeline, which, until this point, was not our main
goal. Although some experiments were reported with each feature alone, this analysis is
harder when all the features are combined. For this purpose, the correlation between the
features and the similarity scores could be computed to analyse feature relevance; a method
such as Principal Component Analysis (PCA) could be applied for feature reduction; and,
when possible, the STS functions obtained with the regression algorithms, and the included
weights, should be analysed. Identifying the most relevant features should be especially
useful for learning more about Portuguese STS and would help us on the integration of all
feature extraction methods, hopefully only the most relevant, in a single pipeline.

A. Alves, H. Gonçalo Oliveira, R. Rodrigues and R. Encarnação 12:15

It should also be stressed that the reported results were obtained in the ASSIN collection.
As far as we know, there is currently no other collection with the same kind of annotations in
Portuguese, at least freely available and with similar size. In the future, it would be important
to test our approach in different collections of Portuguese sentences with STS scores.

References
1 Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, Rada Mihal-

cea, German Rigau, and Janyce Wiebe. Semeval-2016 task 1: Semantic textual similarity,
monolingual and cross-lingual evaluation. In 10th Intl. Workshop on Semantic Evaluation
(SemEval), pages 497–511, 2016.

2 Eneko Agirre, Mona Diab, Daniel Cer, and Aitor Gonzalez-Agirre. Semeval-2012 task 6: A
pilot on semantic textual similarity. In 6th Intl. Workshop on Semantic Evaluation, pages
385–393, 2012.

3 Ana Alves, Adriana Ferrugento, Mariana Lourenço, and Filipe Rodrigues. ASAP: Auto-
matic semantic alignment for phrases. In 8th Intl. Workshop on Semantic Evaluation
(SemEval), pages 104–108, 2014.

4 Ana Alves, Ricardo Rodrigues, and Hugo Gonçalo Oliveira. Asapp: Alinhamento semântico
automático de palavras aplicado ao português. Linguamática, 8(2):43–58, 2016.

5 Ana Alves, David Simões, Hugo Gonçalo Oliveira, and Adriana Ferrugento. ASAP-II:
From the alignment of phrases to textual similarity. In 9th Intl. Workshop on Semantic
Evaluation (SemEval 2015), pages 184–189, 2015.

6 Anabela Barreiro. Port4NooJ: an open source, ontology-driven portuguese linguistic system
with applications in machine translation. In Intl. NooJ Conference (NooJ’08), 2010.

7 Anderson Pinheiro Cavalcanti, Rafael Ferreira Leite de Mello, Máverick André Dionísio
Ferreira, Vitor Belarmino Rolim, and João Vitor Soares Tenório. Statistical and semantic
features to measure sentence similarity in Portuguese. In Proceedings of 6th Brazilian
Conference on Intelligent Systems, pages 342–347, 2017.

8 Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-Gazpio, and Lucia Specia. Semeval-
2017 task 1: Semantic textual similarity multilingual and crosslingual focused evaluation.
In 11th Intl. Workshop on Semantic Evaluation (SemEval), pages 1–14, 2017. doi:10.
18653/v1/S17-2001.

9 Bento C. Dias-da-Silva. Wordnet.Br: An exercise of human language technology research.
In 3rd Intl. WordNet Conf. (GWC), pages 301–303, 2006.

10 Christiane Fellbaum, editor. WordNet: An Electronic Lexical Database (Language, Speech,
and Communication). The MIT Press, 1998.

11 Pedro Fialho, Ricardo Marques, Bruno Martins, Luísa Coheur, and Paulo Quaresma.
INESC-ID@ASSIN: Medição de similaridade semântica e reconhecimento de inferência tex-
tual. Linguamática, 8(2):33–42, 2016.

12 Erick Fonseca, Leandro Santos, Marcelo Criscuolo, and Sandra Aluísio. Visão geral da
avaliação de similaridade semântica e inferência textual. Linguamática, 8(2):3–13, 2016.

13 Hugo Gonçalo Oliveira. Comparing and combining Portuguese lexical-semantic knowledge
bases. In 6th Symposium on Languages, Applications and Technologies (SLATE), pages
16:1–16:14, 2017.

14 Hugo Gonçalo Oliveira, Ana Oliveira Alves, and Ricardo Rodrigues. Gradually improv-
ing the computation of semantic textual similarity in Portuguese. In 18th EPIA Con-
ference on Artificial Intelligence, volume 10423, pages 841–854, 2017. doi:10.1007/
978-3-319-65340-2_68.

15 Hugo Gonçalo Oliveira, Diana Santos, Paulo Gomes, and Nuno Seco. PAPEL: A dictionary-
based lexical ontology for Portuguese. In 8th Intl. Conf. Computational Processing of the
Portuguese Language (PROPOR), volume 5190, pages 31–40, 2008.

SLATE 2018

http://dx.doi.org/10.18653/v1/S17-2001
http://dx.doi.org/10.18653/v1/S17-2001
http://dx.doi.org/10.1007/978-3-319-65340-2_68
http://dx.doi.org/10.1007/978-3-319-65340-2_68

12:16 ASAPP 2.0: Advancing the state-of-the-art of Portuguese STS

16 Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian
Witten. The WEKA data mining software: An update. SIGKDD Explorations, 11(1):10–18,
2009. doi:10.1145/1656274.1656278.

17 Nathan Hartmann. Solo Queue at ASSIN: Combinando abordagens tradicionais e emer-
gentes. Linguamática, 8(2):59–64, 2016.

18 Nathan S. Hartmann, Erick R. Fonseca, Christopher D. Shulby, Marcos V. Treviso, Jés-
sica S. Rodrigues, and Sandra M. Aluísio. Portuguese word embeddings: Evaluating on
word analogies and natural language tasks. In 11th Brazilian Symposium in Information
and Human Language Technology (STIL), 2017.

19 Tin Kam Ho. The random subspace method for constructing decision forests. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 20(8):832–844, 1998.

20 Geoffrey Holmes, Mark Hall, and Eibe Frank. Generating rule sets from model trees. In
12th Australian Joint Conf. on Artificial Intelligence, pages 1–12, 1999.

21 Moshe Koppel, Jonathan Schler, and Shlomo Argamon. Authorship attribution in the wild.
Languages Resourses Evaluation, 45(1):83–94, 2011. doi:10.1007/s10579-009-9111-2.

22 David Mackay. Introduction to Gaussian Processes. In Neural Networks and Machine
Learning. Springer, 1998.

23 Marco Marelli, Luisa Bentivogli, Marco Baroni, Raffaella Bernardi, Stefano Menini, and
Roberto Zamparelli. Semeval-2014 task 1: Evaluation of compositional distributional se-
mantic models on full sentences through semantic relatedness and textual entailment. In
8th Intl. Workshop on Semantic Evaluation (SemEval), pages 1–8, 2014.

24 Erick Maziero, Thiago Pardo, Ariani Felippo, and Bento Dias-da-Silva. A Base de Dados
Lexical e a Interface Web do TeP 2.0 - Thesaurus Eletrônico para o Português do Brasil. In
VI Workshop em Tecnologia da Informação e da Linguagem Humana (TIL), pages 390–392,
2008.

25 Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In Workshop track of the Intl. Conf. on Learning Repres-
entations (ICLR), 2013.

26 Valeria Paiva, Alexandre Rademaker, and Gerard Melo. OpenWordNet-PT: An open
Brazilian Wordnet for reasoning. In 24th Intl. Conf. on Computational Linguistics (COL-
ING), 2012.

27 Vladia Pinheiro, Vasco Furtado, and Adriano Albuquerque. Semantic textual similarity of
portuguese-language texts: An approach based on the semantic inferentialism model. In
11th Conf. on the Computational Processing of the Portuguese Language (PROPOR), pages
183–188, 2014. doi:10.1007/978-3-319-09761-9_19.

28 Ricardo Rodrigues, Hugo Gonçalo-Oliveira, and Paulo Gomes. NLPPort: A pipeline for
portuguese nlp. In 7th Symposium on Languages, Applications and Technologies (SLATE),
pages 18:1–18:9, 2018.

29 Barbara Rychalska, Katarzyna Pakulska, Krystyna Chodorowska, Wojciech Walczak, and
Piotr Andruszkiewicz. Samsung Poland NLP team at SemEval-2016 task 1: Necessity for
diversity; combining recursive autoencoders, wordnet and ensemble methods to measure
semantic similarity. In 10th Intl. Workshop on Semantic Evaluation (SemEval), pages 602–
608, 2016.

30 Alberto Simões and Xavier Guinovart. Bootstrapping a Portuguese wordnet from Galician,
Spanish and English wordnets. In Advances in Speech and Language Technologies for
Iberian Languages, volume 8854 of LNCS, pages 239–248, 2014.

31 Alberto Simões, Álvaro Sanromán, and José Almeida. Dicionário-Aberto: A source of
resources for the Portuguese language processing. In 10th Intl. Conf. on the Computational
Processing of the Portuguese Language (PROPOR), volume 7243, pages 121–127, 2012.

http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1007/s10579-009-9111-2
http://dx.doi.org/10.1007/978-3-319-09761-9_19

A. Alves, H. Gonçalo Oliveira, R. Rodrigues and R. Encarnação 12:17

32 Junfeng Tian, Zhiheng Zhou, Man Lan, and Yuanbin Wu. Ecnu at semeval-2017 task 1:
Leverage kernel-based traditional nlp features and neural networks to build a universal
model for multilingual and cross-lingual semantic textual similarity. In 11th Intl. Workshop
on Semantic Evaluation (SemEval), pages 191–197, 2017. doi:10.18653/v1/S17-2028.

SLATE 2018

http://dx.doi.org/10.18653/v1/S17-2028

Evaluation of Distributional Models with the
Outlier Detection Task
Pablo Gamallo
Centro de Investigación en Tecnoloxías da Información (CiTIUS)
University of Santiago de Compostela, Galiza
pablo.gamallo@usc.es

https://orcid.org/0000-0002-5819-2469

Abstract
In this article, we define the outlier detection task and use it to compare neural-based word embed-
dings with transparent count-based distributional representations. Using the English Wikipedia
as text source to train the models, we observed that embeddings outperform count-based rep-
resentations when their contexts are made up of bag-of-words. However, there are no sharp
differences between the two models if the word contexts are defined as syntactic dependencies.
In general, syntax-based models tend to perform better than those based on bag-of-words for
this specific task. Similar experiments were carried out for Portuguese with similar results. The
test datasets we have created for outlier detection task in English and Portuguese are released.

2012 ACM Subject Classification Computing methodologies → Unsupervised learning

Keywords and phrases distributional semantics, dependency analysis, outlier detection, similar-
ity

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.13

Funding This work was supported by a 2016 BBVA Foundation Grant for Researchers and
Cultural Creators, and by Project TELEPARES, Ministry of Economy and Competitiveness
(FFI2014-51978-C2-1-R). It has received financial support from the Consellería de Cultura, Edu-
cación e Ordenación Universitaria (accreditation 2016-2019, ED431G/08) and the European Re-
gional Development Fund (ERDF).

1 Introduction

Intrinsic evaluations of distributional models are based on word similarity tasks. The most
popular intrinsic evaluation is to calculate the correlation between the similarity scores
obtained by a system using a word vector representation and a gold standard of human-
assigned similarity scores. Recent critics to intrinsic evaluation claim that inter-annotator
agreement at the word similarity task is considerably lower compared to other tasks such
as document classification or textual entailment [3]. To overcome this problem, Camacho-
Collados and Navigli [7] propose an alternative evaluation relying on the outlier detection
task, which tests the capability of vector space models to create semantic clusters. More
precisely, given a set of words, for instance car, train, bus, apple, bike, the goal of the task is
to identify the word that does not belong to a semantically homogeneous group. In this case,
the outlier is apple, which is not a vehicle. The main advantage of this task is to provide a
clear gold standard with, at least, two properties: high inter-annotator agreement and easy
method to increase the test size by adding new groups.

On the other hand, recent works comparing count-based word distributions with word
embeddings (i.e., dense representations obtained with neural networks) to compute word
similarity show mixed results. Some claim that embeddings outperform transparent and

© Pablo Gamallo;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 13; pp. 13:1–13:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pablo.gamallo@usc.es
https://orcid.org/0000-0002-5819-2469
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

13:2 Evaluation of Distributional Models with the Outlier Detection Task

explicit count-based models [2, 24], while others show that there are no significant differences
between them [20, 23], in particular if the hyperparameters are configured and set in a similar
way [22]. Other works report heterogeneous results since the performance of the two models
varies according to the task to be evaluated [5, 9, 14, 19].

In this paper, we make use of the outlier detection task defined in Camacho-Collados and
Navigli [7] to compare different types of embeddings and count-based word representations.
In particular, we compare the use of bag-of-words and syntactic dependencies in both
embeddings and count-based models. We observed that there are no clear differences if the
two models rely on syntactic dependencies; yet embeddings seem to perform better than
transparent models when the dimensions are made up of bag-of-words. In addition, we
contribute to enlarge the test dataset by adding more groups of semantically homogeneous
words and outliers (50% larger), and by manually translating the expanded dataset to
Portuguese.

Next, we will describe the outlier datasets (Section 2), a count-based model with filtering
(Section 3), and several experiments to compare different distributional models using the
outlier datasets (Section 4). Conclusions will be addressed in Section 5.

2 The Datasets for Outlier Detection

For the outlier detection task, Camacho-Collados and Navigli [7] provided the 8-8-8 dataset1,
which consists of eight different topics each containing a cluster of eight words and eight
outliers which do not belong to the given topic. For instance, one of the topics is “European
football teams”, which was defined with a set of eight nouns:

FC Barcelona, Bayern Munich, Real Madrid, AC Milan, Juventus, Atletico Madrid,
Chelsea, Borussia Dortmund

and a set of eight outliers:

Miami Dolphins, McLaren, Los Angeles Lakers, Bundesliga, football, goal, couch,
fridge

In order to expand the number of examples, two annotators were asked to create four
new topics, and for each topic to provide a set of eight words belonging to the chosen topic,
and a set of eight heterogeneous outliers. One of them proposed all the words in less than
15 minutes, and the other annotator just agreed with all the decisions taken by the first
one. This 100% inter-annotator agreement is in contrast with the low inter-annotator levels
achieved in the standard word similarity datasets, for instance in WordSim353 [10] the
average pair-wise Spearman correlation among annotators is merely 0.61. The new expanded
dataset, called 12-8-8, contains 12 topics, each made up of 8+8 topic words and outliers. In
addition, in order to simplify the comparison with systems that do not identify multiwords,
we also changed the multi-words found in the 8-8-8 dataset by one-word terms denoting
similar entities. For instance: the terms “Celtic” and “Betis” were used instead of “Atletico
Madrid” and “Bayern Munich”, all referring to football teams. The 12-8-8 dataset contains
50% more test examples than the original one. Finally, we also created a new dataset by
translating 12-8-8 into Portuguese.

In Camacho-Collados and Navigli [7], the outlier detection task is defined on the basis of a
generic concept of compactness score. Here, we propose to define a more specific compactness
score by assuming that the similarity coefficient is symmetrical (e.g. Cosine). Intuitively,

1 http://lcl.uniroma1.it/outlier-detection/

http://lcl.uniroma1.it/outlier-detection/

P. Gamallo 13:3

given a set of 9 words consisting of 8 words belonging to the same group and one outlier, the
compactness score of each word of the set is the result of averaging the pair-wise similarity
scores of the target word with the other members of the set.

Formally, given a set of words W = w1, w2, ..., wn, wn+1, where w1, w2, ..., wn belongs to
the same cluster and wn+1 is the outlier, we define the compactness score c(w) of a word
w ∈ W , and assuming a symmetrical similarity coefficient sim, as follows:

c(w) = 1
n

∑
wi∈W
w 6=wi

sim(w, wi) (1)

An outlier is correctly detected if the compactness score of the outlier word is lower than
the scores of the cluster words. So, accuracy measures how many outliers were correctly
detected by the system divided by the number of total detections: 12x8 in our 12-8-8 dataset.
Camacho-Collados and Navigli [7] also define Outlier Position Percentage (OPP) which takes
into account the position of the outlier in the list of n + 1 words ranked by the compactness
score, which ranges from 0 to n (position 0 indicates the lowest overall score among all words
in W , and position n indicates the highest overall score).

3 A Filtered-Based Distributional Model

The outlier datasets will be used to compare count-based distributional models with embed-
dings. The count-based model we propose is based on a filtering approach and dependency
contexts.

As co-occurrence matrices representing context distribution are sparse, most entries of a
sparse matrix are zeros that do not need to be stored explicitly. In fact, highly dispersed
matrices are computationally easy to work with [9, 16]. A possible storage mode for a sparse
matrix is a hash table where keys are word-context pairs with non-zero values [16]. To reduce
the number of keys in a hash table representing word-context co-occurrences, we apply a
technique to filter out contexts by relevance [6]. The compressing technique consists in
computing an informativeness measure -e.g., loglikelihood [8]- between each word and their
contexts. For each word, only the R (relevant) contexts with highest loglikelihood scores are
kept in the hash table. R is a global, arbitrarily defined constant whose usual values range
from 10 to 1000 [4, 26]. In short, we keep the R most relevant contexts for each target word.
Context filtering allows us to dramatically reduce the context space and, unlike embeddings,
makes the word model transparent, fully interpretable and easily readable by humans.

Syntactic-based word contexts can be derived from the dependency relations the words
participate in (e.g. subject, direct object, modifier). To extract contexts from dependencies,
we use the co-compositional methodology defined in Levy and Goldberg [21] and Gamallo [15].
Notice that syntax-based models are fully interpretable as each dimension is an explicit
lexico-syntactic context.

4 Experiments and Evaluation

We performed three experiments. The first one using the original 8-8-8 dataset. The second
one comparing more approaches against the expanded 12-8-8 dataset. And the third one
comparing the best approaches of the previous experiments using the Portuguese 12-8-8
dataset.

SLATE 2018

13:4 Evaluation of Distributional Models with the Outlier Detection Task

Table 1 Outlier Position Percentage (OPP) and Accuracy of different word models on the 8-8-8
outlier detection dataset using Wikipedia.

System Strategy OPP Accuracy

Dep500 count+syntax 97.3 90.6
CBOW embed+bow 95.3 73.4
Skip-Gram embed+bow 93.8 70.3
Glove embed+bow 91.8 56.3

R1 R5 R10 R25 R50 R100 R200 R300 R500 R1000
0

20

40

60

80

100

OPP
Accuracy

Figure 1 Accuracy and OPP of our count-based strategy across different filtering thresholds:
from R = 1 to R = 1000.

4.1 The 8-8-8 Dataset

The goal of the experiment is to compare the basic count-based model defined in the previous
section (3) with the results obtained by different versions of embeddings, which were reported
in Camacho-Collados and Navigli [7].

Table 1 shows the results obtained by the count-based strategy we developed, Dep500,
which is a count-based model with contexts represented as syntactic dependencies and a
relevance filter R = 500. The contexts of the model were built by making use of a rule-based
dependency parser, DepPattern [13]. The method outperforms the results obtained by three
standard embedding models: the CBOW and Skip-Gram models of Word2Vec [24] and
GloVe [28], which are based on bag-of-words contexts2, and whose results were reported
in Camacho-Collados and Navigli [7]. The dimensionality of the dense vectors was set to
300 for the three embedding models. Context-size 5 for CBOW and 10 for Skip-Gram and
GloVe; hierarchical softmax for CBOW and negative sampling for Skip-Gram and GloVe.
In all experiments, the corpus used to build the vector space was the 1.7B-tokens English
Wikipedia (dump of November 2014).

The growth curve depicted in Figure 1 shows the evolution of accuracy and OPP over
different R values. We can observe that the curve stabilizes at R = 200 and starts going
down before R = 1000. It means that small count-based distributional models with relevant
contexts perform better than large models made up of many noisy syntactic contexts.

2 We use bow to refer to linear bag-of-word contexts, which must be distinguished from CBOW (continuous
bag-of-words) [22]

P. Gamallo 13:5

4.2 The 12-8-8 Expanded Dataset
The main goal of the next experiments is to use the outlier detection task to compare the
performance of different types of dependency parsers (rule-based and transition-based) to
build both count-based distributions and neural embeddings. Additionally, we also compare
the use of syntactic dependencies and bag-of-words in the same task. We require a dataset
without multiwords since some of the tools we used for building distributions only tokenize
unigrams. For this purpose, we defined the following six strategies:
Count1 A count-based model with rule-based dependencies.
Count2 A count-based model with transition-based dependencies.
Count3 A count-based model with bag-of-words.
Emb1 Embeddings with rule-based dependencies.
Emb2 Embeddings with transition-based dependencies.
Emb3 Embeddings with bag-of-words.

The three count-based models were built with the filter R = 300, whereas the dimen-
sionality of the three embeddings was set to 300. The three embeddings were based on the
continuous skip-gram neural embedding model [24], with negative-sampling parameter set at
15. The two bag-of-words models were generated using a window of size 10: 5 words to the left
and 5 to the right of the target word. Both Emb2 and Emb3 are the models described in Levy
and Goldberg [21], which are publicly available3. To create the dependency-based models,
the corpus was parsed with a very specific configuration of the arc-eager transition-based
dependency parser described in [17]4. The performance of the parser for English is about
89% UAS (unlabeled attachment score) obtained on the CoNLL 2007 dataset. To build
Emb2, we made use of word2vecf5, a modified version of word2vec , which is suited to build
embeddings with syntactic dependencies [21]. Rule-based dependencies were obtained using
DepPattern [13].

Even though the strategies are very different using very different software, we tried to
use the same hyperparameters in order to minimize differences that are not due to the word
models themselves. As Levy and Goldberg [23] suggest, much of the difference between
vectorial models are due to certain system design choices and hyperparameter optimizations
(e.g., subsampling frequent words, window size, etc.) rather than to the algorithms themselves.
The authors revealed that seemingly minor variations in external parameters can have a
large impact on the success of word representation methods.

Table 2 shows the results obtained on the 12-8-8 dataset by the six models built from
the English Wikipedia. The four syntax-based methods (with rules or transitions, count-
based or embeddings) give very similar scores. However, they tend to perform better than
those based on bag-of-words (as in the previous experiment in Subsection 4.1). This is in
accordance with a great number of previous works which evaluate and compare syntactic
contexts (usually dependencies) with bag-of-words techniques [11, 12, 18, 21, 25, 27, 29]. All
of them state that syntax-based methods outperform bag-of-words techniques, in particular
when the objective is to compute semantic similarity between functional (or paradigmatic)
equivalent words, such as detection of co-hyponym/hypernym word relations. By contrast,
bow-based models tend to perform better in tasks oriented to identify semantic relatedness

3 https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings/
4 We are very grateful to the authors for sending us the English Wikipedia syntactically analyzed with

their parser.
5 https://bitbucket.org/yoavgo/word2vecf

SLATE 2018

https://levyomer.wordpress.com/2014/04/25/dependency-based-word-embeddings/
https://bitbucket.org/yoavgo/word2vecf

13:6 Evaluation of Distributional Models with the Outlier Detection Task

Table 2 Outlier Position Percentage (OPP) and Accuracy of different word models on the 12-8-8
outlier detection dataset using Wikipedia.

System Strategy OPP Accuracy

Count1 rules 94.92 75.0
Count2 transitions 93.48 71.87
Count3 bow 86.71 60.41
Emb1 rules 93.09 76.04
Emb2 transitions 94.27 72.91
Emb3 bow 93.88 69.79

Table 3 Outlier Position Percentage (OPP) and Accuracy of two distributional models on the
12-8-8 outlier detection dataset using Portuguese Wikipedia.

System Strategy OPP Accuracy

Count1 rules 91.40 48.95
Emb1 rules 84.375 39.58

and analogies. We may conclude the following: First, the outlier detection task is suited to
search for similarity and not for semantic relatedness [1], and second, the type of context
(dependency-based or bag-of-words) is more determinant than the type of model (count-
based or embeddings) for that task. Finally, embeddings clearly outperform count-based
representations when the contexts are defined with bag-of-words (see score of Emb3 against
Count3 in Table 2).

4.3 Portuguese 12-8-8 Dataset
The 12-8-8 Expanded Dataset was translated into Portuguese in order to make new tests in this
language. The Portuguese experiments were carried out with the two best strategies, according
to the previous experiments: count-based model with rule-based dependencies (Count1) and
embeddings with rule-based dependencies (Emb1). As in the previous experiment, the count-
based model was built with the filter R = 300, whereas the dimensionality of the embeddings
was set to 300. The latter was implemented with skip-gram and negative-sampling parameter
set at 15. Table 3 shows the results obtained on the Portuguese 12-8-8 dataset by the two
models evaluated.

In these experiments, the count-based strategy clearly outperforms embeddings. This may
be partially explained by the fact that the Portuguese Wikipedia is almost 10 times smaller
than the English one, and neural networks require large corpus to make better predictions.

5 Conclusions

We have used the outlier detection task for intrinsic evaluation of distributional models in
English and Portuguese. Unlike standard gold-standards for similarity tasks, the construction
of datasets for outlier detection requires low human cost with very high inter-annotator
agreement. Our very preliminary experiments show that the use of syntactic contexts in
traditional count-based models and embeddings leads the two models to similar performance
on the outlier detection task, even if count-based strategies seem to perform better with less
training corpus.

P. Gamallo 13:7

In future work, we intend to develop outlier detection datasets for many other languages
in order to make it possible multilingual word similarity evaluation. The software required
to build the count-based models as well as the 12-8-8 datasets are publicly available6.

References
1 Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana Kravalova, Marius Paşca, and Aitor

Soroa. A study on similarity and relatedness using distributional and wordnet-based ap-
proaches. In Proceedings of Human Language Technologies: The 2009 Annual Conference
of the North American Chapter of the Association for Computational Linguistics, pages
19–27, 2009.

2 Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, predict! A system-
atic comparison of context-counting vs. context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association for Computational Linguistics, pages 238–
247, 2014.

3 Miroslav Batchkarov, Thomas Kober, Jeremy Reffin, Julie Weeds, and David Weir. A
critique of word similarity as a method for evaluating distributional semantic models. In
Proceedings of the ACL Workshop on Evaluating Vector Space Representations for NLP,
pages 7–12, 2016.

4 Biemann, C., and Riedl M. Text: Now in 2D! A framework for lexical expansion with
contextual similarity. Journal of Language Modelling, 1(1):55–95, 2013.

5 William Blacoe and Mirella Lapata. A comparison of vector-based representations for
semantic composition. In Empirical Methods in Natural Language Processing (EMNLP),
pages 546–556, 2012.

6 Stefan Bordag. A comparison of co-occurrence and similarity measures as simulations of
context. In Computational Linguistics and Intelligent Text Processing (CICLing), pages
52–63, 2008.

7 José Camacho-Collados and Roberto Navigli. Find the word that does not belong: A
framework for an intrinsic evaluation of word vector representations. In Proceedings of the
ACL Workshop on Evaluating Vector Space Representations for NLP, pages 43–50, 2016.

8 Ted Dunning. Accurate methods for the statistics of surprise and coincidence. Computa-
tional Linguistics, 19(1):61–74, 1993.

9 Manaal Faruqui and Chris Dyer. Non-distributional word vector representations. In Pro-
ceedings of the 53rd Annual Meeting of the Association for Computational Linguistics, pages
464–469, 2015.

10 Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi Wolf-
man, and Eytan Ruppin. Placing search in context: the concept revisited. ACM Transac-
tions on Information Systems, 20(1):116–131, 2002.

11 Pablo Gamallo. Comparing window and syntax based strategies for semantic extraction.
In Computational processing of the Portuguese language, pages 41–50, 2008.

12 Pablo Gamallo. Comparing different properties involved in word similarity extraction. In
14th Portuguese Conference on Artificial Intelligence (EPIA’09), pages 634–645, 2009.

13 Pablo Gamallo. Dependency parsing with compression rules. In Proceedings of the 14th
International Workshop on Parsing Technology (IWPT), pages 107–117, 2015.

14 Pablo Gamallo. Comparing explicit and predictive distributional semantic models endowed
with syntactic contexts. Language Resources and Evaluation, 51(3):727–743, 2017.

15 Pablo Gamallo, Alexandre Agustini, and Gabriel Lopes. Clustering syntactic positions with
similar semantic requirements. Computational Linguistics, 31(1):107–146, 2005.

6 http://gramatica.usc.es/~gamallo/prototypes/Word2Model.tgz

SLATE 2018

http://gramatica.usc.es/~gamallo/prototypes/Word2Model.tgz

13:8 Evaluation of Distributional Models with the Outlier Detection Task

16 Pablo Gamallo and Stefan Bordag. Is singular value decomposition useful for word simalirity
extraction. Language Resources and Evaluation, 45(2):95–119, 2011.

17 Yoav Goldberg and Joakim Nivre. A dynamic oracle for arc-eager dependency parsing. In
24th International Conference on Computational Linguistics Proceedings of the Conference
(COLING), pages 959–976, 2012.

18 Gregory Grefenstette. Evaluation techniques for automatic semantic extraction: Comparing
syntactic and window-based approaches. In Workshop on Acquisition of Lexical Knowledge
from Text (SIGLEX), pages 205–216, 1993.

19 Eric Huang, Richard Socher, and Christopher Manning. Improving word representations
via global context and multiple word prototypes. In Proceedings of the 50th Annual Meeting
of the Association for Computational Linguistics, pages 873–882, 2012.

20 Rémi Lebret and Ronan Collobert. Rehabilitation of count-based models for word vector
representations. In Computational Linguistics and Intelligent Text Processing (CICLing),
volume 9041, pages 417–429, 2015.

21 Omer Levy and Yoav Goldberg. Dependency-based word embeddings. In Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics, pages 302–308,
2014.

22 Omer Levy and Yoav Goldberg. Linguistic regularities in sparse and explicit word repres-
entations. In Proceedings of the Eighteenth Conference on Computational Natural Language
Learning (CoNLL), pages 171–180, 2014.

23 Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity with les-
sons learned from word embeddings. Transactions of the Association for Computational
Linguistics, 3:211–225, 2015.

24 Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous
space word representations. In Proceedings of the 2013 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 746–751, 2013.

25 Sebastian Padó and Mirella Lapata. Dependency-based construction of semantic space
models. Computational Linguistics, 33(2):161–199, 2007.

26 Muntsa Padró, Marco Idiart, Aline Villavicencio, and Carlos Ramisch. Nothing like good
old frequency: Studying context filters for distributional thesauri. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
419–424, 2014.

27 Yves Peirsman, Kris Heylen, and Dirk Speelman. Finding semantically related words in
Dutch. Co-occurrences versus syntactic contexts. In CoSMO Workshop, pages 9–16, 2007.

28 Jeffrey Pennington, Richard Socher, and Christopher D. Manning. GloVe: Global vectors
for word representation. In Empirical Methods in Natural Language Processing (EMNLP),
pages 1532–1543, 2014.

29 Violeta Seretan and Eric Wehrli. Accurate collocation extraction using a multilingual parser.
In 21st International Conference on Computational Linguistics, pages 953–960, 2006.

Extending the Galician Wordnet Using a
Multilingual Bible Through Lexical Alignment and
Semantic Annotation
Alberto Simões
Applied Artificial Intelligence Lab (2Ai Lab)
Instituto Politécnico do Cávado e do Ave, Barcelos, Portugal
asimoes@ipca.pt

https://orcid.org/0000-0001-6961-2660

Xavier Gómez Guinovart1

Galician Language Technology and Applications (TALG Group)
Universidade de Vigo, Galiza, Spain
xgg@uvigo.gal

https://orcid.org/0000-0001-9961-6953

Abstract
In this paper we describe the methodology and evaluation of the expansion of Galnet – the
Galician wordnet – using a multilingual Bible through lexical alignment and semantic annotation.
For this experiment we used the Galician, Portuguese, Spanish, Catalan and English versions of
the Bible. They were annotated with part-of-speech and WordNet sense using FreeLing. The
resulting synsets were aligned, and new variants for the Galician language were extracted. After
manual evaluation the approach presented a 96.8% accuracy.

2012 ACM Subject Classification Computing methodologies → Language resources, Computing
methodologies → Lexical semantics

Keywords and phrases WordNet, lexical acquisition, parallel corpora, semantic annotation

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.14

1 Introduction

WordNet [15, 7] is the key lexical resource in many language applications. While contested
by some researchers on the grounds of its fine-grained word senses, it is, indubitably, the
most used and replicated lexical knowledge base. For many languages there is, at least, one
project trying to build a similar resource.

The main problem is that most of these projects are unable to get enough funding to
develop such a large resource by the hand of lexicographers and linguists. This is a bigger
problem for under-resourced languages, like Galician. Therefore, these projects employ
algorithms to obtain new variants and organise them in synsets, either using complete
automatic processes or semi-automatic approaches, where the candidate variants extracted
by the algorithms must be manually validated.

Our contribution is another method to obtain candidate variants, applied to the Galician
wordnet (Galnet), using other languages wordnets (English, Catalan, Spanish and Portuguese)
together with a sentence-aligned multilingual Bible.

1 This research has been carried out thanks to the project TUNER (TIN2015-65308-C5-1-R) supported
by the Ministry of Economy and Competitiveness of the Spanish Government and the European Fund
for Regional Development (MINECO/FEDER).

© Alberto Simões and Xavier Gómez Guinovart;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 14; pp. 14:1–14:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:asimoes@ipca.pt
https://orcid.org/0000-0001-6961-2660
mailto:xgg@uvigo.gal
https://orcid.org/0000-0001-9961-6953
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

14:2 Extending the Galician Wordnet Using a Multilingual Bible

To present it, this paper is organised as follows: Section 2 presents the two main resources
used for this experiment: Galnet, the Galician wordnet, and the CLUVI multilingual Bible;
Section 3 refers to other experiments on creating or enlarging lexical ontologies and their
obtained results; in Section 4 the algorithm is explained with some examples; the results
obtained by this experiment are then analysed in Section 5, where the different kinds of
errors found are detailed; finally, Section 6 draws some conclusions on the methodology used
and its applicability to other languages.

2 Language resources

This section presents the two main language resources used in this experiment. First, Galnet,
the wordnet for Galician, which is the target for the inclusion of new variants obtained by
this experiment. Then, the CLUVI parallel Bible, which will be used as a semantically tagged
parallel corpus for the extraction of the new variant candidates.

2.1 WordNet and Galnet

WordNet is a lexical database of the English language, organised as a semantic network
where the nodes are concepts represented as sets of synonyms and the links between nodes
are semantic relations between lexical concepts. These nodes contain nouns, verbs, adjectives
and adverbs grouped by synonymy. In WordNet terminology, a set of synonyms is called a
synset. The term variant was coined during the EuroWordNet project [30] to refer to each
(lemmatised) synonym in a synset, which is considered a lexical variant of the same concept.
Thus, each synset represents a distinct lexicalised concept and includes all the synonymous
variants of this concept. Additionally, each synset may contain a brief definition or gloss,
which is common to every variant in the synset, and, in some cases, one or more examples of
the use of the variants in context.

In the WordNet model of lexical representation, the synsets are linked by means of
lexical-semantic relations. Some of the most frequent relations represented in WordNet are
hypernymy/hyponymy and holonymy/meronymy for nouns; antonymy and quasi-synonymy
(or semantic similarity) for adjectives; antonymy and derivation for adverbs; and entailment,
hypernymy/hyponymy, cause and antonymy for verbs.

Galnet [9] is an open wordnet for Galician, aligned with an interlingual index (ILI)
generated from the English WordNet 3.0, following the expand model [30] for the creation
of new wordnets, where the variants associated with the Princeton WordNet synsets are
translated using different strategies. Galnet can be searched via its own dedicated web
interface2 and can be downloaded in RDF and LMF formats3.

Galnet is part of the Multilingual Central Repository (MCR)4, a database that currently
integrates wordnets from six different languages (English, Spanish, Catalan, Galician, Basque
and Portuguese) using WordNet 3.0 as ILI [12]. Table 1 provides the number of synsets
and variants for the different languages gathered in this repository, and their percentage of
development with respect to the English WordNet.

2 http://sli.uvigo.gal/galnet/
3 http://sli.uvigo.gal/download/SLI_Galnet/
4 http://adimen.si.ehu.es/web/MCR/

http://sli.uvigo.gal/galnet/
http://sli.uvigo.gal/download/SLI_Galnet/
http://adimen.si.ehu.es/web/MCR/

A. Simões and X. Gómez Guinovart 14:3

Table 1 Current coverage of wordnets in MCR.

English (WordNet 3.0) Galician (Galnet 3.0.26)
variants synsets variants synsets

Nouns 146,312 82,115 46,972 31,356
Verbs 25,047 13,767 7,247 3,214
Adjectives 30,002 18,156 10,423 6,375
Adverbs 5,580 3,621 1,651 1,079

Total 206,941 117,659 66,293 42,024
% 100% 100% 32,0% 35%

Spanish (MCR 2016) Portuguese (MCR 2016)
variants synsets variants synsets

Nouns 101.027 55.227 17.125 10.047
Verbs 20.953 9.541 8.360 3.786
Adjectives 20.938 12.373 6.330 3.581
Adverbs 3.583 1.854 789 528

Total 146.501 78.995 32.604 17.942
% 70,8% 67,1% 15,8% 15,2%

Catalan (MCR 2016) Basque (MCR 2016)
variants synsets variants synsets

Nouns 73,810 46,917 40,420 26,710
Verbs 14,619 6,349 9,469 3,442
Adjectives 11,212 6,818 148 111
Adverbs 1,152 872 0 0

Total 100,793 60,956 50,037 30,263
% 48,7% 51,8% 24,2% 25,7%

2.2 The CLUVI multilingual Bible
The CLUVI Corpus5 is an open collection of human-annotated sentence-level aligned parallel
corpora, originally designed to cover specific areas of the contemporary Galician language
in relation to other languages. With over 47 million words, the CLUVI collection currently
comprises twenty-one parallel corpora in nine specialised registers or domains (fiction,
computing, popular science, biblical texts, law, consumer information, economy, tourism,
and film subtitling) and different language combinations with Galician, Spanish, English,
French, Portuguese, Catalan, Italian, Basque, German, Latin and Chinese.

The CLUVI search application allows for very complex searches of isolated words or
sequences of words, and shows the bilingual equivalences of the terms in context, as they
appear in real and referenced translations. When the term search is a lemma in a language,
the result texts could include WordNet-based suggestions on its lexical equivalences in the
translation languages using colour codes. In addition, the legal section of the CLUVI corpus,
a subset of Galician-Spanish legal texts with 6.5 million words, can be freely downloaded
with CC BY-NC-SA 3.0 license6.

5 http://sli.uvigo.gal/CLUVI/
6 http://hdl.handle.net/10230/20051

SLATE 2018

http://sli.uvigo.gal/CLUVI/
http://hdl.handle.net/10230/20051

14:4 Extending the Galician Wordnet Using a Multilingual Bible

At the moment, the CLUVI is the parallel corpus that contains the largest number and
the most varied thematic range of translations from/to the Galician language. Galician texts
present in the CLUVI collection sum up to about 12,000,000 words, which means a quarter
of the total of the tokens in the corpus for all the languages and domains of translation.
By way of comparison, other parallel corpora that currently facilitate access to translations
to the Galician language are the collection of downloadable corpora from OPUS Project7 [29]
and from the Per-Fide Corpus8 [3]. On the one hand, the OPUS collection provides Galician
translated texts, mainly from English, taken from the web and automatically aligned at
sentence level. Galician texts in OPUS total around 7,600,000 tokens, coming mainly from
the localisation of the Linux operating system environment (Gnome, KDE4 and Ubuntu).
On the other hand, the Per-Fide collection includes Portuguese-Galician software localisation
parallel texts derived from the OPUS Project with about 400,000 tokens in Galician.

The multilingual Bible built for the CLUVI Corpus aligns the translations of the biblical
texts in thirteen linguistic variants – Latin, Galician, Brazilian Portuguese, European
Portuguese, Catalan, French, Italian, Spanish, English, German, Basque, Simplified Chinese
and Traditional Chinese – , with a total of 31,279 translation units, generally equivalent to
the Bible verses, and 7,481,611 words: 535,423 words in Latin, 656,998 words in Galician,
770,410 words in Brazilian Portuguese, 662,853 words in European Portuguese, 723,194 words
in Catalan, 719,229 words in French, 674,795 words in Italian, 706,125 words in Spanish,
759,824 words in English, 701,279 words in German, 505,043 words in Basque, 31,308 words in
Simplified Chinese and 35,130 words in Traditional Chinese. The CLUVI multilingual Bible
collects the translations of all the books shared by the Western biblical canon (Protestant,
Lutheran, Anglican and Roman Catholic traditions), including the Old Testament (Genesis,
Exodus, Leviticus, Numbers, Deuteronomy, Joshua, Judges, Ruth, 1 and 2 Samuel, 1 and
2 Kings, 1 and 2 Chronicles, Ezra, Nehemiah, Esther, Job, Psalms, Proverbs, Ecclesiastes,
Song of Songs, Isaiah, Jeremiah, Lamentations, Ezekiel, Daniel, Hosea, Joel, Amos, Obadiah,
Jonah, Micah, Nahum, Habakkuk, Zephaniah, Haggai, Zechariah and Malachi) and the New
Testament (Matthew, Mark, Luke, John, Acts, Romans, 1 and 2 Corinthians, Galatians,
Ephesians, Philippians, Colossians, 1 and 2 Thessalonians, 1 and 2 Timothy, Titus, Philemon,
Hebrews, James, 1 and 2 Peter, 1, 2 and 3 John, Jude and Revelation).

There have been some other projects focused on the creation of an aligned multilingual
Bible corpus for linguistic research, such as [24] and [6]. However, up to now, the CLUVI
multilingual Bible represents the only available parallel version of the Scriptures which
includes a Galician translation.

3 Related work

The expand model mentioned above and followed by Galnet for the creation of the Galician
wordnet has also been used in the development of the wordnets for Italian [18], Indonesian [21],
Hungarian [14], Croatian [22] French – WOLF [25] and WoNeF [20] wordnets – and Kurdish [2].
The same approach has been taken in the MCR framework for the creation of the wordnets
of Spanish [4], Catalan [5], Basque [19] and Portuguese [26].

In the expand model, one of the main methodologies used to extend a wordnet coverage
from the variants associated with the Princeton WordNet synsets is the acquisition of their
translations from parallel corpora. In fact, we have applied that methodology in a previous

7 http://opus.lingfil.uu.se/
8 http://per-fide.di.uminho.pt/

http://opus.lingfil.uu.se/
http://per-fide.di.uminho.pt/

A. Simões and X. Gómez Guinovart 14:5

Table 2 Precision of parallel corpus-based expansion in [8] and number of obtained variants.

Precision New variants

SemCor 78.13% 2,053
Unesco 80.84% 2,150
Lega 77.42% 1,172
Eroski 80.28% 1,777
Tectra 82.74% 948

phase of the Galnet development [8], using the WN-Toolkit [16] – a set of Python programs
for the creation or enlargement of wordnets – to expand the Galnet first distribution (released
for download in 2012 as part of the MCR 3.0) from two different available parallel textual
resources: the automatically translated (with Google Translate) English–Galician SemCor
Corpus9; and the four sections of the CLUVI Corpus, namely, the Unesco Corpus of Spanish–
Galician scientific-technical texts, the Lega Corpus of Galician–Spanish legal texts, the
Eroski Corpus of Spanish–Galician consumer information texts and the Tectra Corpus of
English–Galician literary texts. In all cases, only the English or Spanish part of the parallel
corpora has been sense-tagged for the experiment, using FreeLing [17] for parsing with the
UKB word sense disambiguator [1].

After the sense annotation, a word alignment algorithm is used in order to identify the
candidate target variants in the texts. For that experiment, we use a very simple word
alignment algorithm which is based on the most frequent translation and which is available as
a part of the WN-Toolkit. That alignment algorithm calculates the most frequent translation
found in the corpus for each synset taking into account that the parallel corpus must be
tagged with WordNet synsets in the source part and the target corpus must be lemmatised
and tagged with very simple tags (n for nouns, v for verbs, a for adjectives, r for adverbs,
and any other letter for other parts of speech).

In Table 2 we can observe the precision and the number of new variants obtained in the
experiment from each parallel corpus. The evaluation has been performed in an automatic
way, comparing the obtained variants with the existing variants in the current distribution of
Galnet. If the variant obtained for a given synset already exists in that same synset, the result
is evaluated as correct. If there are no Galician variants for a given synset in the reference
Galnet, this result is evaluated as incorrect. It should be noted that the automatically
obtained precision values tend to be lower than real values. The reason is that sometimes
we have one or more variants for a given synset in the reference Galnet, but the obtained
variant is not present. If the obtained variant turns out to be correct, it will be evaluated as
incorrect anyway.

In [16] the same methodology is applied to the automatic translation (via Google Translate)
of the English SemCor to six languages (Catalan, Spanish, French, German, Italian and
Portuguese). Table 3 shows the results of the automatic evaluation of the data yielded from
that experiment for the expansion of the wordnets of these six languages.

Another line of research on automatic extension of ontologies is carried out for Portuguese
in the framework of Onto.PT10 [11], where new synsets are obtained from lexicographical,
encyclopedic and textual resources using different similarity indexes for lexical acquisition [10].

9 http://www.gabormelli.com/RKB/SemCor_Corpus/
10 http://ontopt.dei.uc.pt/

SLATE 2018

http://www.gabormelli.com/RKB/SemCor_Corpus/
http://ontopt.dei.uc.pt/

14:6 Extending the Galician Wordnet Using a Multilingual Bible

Table 3 Precision of parallel SemCor-based expansion in [16] and number of obtained variants.

Precision New variants

Catalan 87.63% 449
Spanish 88.93% 504
French 91.83% 142
German 70.26% 1,285
Italian 93.81% 66
Portuguese 84.14% 324

Listing 1 Portuguese segment after being processed by FreeLing.
Jav é jav é NCMS000 1 −
concedeu conceder VMIS3S0 1 02327200−v :0.00125866/02199590−v :0 . 0012442
uma um DI0FS0 0.903495 −
grande grande AQ0CS00 0.998339 01382086−a :0.00262735/01472628−a :0 .000829225
v i t ó r i a v i t ó r i a NCFS000 1 07473441−n :0 . 0155845

4 Methodology

The process of extraction of proposals for variants uses, as resources, the multilingual Bible,
namely the alignments from Portuguese, English, Catalan and Spanish to Galician, as well as
these languages’ respective wordnets. Section 4.1 describes how the Bible was preprocessed,
and Section 4.2 explains the variant proposals extraction algorithm.

4.1 Multilingual Bible Preprocessing

The multilingual Bible is available in a set of translation memory exchange (TMX) files,
one for each Bible book. Thus, the first step is the concatenation of these files, in a single
translation memory, and the projection of each language in a separate textual file, where
each translation unit resides in its own line. Also, as a few translation units do not include
translations for every other language, in these cases an empty line is created in the respective
text file.

Each one of these files is then processed using FreeLing, where each word is annotated
with its lemma and part of speech. For those words present in the wordnet for that language,
FreeLing uses the UKB algorithm in order to associate the more probable sense (which
corresponds to a WordNet synset) to that word. FreeLing does not add only one sense, but a
set of different senses, adding a probability measure to each one. This process is done taking
care of translation units boundaries, in order to keep them after the annotation process.
Listing 111 presents an example of a Portuguese translation unit after being processed by
FreeLing.

In Listing 1, each line corresponds to a word, with different fields (or columns) separated
by spaces: original word, lemma, part-of-speech, tagger confidence and a list of references to
the synsets containing that lemma. References are separated by a slash, and each reference
comprises the synset ILI and the UKB algorithm confidence.

11 The example was truncated to a maximum of two senses.

A. Simões and X. Gómez Guinovart 14:7

Listing 2 Portuguese segment based on lemmas.
jav é conceder um grande v i t ó r i a

vitória

vitoria : 56.37 %
salvación : 7.78 %
triunfo : 4.66 %
xustiza : 2.56 %
axuda : 1.77 %

Figure 1 Example of PTD entry for the word vitória for the language pair PT↔GL.

The lemma information from these files are then concatenated together, in order to
reconstruct the original text files, but with each word replaced by each lemma (Listing 2).

These lemmatised files are then used by NATools [27] to compute probabilistic translation
dictionaries (PTD) for the following language pairs: PT↔GL, EN↔GL, CA↔GL and
ES↔GL. A PTD is a dictionary that maps each word from the source language to a set of
probable translations, together with their probability (see Figure 1 for an example entry).
The main advantage of using this kind of dictionary is that the domain and range of the
dictionary cover all the corpus words (even if, in some situations, proposing a bad translation).

4.2 Extraction of Variant Proposals
The extraction of variant proposals is done through the alignment of words in the Bible that
were annotated by FreeLing with one or more WordNet senses. The algorithm is based on
the following steps, which are executed for each translation unit of the Bible:
1. For each one of the source languages (PT, EN, CA and ES) the algorithm gets the current

annotated translation unit, and finds semantically annotated words. For each one of
these words, it saves in a dictionary the ILI for the three most probable senses. This step
results in a dictionary that can be formally defined as the following map:

ILI 7→ (L 7→ 〈WL ∪ LL 7→ IN〉) ,

where L stands for the set of source languages, and WL and LL for the set of words and
lemmas, respectively, from language L. These forms and lemmas are counted and their
number of occurrences is saved.
As an example, for the synset with ILI = 07473441-n, the top level dictionary would have
the following entry, meaning that only one translation was found in each language and
that this synset occurs two times in the whole Bible:

07473441-n →

PT → {vitória → 2
EN → {victory → 2
ES → {victoria → 2
CA → {victòria → 2

2. The dictionary created in the previous step is processed, one entry at a time (for each
ILI): if that ILI has at least three source languages – that is, if the previous process found
this ILI in, at least, three of the four processed languages – then it is considered. If not,
it is discarded.

SLATE 2018

14:8 Extending the Galician Wordnet Using a Multilingual Bible

For each one of these forms and lemmas, the probabilistic translation dictionary is queried,
and the probable translations retrieved. Those translations with a translation probability
lower than 20% are discarded. For the other translations, another dictionary is created
that maps each possible translation to the accumulated translation probability and an
accumulated similarity measure (a simple Boolean measure that states if the source word
and translation word are orthographically similar). This dictionary has the following
structure:

WGL 7→ 〈IR, IN〉

where the first element of the pair is the accumulated translation probability, and the
second is the accumulated similarity measure.
For the ILI presented before, this dictionary would contain:{

triunfo → (0.2024, 0)
vitoria → (2.4876, 3)

which means the Galician variant vitoria is similar to three variants from any other
languages, and has a greater accumulated translation probability than the word triunfo.
Finally, the target sentence, from the translation unit, is retrieved. Each word from
the sentence whose part of speech matches the part of speech from the ILI (note that
ILI includes a character, at the end of the code, indicating the PoS for those synset
variants) and also matches one of the previously obtained translations will be considered
a variant. If this variant is already part of the Galnet synset, then it is marked as a
known variant (which will be used to validate the algorithm). All these variants are saved
in a global dictionary, as variant candidates for that specific ILI. This dictionary also
saves an accumulated similarity measure, and a counter on how many translation units
suggested this specific candidate:

ILI 7→ (LGL 7→ 〈IN, IN〉)

For the example ILI used above, the resulting dictionary includes:

07473441-n →
{
triunfo → (2, 0)
vitoria → (14, 37)

meaning that the word triunfo was suggested performing the algorithm in two segments
of the Bible, while the word vitoria was suggested by fourteen segments. Also, triunfo
was never similar to any other language variant while vitoria was similar 37 times (see
Section 4.2.1).

4.2.1 Similarity Measure

Regarding the similarity measure mentioned before, its main goal is to give preference to
those variants that are orthographically similar to variants from other languages. This is
specially useful given that three from the four source languages (PT, CA and ES) have some
resemblances. For the pair PT↔EN, the dictionary computed on some previous experiments
for the Portuguese wordnet [28], based on rewriting rules, is used. For the other languages,
the well known Levenshtein distance [13] is applied, with a distance of 1.

A. Simões and X. Gómez Guinovart 14:9

5 Evaluation and results

For the evaluation of this methodology we designed a protocol oriented to the manual analysis
of the results by an expert lexicographer. The review of the candidates is done by checking
their lexicographical adequacy to the concept represented in the WordNet knowledge base.
In case of lack of adequacy, the proposal receives a code that indicates the reason for its
exclusion. The codes established in the revision protocol are the following:
1. MCR source:

wrong variant introduced by mistakes in the wordnets for other languages;
2. Lemmatisation:

wrong variant introduced by a mistake in the lemmatisation process;
3. Galician normative:

variant whose form is deprecated by the official Galician normative;
4. False friends:

variant form is equal to a variant in other language, but with a different meaning;
5. Levenshtein distance:

similar to the false friend class, but originated by the similarity measure.

5.1 Error analysis

In the following sections, we will describe and exemplify the phenomena grouped by each
error code, and their influence on the overall evaluation of the results.

5.1.1 MCR source

The existing lexicographic errors found in the MCR – especially in Portuguese, Catalan
or Spanish – can produce erroneous candidates for extraction. These candidates are not
considered errors of the extraction methodology and, therefore, are not taken into account
for the evaluation of its results.

For example, the Portuguese variant “fazer” included in the concept “give birth” (ili-30-
00056930-v)12 is too generic for this sense and gives rise to the proposal “facer”, also too
generic in Galician and therefore classified as incorrect.

The identification of lexicographic errors in Portuguese through this protocol will also be
used for the revision and maintenance of the PULO knowledge base.

5.1.2 Lemmatisation

In some cases, the wrong candidates come from the incorrect lemmatisation performed by
FreeLing. These cases can not be considered as errors of the extraction methodology, so they
will not be included in the evaluation of its performance.

By way of illustration, some of these cases are the wrong candidates “bendiciu” (past
tense inflected form of the verb) instead of “bendicir” (infinitive of the verb by which it must
be lemmatised); “costa” instead of “costas” for the concept in ili-30-05588174-n,13 where
the lemma should go in plural because the word can only be used in the plural form in this

12 http://sli.uvigo.gal/galnet/galnet_var.php?version=dev&ili=ili-30-00056930-v
13 http://sli.uvigo.gal/galnet/galnet_var.php?version=dev&ili=ili-30-05588174-n

SLATE 2018

http://sli.uvigo.gal/galnet/galnet_var.php?version=dev&ili=ili-30-00056930-v
http://sli.uvigo.gal/galnet/galnet_var.php?version=dev&ili=ili-30-05588174-n

14:10 Extending the Galician Wordnet Using a Multilingual Bible

sense; or “testemuño” instead of “testemuña” for the concept in ili-30-10786517-n,14 where
the lemma should be feminine because the word can only be used in feminine in this sense.

In all these cases, the extraction algorithm generates a wrong candidate for Galnet because
of the bad selection of the lemma during the automatic linguistic analysis carried out by
FreeLing.

5.1.3 Galician normative

In a few cases, the Galician candidate generated from the CLUVI multilingual Bible represents
a variant rejected by the current official normative of the Galician language [23]. For example,
the proposed candidate “lá”, an ancient spelling of the word for the concept of “outer coat of
especially sheep and yaks” (ili-30-01899593-n),15 is not well written following the current
regulations, which prescribe it without graphic accent (i.e., “la”).16

These erroneous candidates cannot be considered as the result of any dysfunction of
the extraction methodology, so they cannot be taken into account for the evaluation of the
accuracy of their results.

5.1.4 False friends

In some cases, an erroneous candidate is produced because of the orthographic identity – but
not identity of meaning – between the proposed Galician form and its source. These false
friends occur more frequently between Galician and Portuguese, although they can also occur
between Galician and Catalan or Spanish. For example, the erroneous proposal “apagar” for
the meaning “put an end to; kill” (ili-30-00478217-v)17 is generated from the formal identity
of the Galician word with the Portuguese form “apagar” which, unlike Galician, does have
that meaning.

The cause of this erroneous behaviour lies in certain errors of the semantic tagging of
the UKB algorithm and it is limited to polysemous words that are false friends in some of
their meanings, but are true friends in others. For example, the word “apagar” in Galician is
polysemous. In the example above (ili-30-00478217-v), it is a false friend of the Portuguese
verb “apagar”. However, in another of its senses, “put out, as of fires, flames, or lights”
(ili-30-02761897-v), the Portuguese verb “apagar” and the Galician verb “apagar” are true
friends, because they share the same meaning. In the parallel corpus, a number of cases of
“apagar” are classified with the shared sense of ili-30-00478217-v in equivalent phrases from
Galician and Portuguese. But it also happens that the Galician word “apagar” with the
ili-30-02761897-v sense is incorrectly classified by FreeLing as ili-30-00478217-v.

Because of this erroneous semantic tagging, attributable to a malfunction of the UKB
algorithm, the extraction algorithm mistakenly proposes the candidate “apagar” as a candidate
Galician translation for the sense of ili-30-00478217-v. Hence, these wrong candidates can
not be considered as extraction errors, as they are due to the UKB algorithms, and as such,
they will not be taken into account in the evaluation of the results of the proposed algorithm.

14 http://sli.uvigo.gal/galnet/galnet_var.php?version=dev&ili=ili-30-10786517-n
15 http://sli.uvigo.gal/galnet/galnet_var.php?version=dev&ili=ili-30-01899593-n
16 https://academia.gal/dicionario/-/termo/busca/la
17 http://sli.uvigo.gal/galnet/galnet_var.php?version=dev&ili=ili-30-00478217-v

http://sli.uvigo.gal/galnet/galnet_var.php?version=dev&ili=ili-30-10786517-n
http://sli.uvigo.gal/galnet/galnet_var.php?version=dev&ili=ili-30-01899593-n
https://academia.gal/dicionario/-/termo/busca/la
http://sli.uvigo.gal/galnet/galnet_var.php?version=dev&ili=ili-30-00478217-v

A. Simões and X. Gómez Guinovart 14:11

Table 4 Results of the human evaluation.

Candidatures 1665

No error 1443
MCR source 144
Lemmatisation 8
Galician normative 4
False friends 18
Levenshtein distance 48

Precision 96.8%

5.1.5 Levenshtein distance

Most of the inaccuracies of the methodology presented here are found in candidates formally
similar to the source variants, but with different meaning. For example, the system generates
the Galician proposal “ver” for the concept “come to pass; arrive, as in due course” (ili-30-
00341917-v)18 due to its formal similarity with the Portuguese variant “vir” for this sense,
with which it maintains a Levenshtein distance 1, accepted by the system in words between
1 and 5 letters. However, “ver” (“to see”, in Galician) does not have that sense at all, so it
is an unexpected error generated by the methodology. The correction of these errors in a
programmatic way is not easy, since the elimination of Levenshtein distance would suppose
an unwanted decrease in the coverage of the results.

5.2 Evaluation results

After running the extraction algorithm we obtained 4,353 new Galician variants, from
which 1,665 were orthographically similar to variants from other languages according to the
similarity measure referred to in section 4.2. As previously stated, the evaluation of the
results has been carried out completely manually by an expert lexicographer by checking
the lexicographical adequacy of the candidates to the concept represented in the WordNet
knowledge base, and in case of lack of adequacy, indicating with the corresponding error
code the reason for its exclusion. In Table 4 we can observe the results of this evaluation.

As said before, precision is calculated without taking into account the existing lexicographic
errors found in the MCR, the errors from the lemmatisation process performed by FreeLing,
the errors from changes in the official normative of Galician or the errors in semantic tagging
produced by the UKB algorithm, which are not considered inherent errors of the extraction
methodology.

6 Final remarks

The results of human evaluation in section 5 show that the presented methodology outperforms
the results reported in previous works [8, 16] and discussed above in Section 3 (Tables 2
and 3). This would demonstrate the importance of associating lexical semantic information
to lexical alignment for the identification of variant candidates in parallel corpora.

18 http://sli.uvigo.gal/galnet/galnet_var.php?version=dev&ili=ili-30-00341917-v

SLATE 2018

http://sli.uvigo.gal/galnet/galnet_var.php?version=dev&ili=ili-30-00341917-v

14:12 Extending the Galician Wordnet Using a Multilingual Bible

Future work includes both introducing the validated set of Galician extracted variants in
the Galnet knowledge base, as generating the Galnet 3.0.27 new distribution.19 We will also
revise the erroneous Portuguese variants in PULO identified during the evaluation. Finally,
we will apply this methodology for the expansion of data in the PULO wordnet.

References

1 Eneko Agirre and Aitor Soroa. Personalizing PageRank for Word Sense Disambiguation.
In Proceedings of the 12th Conference of the European Chapter of the ACL, pages 33–41,
2009.

2 Purya Aliabadi, Mohamed Sina Ahmadi, Shahin Salavati, and Kyumars Sheykh Esmaili.
Towards building KurdNet, the Kurdish WordNet. In Proceedings of the 7th Global Word-
NetConference, Tartu, Estonia, 2014.

3 José João Almeida, Sílvia Araújo, Nuno Carvalho, Idalete Dias, Ana Oliveira, André San-
tos, and Alberto Simões. The Per-Fide Corpus: A new resource for corpus-based termin-
ology, contrastive linguistics and translation studies. In Tony Berber Sardinha and Telma
de Lurdes São Bento Ferreira, editors, Working with Portuguese Corpora, pages 177–200,
London, 2014. Bloomsbury Publishing.

4 Jordi Atserias, Salvador Climent, Xavier Farreres, German Rigau, and Horacio Rodrig-
uez. Combining multiple methods for the automatic construction of multilingual Word-
Nets. In Recent Advances in Natural Language Processing II. Selected papers from RANLP,
volume 97, pages 327–338, 1997.

5 Laura Benítez, Sergi Cervell, Gerard Escudero, Mònica López, German Rigau, and Mariona
Taulé. Methods and tools for building the Catalan WordNet. In In Proceedings of the ELRA
Workshop on Language Resources for European Minority Languages, 1998.

6 Christos Christodouloupoulos and Mark Steedman. A massively parallel corpus: the Bible
in 100 languages. Language Resources and Evaluation, 49(2):375–395, 2015.

7 Christiane Fellbaum, editor. WordNet: An electronic lexical database. MIT Press, Cam-
bridge, 1998.

8 Xavier Gómez Guinovart and Antoni Oliver. Methodology and evaluation of the Galician
WordNet expansion with the WN-Toolkit. Procesamiento del Lenguaje Natural, 53:43–50,
2014.

9 Xavier Gómez Guinovart and Miguel Anxo Solla Portela. Building the Galician wordnet:
methods and applications. Language Resources and Evaluation, 52, 2017. doi:10.1007/
s10579-017-9408-5.

10 Hugo Gonçalo Oliveira. Onto.PT: Towards the Automatic Construction of a Lexical On-
tology for Portuguese. Tese de doutoramento, Universidade de Coimbra, 2013. URL:
http://eden.dei.uc.pt/~hroliv/pubs/GoncaloOliveira_PhdThesis2012.pdf.

11 Hugo Gonçalo Oliveira and Paulo Gomes. ECO and Onto.PT: a flexible approach for cre-
ating a Portuguese wordnet automatically. Language Resources and Evaluation, 48(2):373–
393, 2014. doi:10.1007/s10579-013-9249-9.

12 Aitor Gonzalez-Agirre, Egoitz Laparra, and German Rigau. Multilingual Central Reposit-
ory version 3.0. In Proceedings of the Eight International Conference on Language Resources
and Evaluation (LREC’12), Istanbul, 2012. ELRA.

13 Vladimir Levenshtein. Binary Codes Capable of Correcting Deletions and Insertions and
Reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

19 http://sli.uvigo.gal/download/SLI_Galnet/

http://dx.doi.org/10.1007/s10579-017-9408-5
http://dx.doi.org/10.1007/s10579-017-9408-5
http://eden.dei.uc.pt/~hroliv/pubs/GoncaloOliveira_PhdThesis2012.pdf
http://dx.doi.org/10.1007/s10579-013-9249-9
http://sli.uvigo.gal/download/SLI_Galnet/

A. Simões and X. Gómez Guinovart 14:13

14 Márton Miháltz, Csaba Hatvani, Judit Kuti, György Szarvas, János Csirik, Gábor Prószéky,
and Tamás Váradi. Methods and results of the Hungarian wordnet project. In Proceedings
of the Fourth Global WordNet Conference. GWC, pages 387–405, Szeged, Hungary, 2008.

15 George A. Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and Katherine
Miller. WordNet: An on-line lexical database. International Journal of Lexicography,
3:235–244, 1990.

16 Antoni Oliver. WN-Toolkit: Automatic generation of wordnets following the expand model.
In Proceedings of the 7th Global WordNet Conference, Tartu, 2014. GWN.

17 Lluís Padró and Evgeny Stanilovsky. Freeling 3.0: Towards wider multilinguality. In
Proceedings of the Language Resources and Evaluation Conference (LREC 2012), Istanbul,
Turkey, May 2012. ELRA.

18 Emanuele Pianta, Luisa Bentivogli, and Christian Girardi. MultiWordNet. developing an
aligned multilingual database. In 1st International WordNet Conference, pages 293–302,
Mysore, India, 2002.

19 Elisabete Pociello, Eneko Agirre, and Izaskun Aldezaba. Methodology and construction
of the Basque WordNet. Language Resources and Evaluation, 45(2):121–142, 2011. doi:
10.1007/s10579-010-9131-y.

20 Quentin Pradet, Gaël de Chalendar, and Jaume Baguenier Desormeaux. WoNeF, an im-
proved, expanded and evaluated automatic French translation of WordNet. In Proceedings
of the 7th Global WordNetConference, Tartu, Estonia, 2014.

21 Desmond Darma Putra, Abdul Arfan, and Ruli Manurung. Building an Indonesian Word-
Net. In Proceedings of the 2nd International MALINDO Workshop, 2008.

22 Ida Raffaeli, Bekavac Božo, Željko Agić, and Marko Tadić. Building Croatian WordNet. In
Proceedings of the 4th Global WordNet Conference, Szeged, Hungary, 2014.

23 Real Academia Galega. Normas ortográficas e morfolóxicas do idioma galego. Editorial
Galaxia, Vigo, 2004.

24 Philip Resnik, Mari Broman Olsen, and Mona Diab. The Bible as a Parallel Corpus:
Annotating the ‘Book of 2000 Tongues’. Computers and the Humanities, 33(1-2):129–153,
1999.

25 Benoît Sagot and Darja Fišer. Building a free French wordnet from multilingual resources.
In Proceedings of OntoLex, 2008.

26 Alberto Simões and Xavier Gómez Guinovart. Bootstrapping a Portuguese WordNet from
Galician, Spanish and English wordnets. In Advances in Speech and Language Technologies
for Iberian Languages, volume 8854 of Lecture Notes in Computer Science, pages 239–248,
Berlin, 2014. Springer.

27 Alberto Simões and José João Almeida. NATools – a statistical word aligner workbench.
Procesamiento del Lenguaje Natural, 31:217–224, September 2003.

28 Alberto Simões and Xavier Gómez Guinovart. Dictionary Alignment by Rewrite-based
Entry Translation. In José Paulo Leal, Ricardo Rocha, and Alberto Simões, editors, 2nd
Symposium on Languages, Applications and Technologies, volume 29 of OpenAccess Series
in Informatics (OASIcs), pages 237–247, Dagstuhl, Germany, 2013. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.SLATE.2013.237.

29 Jörg Tiedemann. Parallel data, tools and interfaces in OPUS. In Proceedings of the Eight
International Conference on Language Resources and Evaluation (LREC’12), pages 2214—
-2218, Istanbul, 2012. ELRA.

30 Piek Vossen, editor. EuroWordNet: A multilingual database with lexical semantic networks.
Kluwer Academic Publishers, Norwell, 1998.

SLATE 2018

http://dx.doi.org/10.1007/s10579-010-9131-y
http://dx.doi.org/10.1007/s10579-010-9131-y
http://dx.doi.org/10.4230/OASIcs.SLATE.2013.237

Path Patterns Visualization in Semantic Graphs
José Paulo Leal
CRACS & INESC-Porto LA
Faculty of Sciences, University of Porto, Portugal
zp@dcc.fc.up.pt

https://orcid.org/0000-0002-8409-0300

Abstract
Graphs with a large number of nodes and edges are difficult to visualize. Semantic graphs add
to the challenge since their nodes and edges have types and this information must be mirrored
in the visualization. A common approach to cope with this difficulty is to omit certain nodes
and edges, displaying sub-graphs of smaller size. However, other transformations can be used to
abstract semantic graphs and this research explores a particular one, both to reduce the graph’s
size and to focus on its path patterns.

Antigraphs are a novel kind of graph designed to highlight path patterns using this kind of
abstraction. They are composed of antinodes connected by antiedges, and these reflect respect-
ively edges and nodes of the semantic graph. The prefix “anti” refers to this inversion of the
nature of the main graph constituents.

Antigraphs trade the visualization of nodes and edges by the visualization of graph path
patterns involving typed edges. Thus, they are targeted to users that require a deep under-
standing of the semantic graph it represents, in particular of its path patterns, rather than to
users wanting to browse the semantic graph’s content. Antigraphs help programmers querying
the semantic graph or designers of semantic measures interested in using it as a semantic proxy.
Hence, antigraphs are not expected to compete with other forms of semantic graph visualization
but rather to be used a complementary tool.

This paper provides a precise definition both of antigraphs and of the mapping of semantic
graphs into antigraphs. Their visualization is obtained with antigraphs diagrams. A web applic-
ation to visualize and interact with these diagrams was implemented to validate the proposed
approach. Diagrams of well-known semantic graphs are also presented and discussed.

2012 ACM Subject Classification Computing methodologies → Semantic networks, Human-
centered computing → Graph drawings

Keywords and phrases semantic graph visualization, linked data visualization, path pattern
discovery, semantic graph transformation

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.15

Funding This work is partially funded by the ERDF through the COMPETE 2020 Programme
within project POCI-01-0145-FEDER-006961, by National Funds through the FCT as part of
project UID/EEA/50014/2013, and by FourEyes. FourEyes is a Research Line within project
“TEC4Growth – Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact
/NORTE-01-0145-FEDER-000020” financed by the North Portugal Regional Operational Pro-
gramme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the
European Regional Development Fund (ERDF).

© José Paulo Leal;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 15; pp. 15:1–15:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zp@dcc.fc.up.pt
https://orcid.org/0000-0002-8409-0300
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

15:2 Path Patterns Visualization in Semantic Graphs

wn20schema
word

wn20schema
hyponymOf

wn20schema
synsetId

wn20schema
containsWord

wn20schema
tagCount

wn20schema
gloss

rdfs
label

rdf
type

wn20schema
lexicalForm Sense

Figure 1 An antigraph diagram of WordNet 2.1.

1 Introduction

Graphs, like most mathematical entities, are inherently visual. In fact, our mathematical
intuition relies heavily on our ability to visualize angles, functions, vectors or geometric
figures. It fails us, for instance, when we try to visualize a hypercube. However, the projection
of multidimensional solids in 3 or 2-dimensional spaces give us an idea of these entities’ shape.
The visualization of the hypercube is an apt metaphor of the key insight that drives this
research: the understanding of a complex entity may be improved by looking at the shadow
it casts.

Graphs have a particular role in visualization since they are the data model of most
diagrams. Diagrams enrich graphs in two ways: a graphical syntax for nodes and edges; and
the layout of nodes and edges on a surface. Different kinds of diagrams have been developed
for many purposes. These diagrammatic languages are used for modeling and visualizing
relationships among entities, even when they are purely abstract.

In spite of their ability to show relationships and symmetries, large diagrams are difficult
to visualize. Too many nodes and too many entangled edges reduce our perception on the
underlying graph. This is particularly the case of the semantic web, where graphs are growing
increasingly larger and denser. Section 2 presents different attempts to provide visualizations
of large semantic graphs, with efficient approaches to process large quantities of data and
methods to abstract them, mostly by omitting nodes and edges with certain features. These
diagrams represent the graphs themselves, and the layout may highlight general properties,
such as symmetry, but usually they do not reveal specific features such as patterns formed
by nodes and edges.

The novelty of the antigraph approach is the abstraction of large semantic graphs into
a much smaller graph highlighting its path patterns. The abstraction process consist on
mapping semantic graphs into antigraphs, a particular kind of graph with an associated
diagram type. Sets of edges with the same type are mapped into nodes and sets of nodes into
edges. This process reverses the nature of the constituents of a graph, thus the metaphor
of antimatter where positrons, rather than electrons, revolve around a nucleus made of
antiprotons and antineutrons, rather than the protons and neutrons of regular matter.
Section 3 defines antigraphs and their relationship with semantic graphs. It also introduces
the antigraph diagrams used for their visualization and provides small examples of this kind
of diagram. The final subsection compares antigraphs with other forms of representing the
properties of semantic graphs, such as ontologies.

J. P. Leal 15:3

An implementation of the mapping and diagram layout is described in Section 4. It is
deployed as a web application for browsing antigraphs and exporting them as vector images,
such as the diagram representing Wordnet 2.1, shown in Figure 1. It is available online1
and is useful to validate the proposed approach. Section 5 presents examples of diagrams
produced with this tool to illustrate different techniques to create meaningful visualizations of
large semantic graphs and discover relevant path patterns. The last section summarizes the
research presented in this paper, highlights its main contributions and identifies opportunities
for future research.

2 Related Work

Knowledge bases such as WordNet2 [8], Yago3 [13] and DBpedia4 [4], have a massive amount
of information. A typical representation of these knowledge bases are node-link multigraphs,
where each node has a type and nodes are connected by links representing the relationship
between them.

A convenient way to analyze this data is using data visualization. The most common
type of visualization is focused on the analyzes of resources, in particular, those with a high
outdegree. The main challenge of semantic graph visualization and management is related to
the graph size. This type of graphs has several thousands of nodes and edges and are usually
very dense.

The literature presents several approaches to handle the visualization and management of
node-link graphs. Most of the related work on massive graphs visualization is handled through
hierarchical visualization. This type of approach has low memory requirements, however, it
depends on the characteristics of the graph. The graph hierarchy can be extracted using
different kinds of methods. Tools such as ASK-GraphView [1], Tulip [3] and Gephi [5] explore
clustering and partitioning methods, creating an abstraction of the original graph that can
be easily visualized. Another technique used to build hierarchies is based on the combination
of edge accumulation with density-based node aggregation [17]. Visual complexity can also
be reduced by hub-based hierarchies, where the graph is fragmented into smaller components,
containing many nodes and edges, making meta nodes, as described in [15]. GrouseFlocks [2]
allows users to manually define their own hierarchies.

There are specific tools when the semantic graph is in Resource Description Framework
(RDF) format, however, they require loading the full graph. Some desktop-based tools,
such as Protégé 5 and RDF Gravity6, are mainly used with purpose of aiding developers to
construct their ontologies, providing also complex graph visualizations. Of all available tools
for linked data visualization the most notable ones are the following. Fenfire [11] is a generic
RDF browser and editor that provides a conventional graph representation of the RDF
model. The visualization is scalable by focusing on one central node and its surroundings.
RelFinder7 [12] is a tool that extracts from a Linked Open Data (LOD) source the graph of
the relationships between two subjects. It provides an interactive visualization by supporting
systematic analysis of the relationships, such as highlighting, previewing and filtering features.

1 http://quilter.dcc.fc.up.pt/antigraph
2 https://wordnet.princeton.edu/
3 https://www.mpi-inf.mpg.de/yago-naga/yago
4 http://wiki.dbpedia.org/
5 http://protege.stanford.edu/
6 http://semweb.salzburgresearch.at/apps/rdf-gravity/
7 http://www.visualdataweb.org/relfinder.php

SLATE 2018

http://quilter.dcc.fc.up.pt/antigraph
https://wordnet.princeton.edu/
https://www.mpi-inf.mpg.de/yago-naga/yago
http://wiki.dbpedia.org/
http://protege.stanford.edu/
http://semweb.salzburgresearch.at/apps/rdf-gravity/
http://www.visualdataweb.org/relfinder.php

15:4 Path Patterns Visualization in Semantic Graphs

ZoomRDF [16] is a framework for RDF data visualization and navigation that uses three
special features to support large scale graphs. It uses space-optimized visualization algorithms
that display data as a node-link diagram using all visual space available. Fish-eye zooming is
another feature that allows the exploration of selected elements details, while providing the
global context. The last feature is the Semantic Degree of Interest assigned to all resources
that consider both the relevance of data and user interactions. LODeX [6] produces a
high-level summarization of a LOD source and its inferred schema using SPARQL endpoints.
The representative summary is both visual and navigable. The platform graphVizdb8 [7]
is a tool for efficient visualization and graph exploration. It is based on a spatial-oriented
approach that uses a disk-based implementation to support interactions with the graph.

3 Antigraph definition

The most distinctive feature of antigraphs is that nodes and edges are reversed relatively to
the semantic graphs that generated them. Subsection 3.1 explains the motivation behind
this decision and characterizes the main components of antigraphs, namely antinodes and
antiedges, as well as their features.

The proposed approach to the visualization of semantic graphs can be divided into two
parts. Firstly, the semantic graph is abstracted to another graph – the antigraph – that
promotes types of edges. Secondly, this abstracted graph is visualized using a special kind
of diagram —the antigraph diagram— that emphasises path patterns. The following two
subsections detail each facet of the antigraph approach.

Finally, Subsection 3.3 discusses antigraphs as abstractions of semantics graphs, in
relations to ontologies.

3.1 Motivation

Nodes have the main role in a graph. Edges connect nodes and establish relationships among
them. The goal of antigraphs is to abstract a given graph, highlighting edges and reducing its
size. Hence, in an antigraph nodes and edges are reversed, i.e. an antinode abstracts edges
and an antiedge abstracts nodes. A graph and its antigraph have the same duality of matter
and antimatter (where electrons are replaced by positrons and, protons by antiprotons and
neutrons by antineutrons).

It is important to note that an antinode abstracts an edge type rather than a single edge.
Hence the order (the number of nodes) of an antigraph is in general much smaller than that
of the graph it abstracts. For instance, the graph of WorwdNet 2.1 has about 2 million edges
with 27 edge types, hence 27 is the order of the of reductions that abstract it.

An antiedge expresses a relationship between a pair of antinodes, namely that the edge
types it represents can be connected to form a length 2 path. Two edges form a length 2
path when the target of the first is the source of the second. Since an antiedge represents a
set of nodes, the size (the number of edges) of an antigraph is much smaller than the size
of the graph it abstracts. Considering that antiedges can be laces, the number antiedges
is less or equal to n2, where n is the number of antinodes. For instance, the size of the
WordNet 2.1 graph is about half a million but the size of its antigraph is only 214, well
bellow the maximum of 272 = 729.

8 http://graphvizdb.imis.athena-innovation.gr/

http://graphvizdb.imis.athena-innovation.gr/

J. P. Leal 15:5

The expressiveness of antinodes and antiedges is increased by adding weights to them.
The weight of an antinode is the percentage of edges with the type it abstracts. For instance,
if a graph has half of its edges of type t then the antinode reflecting t has weight 1/2.
Hence, antinodes with higher weight reflect edge types that are more frequent in the graph.
Obviously, the sum of antinode weights must be 1.

By the same token, the weight of an antiedge is the percentage of nodes that participate
in length 2 paths involving edge types they have as source and target, respectively. For
instance, if an antinode reflects the edge type t1 and another the edge type t2, and 1/3 of
the nodes are target of t1 and source of t2, then the weight of the antiedge t1 → t2 is 1/3.

One would expect every node to be reflected by an antiedge, but for that to happen
the nodes that are just sources (not the target of any edge) or just targets (not the source
of any edge) must also be abstracted by antiedges. To ensure that all nodes are reflected
by antiedges it is necessary to introduce two special antinodes: bottom, denoted as ⊥; and
top, denoted by >. The bottom antinode represents a nonexisting edge type that would
come before the start of a path. Conversely, the top antinode represents a nonexisting edge
type that would come after the end of a path. Both special antinodes have weight 0, thus
maintaining the invariant that the sum of all weights is 1.

The two special antinodes – bottom and top – allow the definition of antiedges that
abstract nodes that are only source or target of edges. These antinodes are considered special
to differentiate them from regular antinodes, that have an associated edge type. The antiedge
⊥→ t abstracts the nodes with a null indegree that are sources of edges with type t, and
the antiedge t → > abstracts the nodes with a null outdegree that are targeted by edges of
type t.

In fact, the in(out)degrees of nodes must be taken into consideration in the weight of
all antiedges. Consider a node n with indegree 2 and outdegree 3. For instance, if the
two incoming edges and the three outgoing are of different types then the contribution of
that node to each antiedge is 1/6. Thus, the weight of an antiedge is the percentage of
connecting nodes in paths formed by the edge types, pondered by their in(out)degrees. With
this definition, the sum of antiedges weights is also 1.

As explained above, the introduction of the special antinodes bottom and top is essential
to abstract all the nodes of the original graph in antiedges connecting them. One may wonder
what other antinodes types should be considered. It should be noted that antinodes may
have antiedge laces if the graph contains homogeneous paths, i.e. paths formed by a single
type of edge. Since the goal of antigraphs is to highlight path patterns, it is important to
distinguish different cases that would be amalgamated by generic antinodes with laces.

Certainly, not all antinodes have laces. These are considered shallow antinodes since
they have at most paths of length 1. In contrast a deep antinode has homogeneous paths
of higher length through its lace. Special cases of deep antinodes can be also considered:
cyclical, where the laces contain homogeneous cycles, i.e. cycles using only the type of edge
represented by the antinode; and hierarchical, where the laces represent confluent paths, i.e.
where the nodes in homogeneous paths have branching factor above 2. These types provide
information on the kind of paths formed “within” an antinode, similar to the information
that can be extracted from other antiedges relating different antinodes.

In summary, an antigraph is an abstraction of a semantic graph. This does not mean that
an antigraph is a sort of schema. A semantic graph does not comply with its antigraph, its
the other way round: antigraphs have a functional dependency to semantic graphs. Thus, the
information provided by an antigraph is of a different nature of that of an RDF or OWL
ontology. This point is analyzed in greater detail in Subsection 3.3, after formalizing the
definitions of antigraph and antigraph diagram.

SLATE 2018

15:6 Path Patterns Visualization in Semantic Graphs

deepshallow cyclehierar.

Figure 2 Catalog of antinode types.

3.2 Diagram language
As explained in the previous subsection, an antigraph is an abstraction of a semantic graph.
The antigraph diagram language is a visual representation of an antigraph intended to
highlight the path patterns of the abstracted semantic graph. An antigraph has antinodes of
different types connected by antiedges.

The type of an antinode is conveyed by its shape. A shallow antinode is represented by a
horizontal rectangle, while a deep antinode is represented by a vertical rectangle. A cyclical
antinode is represented by a circle or an ellipse, and a hierarchical antinode is represented by
an isosceles trapezoid. The position of these shapes is their geometric center. The antigraph
depicted in Figure 2 is a sort of catalog of antinode types, where the label of each regular
antinode is the type’s name.

The bottom and top antinodes are represented by a pair of parallel lines rather than
shapes. As can be seen also in Figure 2, the parallel lines that represent each of these
antinodes have different widths. The bottom antinode has a larger upper line and the top
antinode is the reverse. The bottom and top antinodes are located respectively at the bottom
and top of the diagram, as their names suggest. This way the paths created by antiedges
tend to be directed upwards.

Unlike antinodes, antiedges have a single type. Hence, they are represented all by solid
lines with an arrowhead positioned in their middle pointing to the target. Lines connecting
from the bottom antinode, or to top antinode, are straight. All the others are curved so that
antiedges with opposite directions do not overlap.

Antinodes and antiedges have weights in the [0, 1] interval. Actually, both regular
antinodes and antiedges have always nonnull weights; special antinodes (top and bottom)
have null weights by definition. The nonnull weights of regular antinodes and antiedges are
conveyed graphically too. The weight of an antinode is shown as a transparency, making
dimmer the antiedges representing a smaller number of edges in the abstracted graph. The
same principle applies to weights of antiedges. In this case, the weight is also shown as line
width, making thicker the antiedges that represent a larger number of nodes. The semantic
graph that originated the antigraph in Figure 2 has all edge types with the same number
of edges, hence all antinodes have the same weight, thus they all have the same shade. A
different thing happens with antiedges; each has a different shade, reflecting their different
weights.

The regular antinodes in the catalog diagram are not connected to each other, just
to bottom and top (with the exception of the cycle). This means that they do not form
“joins”. Using a syntax borrowed from SPARQL, it can be said that the semantic graph that
generated it lacks triple patterns of the form

?a ?p ?b .
?b ?q ?c .

J. P. Leal 15:7

hasSubSectionhasChapter hasSection

Figure 3 Book structure.

parentOfspouseOf

Figure 4 Family relationships.

The example in Figure 3 represents the structure of books, where a book has chapters and
these have sections. The antigraph of such semantic graph has the properties hasChapter,
hasSection and hasSubSection.

In this case “joins” are created using multiple edge types hence the antinodes have
antiedges connecting them. In particular hasChapter is connected to hasSection and this to
hasSubSection. The reader should note that the three regular antinodes are connected to
the top, meaning that there are chapters, sections and subsections that are not subdivided,
and that only hasChapter is connected from bottom, meaning that only these are connected
from root elements of the hierarchy.

The previous example reflects a hierarchical structure, although with a different type
of edge for each layer. The example in Figure 4 reflects a semantic graph with a couple of
family relationships, namely spouseOf and parentOf. Their associated antinodes both have
laces, which means that paths with a single type of edges can be created. The parentOf
antinode has hierarchic as type, meaning that paths of length greater than 3 can be created
and has an average branching factor above 2.

The simple patterns identified in the small examples above occur also in larger semantic
graphs. Section 4 presents an antigraph browser that allows us to discover combinations of
these patterns in in larger examples, as those analyzed in Section 5.

3.3 Antigraphs and ontologies
Semantic graphs are frequently encoded as sets of triples in the Resource Description
Framework (RDF). This framework supports multiple vocabularies, including a vocabulary
to describe other vocabularies – RDF Schema (RDFS) – which in turn lays the foundations
for a richer ontological language – OWL. RDFS and OWL describe vocabularies in terms of
classes and properties, where classes provide types for nodes and properties types for edges
of semantic graphs, and define hierarchical relationships among those types.

The definition of semantic graph on which the definition of antigraphs relies is also based
on types. However, these types are of a different nature. These node and edge types are
not RDFS or OWL classes and properties, and they are not hierarchically related among

SLATE 2018

15:8 Path Patterns Visualization in Semantic Graphs

themselves. The node and edge types in the definition of antigraphs are the actual URIs
used to label them.

Nevertheless, ontologies and antigraphs are somehow related in the sense that they both
abstract semantic graphs. Thus, it is relevant to question if these two concepts – ontologies
and antigraphs – overlap or compete in any way.

The concept of ontology varies for different communities [9]. In the semantic web, an
ontology is usually understood as a formal definition of a domain of discourse. It declares a
taxonomy of concepts and relationships among them. For instance, an ontology may declare
cat and dog as classes, both as subclasses of pet, and the property hasName associating pets
to their names (strings). RDFS and OWL ontologies are themselves RDF graphs, although
not all RDF graphs are ontologies. In fact, most RDF graphs assert facts on resources using
types and properties, such as “Rex is a dog”9, but they do not define hierarchies of classes
(concepts) and properties (relationships).

By using inference with an ontology it is possible to entail new facts from existing ones,
such as “Rex is a pet”. The reverse, to induce an ontology from a collection of facts, is much
more complex. It is possible to process statements such as “Rex is a dog” and “Fifi is a
cat”, “Rex is a pet” and “Fifi is a pet” and induce an ontology similar to the example in the
previous paragraph. However, ontologies are not usually created this way.

Ontologies prescribe how certain semantic graphs must be. They are not a sort of a
“summarization” of existing semantic graphs. If an ontology is applicable to a particular
semantic graph then the facts of the later should be consistent with the former; and as more
facts are added, that consistency should be preserved without changing the ontology.

An antigraph is, in fact, a summarization of a semantic graph. It maps edges into
antinodes and nodes into antiedges in a way that the antigraph paths condense several paths
of the semantic graph it abstracts. However, only paths that actually exist in the semantic
graph are abstracted into antigraph paths, not all the paths that would be consistent with
the ontology. Moreover, since antinodes and antiedges have weights, the path frequency is
also presented by the antigraph, which has no parallel in ontologies. As a semantic graph
evolves and new nodes and edges are added (or removed), its antigraph may change to reflect
it. In some cases, only the weights will be affected, if no kinds of path are created. In other
cases, new antinodes result from edge types that did not exist before.

In summary, antigraphs and ontologies are different kinds of abstractions. Antigraphs
abstract paths, highlighting the most frequent ones. Ontologies abstract relationships among
concepts. The two abstractions are non-overlapping and are in fact complementary.

4 Antigraph browser

This section describes the design and implementation of a web application developed to
validate the concept of antigraph. This web application – the antigraph browser – produces
interactive antigraph diagrams from several data sources and is freely available online10.

The antigraph browser is a Java web application developed with the Google Web Toolkit
(GWT). It is composed of a client front-end running on a web browser and a server back end.
The server is responsible for transforming a semantic graph in RDF format into an antigraph
that is sent to the client. The front end is responsible for laying out diagrams and managing
user interaction, as explained in the following subsections.

9 “Rex is a dog” are two RDF facts. Assuming ex as an alias for a namespace, that sentence would be
represented by the RDF facts «ex:rex ex:hasName “Rex”» and «ex:rex rdf:type ex:dog».

10 http://quilter.dcc.fc.up.pt/antigraph

http://quilter.dcc.fc.up.pt/antigraph

J. P. Leal 15:9

4.1 Back end processing
The mapping of semantic graphs into antigraphs is performed in two stages by the back end.
Firstly, a set of graph reductions is produced from the semantic graph triples. Secondly, the
antigraph data is computed by processing these graph reductions.

A graph reduction instance aggregates edges of a single type, that is, the semantic graph
obtained by considering only the edges of that type. It records the nodes that are sources
and those that are targets, and computes their in and outdegrees. The links between theses
nodes are also recorded to compute aggregate measures on the reduction such as the number
of cycles, depth and branching factor.

Graph reductions are computed by processing a stream of RDF triples. For each subject-
predicate-object triple the reduction corresponding to its predicate the subject is selected
and recorded as source and the object as target.

Each reduction corresponds to an antinode. Thus the second stage creates an antinode
for each reduction found in the first stage, assigning it a weight computed as the percentage
of edges in the graph. The top and bottom antinodes, with null weight, are also created.
Then it iterates over the pairs of reductions to create antiedges.

The computation of antiedges’ weights is more complex than that of antinodes, as it
involves determining the intersection of the targets and source sets of nodes respectively of
the source and target antinodes of each antiedge. Also, the contribution of each of these
nodes depends both on their in(out)degrees on the reduction. The pairs of antinodes with
nonnull weights create antiedges.

Antiedges connecting antinodes to top and bottom need also to be considered. These
are created with the nodes that are not fully consumed to create antiedges among regular
antinodes, following the same approach to compute weights. It should be noted that links
between top and bottom are impossible.

4.2 Diagram layout
Antigraphs serialized in JSON are sent to the front end where they are visualized as diagrams.
The layout of these diagrams is computed using a force-directed algorithm [14]. Antinodes
repel each other according to Coulomb’s law as if they were electrically charged particles
with the same signal. Antiedges bind them together as springs following Hooke’s law.

The top and bottom antinodes, as well as the antiedges connecting them, are ignored in
this process. The layout is performed in a rectangular area that acts as a boundary that
confines regular antinodes. Top and bottom antinodes are positioned respectively at the top
and bottom of this rectangle, and antiedges connecting then are plotted perpendicularly to
them.

One of the advantages of a force directed algorithm is that it adjusts to changes, either
of window dimensions or in the number of nodes. This enables the selection of antinodes,
choosing which to display and which to hide, with the quick readjustment of the layout.
When an antinode is hidden so are the antiedges that link to it.

Antigraphs with a large number of antinodes tend to have an even larger number of
antiedges, which may difficult their visualization. In this case, the natural candidates to
hide are those with smaller weight since they represent a smaller number of edges in the
semantic graph. To simplify this kind of selection the antigraph browser provides a node
weight threshold. If this threshold is provided then antinodes are sorted by weight and their
accumulated weight is computed in this order. When this value exceeds the threshold the
remaining antinodes are hidden, as well as the antiedges linking to them.

SLATE 2018

15:10 Path Patterns Visualization in Semantic Graphs

Figure 5 Antigraph browser.

4.3 User interface

Figure 5 depicts the user interface of the antigraph browser available online. The main part
is the left central region where the diagram is displayed, following the approach described in
the previous subsection. Above this area, there is a toolbar with tools for controlling the
diagram layout. The smaller panel on the right contains a data source selector and displays
the current data source features. The remainder of this subsection describes these panels in
detail.

The antigraph browser has a number of features to control the diagram layout. These
features are accessible trough the icons on the header toolbar. To start with, the incremental
layout can be toggled on and off using the traffic light icon, on the left of the toolbar. The
icons to its left provide ways to show and hide antinodes, as well as the antiedges connecting
them. The most relevant (with higher weight) hidden antinode is shown by pressing the
outward spiral icon. Using this tool it is possible to gradually enlarge the diagram. The
reverse tool, bound to the inward spiral icon, hides the least relevant shown antinode.

The following two icons operate on the currently selected antinode: to show all currently
hidden antinodes connected to it, or to hide all antinodes connected to it. Antinodes are
selected just by clicking on them. Clicking an antinode with the mouse’s middle button also
toggles a tool tip hovering the node. This tool tip displays the characteristics of the antinode,
such as label, type and weight.

The hide all and show all tools allow the user to set the layout at the two extremes.
These tools are respectively bound to the icons with an antigraph with no antinodes and the
antigraph with several antinodes and antiedges. The header toolbar includes two other icons
on its right side: the camera icon and the life saving icon. The later open a help window
expanding the information in this paragraph.

The camera icon produces a vector image of the diagram presented in the browser. Using
the normal browser features, it is possible to obtain a raster image of the diagram. However,

J. P. Leal 15:11

this kind of image is inadequate for publication since it has a fixed and typically low resolution.
The camera icon activates a feature that produces an SVG file with the diagram, using the
same layout algorithm described above. This conversion uses the SVGKit11 package, that
works well for graphic primitives (e.g. lines, rectangles, ellipses) but has some limitations
regarding fonts and shadows. The vector images look slightly different from their raster
counterparts, but have better quality when printed. The diagrams of the next section, as
well as those of Subsection 3.2, where produced using this tool.

The antigraph browser presents a second panel next to the diagram. Depending on the
width of the web browser’s window, this panel may be placed either on the right side (as in
Figure 5) or bellow the diagram. The panel contains a data source selector and displays the
main features of the current data source.

The upper part of the side panel is used for selecting a semantic graph as data source for
generating an antigraph. It provides three kinds of semantic graph sources: local, remote
and precomputed.

Local sources include small examples for testing the basic features of antigraphs, and
were presented in Subsection 3.2. The dialog box for the selection of local graphs presents the
RDF triples that will be processed to produce the antigraph. These triples are in N-Triples
format in an editable window. The user may modify, add or delete these triples, to better
understand how these changes are reflected on the antigraph diagram.

The remote sources are RDF graphs available on the web in XML/RDF format. This
dialog box presents each graph’s URLs and a threshold – the weight above which antinodes
are included in the diagram. The last entry of this dialog box allows the user to enter an
URL to any RDF/XML file available on the web, and assign it an initial threshold. This
threshold may be changed later on the current data source panel.

Both the local and remote data sources are processed on the fly by the server. The
precomputed data sources provide access to larger semantic graphs that require long processing
times and are already available on the client side. Most of these examples are analyzed in
detail in the next section.

The current data source panel displays its name, threshold and a grid listing its antinodes.
This grid lists all the antinodes in the antigraph, showing which are currently visible, their
type and weight. By default, this information is ordered by descending antinode weight, but
the user can change it. The user can also (de)select the visible antinodes, which immediately
changes the diagram layout. Also, changes in the diagram resulting from the tools described
above are also immediately reflected in this grid.

5 Validation

This section shows with concrete examples how antigraph diagrams emphasize the most
relevant path patterns of a semantic graph. It also explains how the tools in the antigraph
browser help the discovery of path patterns in large semantic graphs, by temporarily hiding
some of their antinodes and the antiedges connecting them, thus producing meaningful
diagrams with a reasonable small size.

11 http://svgkit.sourceforge.net/

SLATE 2018

http://svgkit.sourceforge.net/

15:12 Path Patterns Visualization in Semantic Graphs

isCitizenOf

livesIn
diedIn

hasArea

isConnectedhappenedIn

isLeaderOf

To

Figure 6 Yago core – antinodes connecting to hasArea.

5.1 WordNet

Wordnet[8] 2.1, whose antigraph diagram is depicted in Figure 1, is a much larger graph than
those presented in Subsection 3.2. However, this figure refers only to 95% of Wordnet 2.1
since the 5% least representative edges are omitted. By default, when this example is selected
the threshold is set to 95%, but this value may be edited or removed in the corresponding
field.

The WordNet 2.1 graph has 27 types of nodes and their corresponding antinodes would
clutter this figure. This approach quickly produces a simple visualization by temporarily
hiding the 2/3 least representative antinodes, i.e. edge types. It is important to point out
that this is not specific of WordNet. All the semantic graphs tested with the antigraph
browser have most of their paths concentrated in a fairly small number of edge types, hence
this approach can be systematically used to improve the antigraph visualization.

This diagram immediately shows that the edges types that participate in most triples
are from imported namespaces – rdf:type and rdfs:label – since the corresponding antinodes
are darker. Two antinodes of the wn20schema namespace stand out from the pack for
having links to several others, namely hyponymOf and containsWordSense, but the former
participates in more “joins”, as evidenced by the darker antiedges.

WordNet is frequently used as a semantic proxy by path based semantic measures [10].
These measures rely on taxonomic relationships to identify a least common ancestor between
two concept nodes and compute the shortest path between them. Taxonomic relationships
are created using partOf (hierarchical) and isA relationships. For instance, the RDF and
RDFS vocabularies provide the rdf:type and rdfs:subclassOf properties that can be used
to create a taxonomic relationship between typed resources. However, in this version of
WordNet rdf:type is available, but rdfs:subclassOf is missing.

The antigraph diagram in Figure 1 shows an alternative hierarchic relationship – hyponymOf
– that complemented with other relationship can be used to create a taxonomic relationship.
The rdfs:label relationship is connected by an antiedge with hyponymOf, hence they can
be combined to create a taxonomic relationship on words.

Of course, this is not new knowledge. It is well known that WordNet can be used as a
semantic proxy using hyponymOf and another property to create a taxonomic relationship.
The point is that the antigraph diagram highlights the most promising candidates to create
a taxonomic relationship. This should be useful to discover candidates for taxonomic
relationships in even larger semantic graphs, such as DBpedia [4].

J. P. Leal 15:13

Listing 1 SPARQL query to count leaders of geographic areas.
SELECT COUNT (*)
WHERE {

?p yago:isLeaderOf ?g.
?g yago:hasArea ?a.

}

Listing 2 Counting places connected to where something happened.
SELECT COUNT (*)
WHERE {

?s yago:happendIn ?g .
?g yago:isConnectedTo ?p .

}

5.2 Yago

Yago12 [13] is a well known semantic knowledge base derived from several sources, such as
DBPedia, WordNet, and GeoNames. It has over 10 million entities but for this study, only
the core was used and labels were omitted. Still, this corresponds to over 20 million triples
with 60 property types. Hence it produces an antigraph with that order and size 487. Even
with a threshold of 80%, as it is by default on the antigraph browser, it is difficult to grasp.

The diagram in Figure 6 was obtained by selecting a single antinode, hasArea, the second
most frequent edge type in this graph. Afterward, it was used the tool that unhides antinodes
connected to the one currently selected. The point is to find property types related to concepts
that have an area. Examples of such concepts would be cities, regions or countries. In a sense,
hasArea can be seen as a defining property for a class of geographic concepts, although that
is not explicit. The diagram shows that these geographic concepts are connected to other
properties, such as livesIn, or isLeaderOf. That is, it is possible to retrieve information about
who lives in or who is the leader of an concept that has an area. The SPARQL query in
Listing 1 should produce a nonempty result set. In fact, it was checked on a Yago SPARQL
endpoint13 and the result is 5666.

Also, one can determine the area of entities where something happened, happenedIn, or
that are connected to each other. The type of this last antinode is cyclic, meaning that its
corresponds to a reflexive edge type. These two antinodes are the only that are directly
connected without using em hasArea. Hence, it must be possible to obtain a non empty
answer to the query “what places are connected to the place where something happened?”,
using the query in Listing 2, and it actually returns 888 solutions.

Surprisingly, the graph also indicates that one should not expect results for the query
“what places are connected to place that is lead by x” since these two antinodes are not
connected. Running the SPARQL query in Listing 3 verifies that conclusion as the result
is zero.

12 https://www.mpi-inf.mpg.de/yago-naga/yago
13 https://linkeddata1.calcul.u-psud.fr/sparql

SLATE 2018

https://www.mpi-inf.mpg.de/yago-naga/yago
https://linkeddata1.calcul.u-psud.fr/sparql

15:14 Path Patterns Visualization in Semantic Graphs

Listing 3 Are citizens connected to other places?
SELECT COUNT (*)
WHERE {

?s yago:isCitezenOf ?g .
?g yago:isConnectedTo ?p .
}

6 Conclusions and future work

Semantic graphs are hard to visualize due to a large number of typed nodes and edges. The
antigraph approach to abstract semantic graphs maps edge information into antinodes and
node information into antiedges. This reversal in the nature of the main constituents of a
graph is the reason for the prefix “anti”. The abstraction mapping produces a smaller graph
that is easier to visualize and highlights the patterns of paths in the original semantic graph.

Antinodes and antiedges are assigned with weights that reflect the relevance of the edges
and nodes they represent, and that can be used for further abstractions. For instance,
antinodes with small weights, corresponding to types of edges that seldom occur in the
semantic graph, can be omitted to unclutter large antigraph diagrams.

The antigraph diagram is the proposed graphical syntax to represent antigraphs, and
thus visualize the semantic graphs. This kind of diagrams uses different shapes to represent
antinodes according to their types, and transparency to denote weights. The special antinodes
top and bottom are represented as parallel lines respectively on the top and bottom of the
diagram. In an antigraph, diagram paths are in general upwards, which facilitates their
detection.

The web application for visualizing and interacting with antigraphs is also an important
contribution of this research. It uses a force direct algorithm, which allows the incremental
layout of the diagram after reposition or removal of antinodes. This application can use data
from different sources: local data entered on the interface, remote data available on the web
and precomputed data for a few preprocessed semantic graphs.

The proposed approach still faces the challenge of dealing with massive semantic graphs
with millions of triples, such as those of Yago and DBpedia. The major problem is due to
the computational complexity involving antiedge weights. However, there are approaches
to curb this complexity that are currently being researched. After tackling this issue, the
antigraph browser will be easier to evaluate with real users interested in discovering path
patterns in large semantic graphs.

References

1 James Abello, Frank Van Ham, and Neeraj Krishnan. ASK-GraphView: A large scale
graph visualization system. IEEE Transactions on Visualization and Computer Graphics,
12(5):669–676, 2006.

2 Daniel Archambault, Tamara Munzner, and David Auber. GrouseFlocks: Steerable ex-
ploration of graph hierarchy space. IEEE Transactions on Visualization and Computer
Graphics, 14(4):900–913, 2008. doi:10.1109/TVCG.2008.34.

3 David Auber. Tulip — A Huge Graph Visualization Framework, pages 105–126. Springer,
2004. doi:10.1007/978-3-642-18638-7_5.

http://dx.doi.org/10.1109/TVCG.2008.34
http://dx.doi.org/10.1007/978-3-642-18638-7_5

J. P. Leal 15:15

4 Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary Ives. DBpedia: A nucleus for a web of open data. In The Semantic Web, pages
722–735, 2007.

5 Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An open source soft-
ware for exploring and manipulating networks. In 8th International AAAI Conference on
Weblogs and Social Media, pages 361–362, 2009.

6 Fabio Benedetti, Sonia Bergamaschi, and Laura Po. A visual summary for linked open
data sources. In International Semantic Web Conference, 2014.

7 Nikos Bikakis, John Liagouris, Maria Kromida, George Papastefanatos, and Timos Sellis.
Towards scalable visual exploration of very large RDF graphs. In The Semantic Web:
ESWC 2015 Satellite Events, pages 9–13. Springer International Publishing, 2015. doi:
10.1007/978-3-319-25639-9_2.

8 Christiane Fellbaum. Wordnet: An electronic lexical database. MIT Press, 1999.
9 Nicola Guarino, Daniel Oberle, and Steffan Staab. What is an ontology? In Handbook on

ontologies, pages 1–17. Springer, 2009.
10 Sébastien Harispe, Sylvie Ranwez, Stefan Janaqi, and Jacky Montmain. Semantic similarity

from natural language and ontology analysis. Synthesis Lectures on Human Language
Technologies, 8(1):1–254, 2015.

11 Tuukka Hastrup, Richard Cyganiak, and Uldis Bojārs. Browsing linked data with Fenfire.
In Linked Data on the Web, 2008.

12 Philipp Heim, Sebastian Hellmann, Jens Lehmann, Steffen Lohmann, and Timo Stegemann.
RelFinder: Revealing relationships in RDF knowledge bases. In Semantic Multimedia,
pages 182–187, 2009. doi:10.1007/978-3-642-10543-2_21.

13 Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard Weikum. YAGO2:
a spatially and temporally enhanced knowledge base from Wikipedia. In Proceedings of the
23rd International Joint Conference on Artificial Intelligence, pages 3161–3165, 2013.

14 Stephen G. Kobourov. Spring embedders and force directed graph drawing algorithms.
CoRR, abs/1201.3011, 2012. URL: http://arxiv.org/abs/1201.3011.

15 Zhiyuan Lin, Nan Cao, Hanghang Tong, Fei Wang, U. Kang, and Duen Horng Polo Chau.
Demonstrating interactive multi-resolution large graph exploration. In Proceedings of the
2013 IEEE 13th International Conference on Data Mining Workshops, pages 1097–1100,
2013. doi:10.1109/ICDMW.2013.124.

16 Kang Zhang, Haofen Wang, Thanh Tran, and Yong Yu. ZoomRDF: semantic fisheye
zooming on RDF data. In 19th international conference on World Wide Web, pages 1329–
1332, 2010.

17 Michael Zinsmaier, Ulrik Brandes, Oliver Deussen, and Hendrik Strobelt. Interactive level-
of-detail rendering of large graphs. IEEE Transactions on Visualization and Computer
Graphics, 18(12):2486–2495, 2012. doi:10.1109/TVCG.2012.238.

SLATE 2018

http://dx.doi.org/10.1007/978-3-319-25639-9_2
http://dx.doi.org/10.1007/978-3-319-25639-9_2
http://dx.doi.org/10.1007/978-3-642-10543-2_21
http://arxiv.org/abs/1201.3011
http://dx.doi.org/10.1109/ICDMW.2013.124
http://dx.doi.org/10.1109/TVCG.2012.238

Comparison of Segmentable Units as Indicators of
Two Texts Being Parallel
Afonso Xavier Canosa
University of Santiago de Compostela, Galiza, Spain
canosarodrigues@gmail.com

https://orcid.org/0000-0002-8767-3640

Abstract
A bitext produced from a Portuguese historical text and its English translation, Fernão Mendes
Pinto’s Pilgrimage, serves as a case study to describe the creation of a parallel corpus and
investigate which linguistic and textual units are the best indicators of alignability. The process
of building the corpus goes through preparation of transcriptions, annotation, segmentation and
sentence alignment. Once the bitext is ready, the corpus is used to inquire which units appear
as more relevant to predict that both texts are parallel. From the largest content units, those of
chapters, to sentences, word types, tokens and characters, the latest, despite being the unit with
less textual and linguistic significance, were found to be the best indicator of both texts being
alignable.

2012 ACM Subject Classification Computing methodologies → Machine translation

Keywords and phrases parallel corpora, text alignment, bitexts

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.16

Category Short Paper

1 Introduction

Parallel corpora are increasingly important for the development and evaluation of machine
translation and Natural Language Processing applications. Yet, parallel texts can serve
more specific research purposes, such as careful examination and comparison of versions and
translations in classical humanities research. This is the case of Tartaria, a parallel corpus
created from the the section that describes Fernão Mendes Pinto’s stay with the Tartars,
comprising chapters 117-131 from the Portuguese first edition Peregrinacam (PT 1614)1 and
chapters 38-41 from its English version (EN 1653)2. As translation was one of the reasons for
misreadings of Pinto’s report (e.g. Figure 1 the exotic term bada is translated as rhinoceros
without any apparent motivation in the source), a parallel corpus allows researchers to detect
those segments that they may be more interested in and focus on relevant sentences only,
allowing for optimization of expensive and time-consuming translation tools. The expected
result should output a table with two texts, a source and its translation, in such a disposition
that enables an easy comparison of both (Figure 1). The process of creating this parallel
corpus required a balance between machine and human-performance. One of the first tasks
to solve was to find out if the English version is a direct translation of the Portuguese text, or,
on the other hand, if the target only follows a narrative and offers an independent free version
of the source. To answer this question without direct inspection of both texts, textual units

1 http://purl.pt/82
2 http://purl.pt/16425

© Afonso Xavier Canosa;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 16; pp. 16:1–16:7

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:canosarodrigues@gmail.com
https://orcid.org/0000-0002-8767-3640
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.16
http://purl.pt/82
http://purl.pt/16425
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

16:2 Comparison of Segmentable Units as Indicators of Two Texts Being Parallel

Figure 1 Example of alignment used to research the translation of the term bada.

can be evaluated in order to search for the one that shows a closer correspondence between
both texts, hence serving as evidence for alignability of source and target in a relation of
direct translation.

2 Parallel corpora and units considered in alignments

Bilingual and multilingual corpora are core resources for the training and evaluation of
automate machine translation and natural language processing tools [4, 1]. A distinction
can be made between corpora that represent direct translations and those that are only
comparable, showing a similarity in content, yet not being a literal translation of each
other [14, 12]. In a parallel corpus, texts are aligned so that a direct correspondence is made
between text sequences from one language to the other. The final alignments show not only
sentences with the same content, but also omissions (1:0), additions (0:1), and more complex
correspondences when added or omitted text comes together with perfect matches [8]. The
corpus can be further enriched through annotation and is usually encoded with standard
schemas [9], though output formats vary depending on the final use [8].

It is in the field of automate alignment that the issue of which units represent an indicator
of two texts being parallel appears as a relevant question. Two units are considered in
common sentence alignment algorithms [8, 10]: sentence length [2] and word matches [5].
The use of both resulted in hybrid solutions [6, 11]. Even more elaborated models claiming
to outperform previous hybrid methods [7], use the semantic similarity of sentences as a
result of computing TF-IDF values (hence word-based) across each language to later align
target and source based on sentence metrics (sentence again).

3 Tartaria parallel corpus

The process of building a parallel corpus of the Portuguese and English chapters related to
the Tartars in Fernão Mendes Pinto’s travels was aimed not only at producing an output for
comparative studies, but also for research on NLP tasks such as NERC. An experimental
approach was considered to find a balance between automation and the need for a high
quality product, only achieved with human validation.

3.1 Transcriptions
The first step was text transcription. Although the Portuguese version of Pinto’s travels has
been partially transcribed and published online [3, 13], the chapters relevant to Tartaria are
not included in public corpora. It was possible to find, though, a transcription of the whole
1614’s text from a publishing house. Even if the provided transcription had some important
unreported errors (gaps of whole pages and typos), those chapters relevant for the Tartar
corpus could be used without any modification other than small typos, validated against the
facsimile of the DLNLP.

A.X. Canosa 16:3

Figure 2 Excerpt showing all elements and attributes required to annotate Tartaria corpus.

The English text was in-house transcribed following the edition available at the DLNLP.
Despite the use of OCR to start, the whole process of transcription required careful manual
revision. Hyphens and reformed words at the end of the line were discarded and a regular
font format was used for the whole text, even if the original displays place names, demonyms
and anthroponyms in italics. Missing characters were marked with square brackets. During
the process of text alignment, once the corpus was already built, some words still needed
correction, usually due to confusion of similar characters such as s and f.

At the end of this stage there were two text files containing raw transcriptions of the first
editions.

3.2 Annotation

The corpus was annotated for main structural elements (Figure 2), showing chapters, pages
(folios in the Portuguese edition) and divisions to distinguish chapter headings from main
content.

Geographical named entities were annotated in each corpus using NERC tools and
human-validated to produce a gold standard of annotated place-names.

At the end of this stage the corpus comprised two annotated documents showing chapter,
title, main text and either folio or page components.

3.3 Text segmentation

Each text was segmented in chapters and sentences. A direct observation in chapter
segmentation is that there is no direct correspondence between the number of chapters
in both languages. As a first intuition, this could be explained by the English version
bringing more content together, but by important omissions in content as well. The purpose
of creating an aligned corpus was also to answer this question and find content gaps if any.

As all chapters have a heading with a pseudo-paragraph, and there is a different number
of chapters, it was obvious from the very beginning that some sentences would result in an
omission in the translation. A script parsing the annotated corpus stripped tags and split
sentences using dots, semicolons, exclamation and interrogation marks as delimiters. Regular
expressions handled exceptions for chapter headings in 1653’s text, where semicolons have a
function similar to that of commas.

SLATE 2018

16:4 Comparison of Segmentable Units as Indicators of Two Texts Being Parallel

Table 1 Processed segments during corpus preparation. Tag: annotated with specific tag. Script:
retrievable using a script to parse annotated text, even if the category is not annotated. Db: relational
table in a database. Txt: file with raw text in txt format. HTML: displayed as web page.

Segment type PT 1614 EN 1653 Total Retrieval

Chapters 15 5 20 tag, script, db
Pages 36 20 56 tag, script, db
Sentences 222 353 575 script, db, txt
Word types 3401 2806 6027 script
Tokens 18040 19159 37199 script
Aligned sentences 240 230 470 script, db, HTML

3.4 Bitext
Hunalign3 [11], an open source for automate alignment, was first applied to create the parallel
structure of the corpus. Test rounds considered the use of an in-house built dictionary with
the 100 words of highest frequency and a gazetteer built from geographical named entities
from the NERC annotation of the Portuguese corpus. The best result was converted to a
table with two columns, one for the source language, another for the translation. Even if the
automate alignment brought related sentences close enough to prefer this procedure over a
bitext produced manually from scratch, in order to obtain a golden corpus, results had to be
manually corrected and validated. Misaligned rows were arranged and grouped to fit the
original style of the source where sentences, defined as a stretch of text ending in a given
punctuation mark, are more similar to pseudo-paragraph than to sentences as perceived by
modern standards.

4 Results

Through the process of annotation and sentence alignment, a web environment enabled the
visualization of the results and served as a repository for the experimental data and related
products. Table 1 shows the textual segments obtained in the final parallel corpus.

A web-based interface allows the retrieval of text in different dispositions for either the
bitext or any of the Portuguese and English versions only. As an example, figure 3 shows
how the tagged text from figure 2 is displayed in a more readable format.

The following units were considered for visualization outputs.
Chapters. A series of scripts evaluates the number of chapters and displays them in HTML

format.
Pages. The text grouped by pages following the disposition as in the original first editions.
Sentences. List of sentences using punctuation marks as delimiters. This was also the

starting point to generate the bitext. The final segment is, however, not the result of
delimiters only, but of the match of both versions for alignment. It is not always the case
that an aligned row contains only one grammatical sentence in either the source or the
translation. A larger unit, pseudo-paragraphs, may apply. Nevertheless, neither term
defines the category well. Apart from those alignments where sentence is an accurate
description of the matched segments, there are also complex and compound-complex

3 http://mokk.bme.hu/resources/hunalign/

http://mokk.bme.hu/resources/hunalign/

A.X. Canosa 16:5

Figure 3 Excerpt retrieved from the web environment showing chapters in English.

sentences split in two different alignments. These units fall two levels below pseudo-
paragraphs in a hierarchy of text segments. As sentence was the initial term to describe
this segment type, aligned sentences was kept as the most representative categorical
label. The actual aligned unit represents a balance between single sentences and pseudo-
paragraphs made of coordinated sentences (part of a bigger segment which is still a
sentence).

Words. Ranking of word types arranged by its Zipfian distribution and aligned in two rows,
PT (1614) and EN (1653). Lexical items with highest frequencies and named entities
were selected to create dictionaries for the automatic text alignment tests.

Aligned sentences. An alignment considers an empty sentence when there is no counterpart
in either source or translation resulting in an omission (1:0). Relevant complex alignments
(m:n) appear in pseudo-paragraphs with embedded transcriptions of the language of the
Tartars along with the Portuguese translation (hence allowing for a triple alignment).
The whole corpus shows all the alignment types as a list in a table following the narrative
sequence.

5 Discussion: which units show evidence of both texts being
alignable?

Initial analysis was directed towards answering if both texts were able to generate a parallel
corpus. This would mean that for most segments in the source PT 1614 (L1) from chapter
to sentence, there is an equivalent segment in the target translation EN 1653 (L2). It could
be the case that both texts were not direct translations of each other, but just an account of
similar events following a common narrative, though still comparable corpora. This may still
allow an alignment at the top of the hierarchy, chapters in our segmentation. On the other
hand, if the target is a literal translation, an alignment at the level of sentences is expected.
Another possibility is neither chapters nor sentences having the same number of units in
L1 and L2, as in a less literal translation that modifies text disposition. In this last case,
some units may show no equivalents, though some others would be expected to emerge as
indicators of both texts having a translation relation. The procedure was finding out which
category allows evaluation in terms of L1 → L2 having ratio 1:1, that is, a proportion of
50% for both L1 and L2 taking the corpus as a whole. Figure 4 shows a comparative graph
of the size of the corpus for each language in absolute and relative terms.

Very early in the process, it was noticeable that the highest segmented category, chapters,
shows dissimilarity (L1 75%, L2 25%). Each chapter has a heading that adds extra blank
lines to a page, so more chapters would slightly affect the number of pages too. This extra

SLATE 2018

16:6 Comparison of Segmentable Units as Indicators of Two Texts Being Parallel

Figure 4 Comparative graph of segment types in Tartaria corpus.

content is not, however, conclusive enough for the different number of pages. Issues such as
typography, page size and layout, not considered in the annotation, may explain a different
number of pages in both editions.

The number of sentences split by punctuation marks has unbalanced ratios too (L1 38%,
L2 61.39 %). It is worth noting that L1 < L2, hence there is a contradiction with the higher
categories (chapters and pages) where L1 > L2. Again, non-considered variables such as
editorial preferences, different punctuation standards and more grammar-dependent syntactic
disposition of clauses may also explain the different number of sentences in each language
regardless of both texts being alignable.

The category of word types still shows a difference between both texts (L1 54.79%, L2
45.21 %). A direct observation of the data shows that morphological features are relevant
factors to explain word forms variability. The word form at the top of the Zipfian distribution
is the determinate article with ratio 4:1 and values L1 (a, o, os, as) : L2 (the). However,
following the same example, the fact that the same word form has more than one different
expression in another language, does not necessarily affect the number of tokens. Thus,
tokens, the variable appearing as a direct measure of text length, show a more balanced
ratio 1 : 1.07 (L1 48.5%, L2 51.5%), an indicator of one text being a translation of the other.

Finally, characters show the closest balance. In fact, round percentages stand for the
desired 1:1 (L1 49.74%, L2 50.26%). An explanation for this highest accuracy is that
characters do not only represent a similar number of tokens in both texts, but also capture
some phonetic and morphological properties of words. In fact, if a word in the source
language is polysyllabic or has a derivational or compound structure, its equivalent is most
often expected to show a more complex structure in the target language too.

6 Conclusion

Different units were compared to research which one would be the best predictor of two
texts being alignable in terms of source and translation. Characters show a parallel ratio,
around 1:1, becoming the most accurate feature for predicting the alignability of both texts.
From a linguistic point of view, it is intriguing that a unit without semantic value stands as
more relevant than morphologically rich and syntactic relevant tokens and word types. The
inferred hypothesis to consider for future work is that, when used as a measure of length for

A.X. Canosa 16:7

the largest units, characters capture some aspects of the morphologic-syntactic structure.
Although they have been extensively used as indicators in text-alignment tasks, to the best of
my knowledge, the linguistic implications of such a basic and easily observable phenomenon
have not been explained and are still open for further research.

References
1 Christian Buck and Philipp Koehn. Findings of the WMT 2016 bilingual document align-

ment shared task. In First Conference on Machine Translation – Shared Task Papers,
volume 2, pages 554–563, 2016.

2 William A. Gale and Kenneth W. Church. A program for aligning sentences in bilingual
corpora. Computational linguistics, 19(1):75–102, 1993.

3 Charlotte Galves, Aroldo Leal de Andrade, and Pablo Faria. Tycho brahe parsed corpus of
historical Portuguese. http://www.tycho.iel.unicamp.br/~tycho/corpus/texts/psd.
zip, 2017.

4 Philipp Koehn. EuroParl: A parallel corpus for statistical machine translation. In Machine
Translation Summit, pages 79–86, 2005.

5 I. Dan Melamed. A geometric approach to mapping bitext correspondence. CoRR, 1996.
URL: http://arxiv.org/abs/cmp-lg/9609009.

6 Robert C. Moore. Fast and accurate sentence alignment of bilingual corpora. In Conference
of the Association for Machine Translation in the Americas, pages 135–144, 2002.

7 Xiaojun Quan, Chunyu Kit, and Yan Song. Non-monotonic sentence alignment via semisu-
pervised learning. In 51st Annual Meeting of the Association for Computational Linguistics,
volume 1, pages 622–630, 2013.

8 André Santos. A survey on parallel corpora alignment. In Master of Insformatics Internal
Conferece, Universidade do Minho, pages 117–128, 2011.

9 Alberto Simões and Sara Fernandes. XML schemas for parallel corpora. In XATA 2010:
9ª Conferência Nacional em XML, Aplicações e Tecnologias, pages 59–69, 2011.

10 Hai-Long Trieu, Phuong-Thai Nguyen, and Kim-Anh Nguyen. Improving moore’s sentence
alignment method using bilingual word clustering. In Knowledge and Systems Engineering,
pages 149–160, 2014. doi:10.1007/978-3-319-02741-8_14.

11 Dániel Varga, Péter Halácsy, András Kornai, Viktor Nagy, László Németh, and Viktor Trón.
Parallel corpora for medium density languages. In Recent advances in natural language
processing IV : selected papers from RANLP 2005. John Benjamins, 2007.

12 Krzysztof Wołk and Krzysztof Marasek. Unsupervised comparable corpora preparation
and exploration for bi-lingual translation equivalents. CoRR, 2015. URL: http://arxiv.
org/abs/1512.01641.

13 Marcos Zampieri and Martin Becker. Colonia: Corpus of historical Portuguese. In Non-
standard Data Sources in Corpus-based Research. Shaker Verlag, 2013.

14 Federico Zanettin. Translation-driven corpora: Corpus resources for descriptive and applied
translation studies. Routledge, 2014.

SLATE 2018

http://www.tycho.iel.unicamp.br/~tycho/corpus/texts/psd.zip
http://www.tycho.iel.unicamp.br/~tycho/corpus/texts/psd.zip
http://arxiv.org/abs/cmp-lg/9609009
http://dx.doi.org/10.1007/978-3-319-02741-8_14
http://arxiv.org/abs/1512.01641
http://arxiv.org/abs/1512.01641

Less is more in incident categorization
Sara Silva
Instituto Universitário de Lisboa (ISCTE-IUL) Lisbon, Portugal
satsa@iscte-iul.pt

Ricardo Ribeiro
INESC-ID Lisboa
Instituto Universitário de Lisboa (ISCTE-IUL), Lisbon, Portugal
ricardo.ribeiro@iscte-iul.pt

https://orcid.org/0000-0002-2058-693X

Rubén Pereira
Instituto Universitário de Lisboa (ISCTE-IUL) Lisbon, Portugal
Ruben.Filipe.Pereira@iscte-iul.pt

https://orcid.org/0000-0002-3001-5911

Abstract
The IT incident management process requires a correct categorization to attribute incident tickets
to the right resolution group and obtain as quickly as possible an operational system, impacting
the minimum as possible the business and costumers. In this work, we introduce automatic text
classification, demonstrating the application of several natural language processing techniques
and analyzing the impact of each one on a real incident tickets dataset. The techniques that we
explore in the pre-processing of the text that describes an incident are the following: tokeniza-
tion, stemming, eliminating stop-words, named-entity recognition, and TF×IDF-based document
representation. Finally, to build the model and observe the results after applying the previous
techniques, we use two machine learning algorithms: Support Vector Machine (SVM) and K-
Nearest Neighbor (KNN). Two important findings result from this study: a shorter description
of an incident is better than a full description of an incident; and, pre-processing has little impact
on incident categorization, mainly due the specific vocabulary used in this type of text.

2012 ACM Subject Classification Computing methodologies → Natural language processing

Keywords and phrases machine learning, automated incident categorization, SVM, incident
management, natural language

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.17

Category Short Paper

1 Introduction

An incident is defined by ITIL as “An unplanned interruption to an IT service or reduction in
the quality of an IT service”. These incidents can be related with failures, questions, or queries
and should be detected as early as possible [7]. It is crucial to have an appropriate incident
classification, the process that assigns a suitable category to an incident, so they are routed
more accurately [7]. Automating incident classification process means to avoid human error,
reducing the waste of resources and avoiding incorrect routing due to wrong classification [3].
To automate the classification is relevant to take into account the structure of the incidents.
The incident tickets are composed by several attributes, which are mandatory fields when
the user is recording the incident in the Incident Ticket System (ITS). Two attributes are
crucial for the categorization process: the short and full descriptions are the key attributes to

© Sara Silva, Ricardo Ribeiro, and Rúben Pereira;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 17; pp. 17:1–17:7

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:satsa@iscte-iul.pt
mailto:ricardo.ribeiro@iscte-iul.pt
https://orcid.org/0000-0002-2058-693X
mailto:Ruben.Filipe.Pereira@iscte-iul.pt
https://orcid.org/0000-0002-3001-5911
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

17:2 Less is more in incident categorization

obtain a good classification performance. The dataset used to test and assess the algorithms
contains information about real-word incident tickets provided by a specific company. Due
to privacy questions, the company cannot be mentioned and the dataset is not available.

The remainder of this document consists of five sections that are structured as follows.
Some related work is presented in Section 2. The proposed method is presented in Section 3.
The implementation is described in Section 4. Section 5 presents the obtained results. Finally,
the document closes with the conclusions and some possible future work.

2 Related Work

Over the years, approaches that automate Incident Management (IM) and particularly
incident classification have being studied and developed. In this section, we describe relevant
work developed in this area, used algorithms, and the results obtained with the respective
implementations. To automate IM, the authors of [4] use Machine Leaning (ML) and
information integration techniques to develop an algorithm for correlating incoming incidents.
The authors used the incident description to extract keywords and their annotations as
features. SVM is the algorithm used to attribute a category to an incoming incident. This
approach generates the list of keywords which better identifies each category. In [1], the
authors used for the same problem, incident tickets categorization, SVM, KNN, decision trees,
and Naïve Bayes. They used four datasets with different categories. In this classification
process, they present three approaches for each algorithm: accuracy results using TF-IDF,
using only TF, and using boolean weighting. On average, SVM had accuracy results of 90%
approximately, in the three approaches. KNN achieves 75% of accuracy, also with the three
approaches. Decision trees have similar results in the three approaches, of around of 90%.
Finally, Naïve Bayes was the only approach which presented different results for the three
approaches: boolean weighting with 85% and TF-IDF and TF, both with 55% of accuracy.

3 Proposed Method

To propose the best approach to automatically categorize an incoming incident there are
critical steps that have to be taken into account in order to ensure a good performance
of the classifier. The automatic incident categorization is possible due to the data related
to each incident. The main attribute for the categorization of an incoming incident is the
description of the incident. There are two attributes related with the description assigned
to each incident. These attributes are the short and the full description. Both consist in
unstructured natural language text. The difference between both attributes is implicit in the
name. Both descriptions are provided by the user who have created the incident in the ITS.
The full description is a long and detailed description that contains all the relevant aspects
to categorize the whole incident. The short description is much shorter than the detailed
one, consisting in a summary, ordinarily one phrase that categorizes briefly the incident.

The analyzed dataset has incidents written in several languages like English, German,
Spanish, French, and Portuguese. However, since the most common language is English,
we have decided to choose English as the one to be studied and excluded all the incidents
in other languages from our analysis. As referred in the previous section, there are other
attributes that also contribute to the categorization, however, the short and full descriptions
are the critical ones to obtain a good performance of the classifier, requiring a special process.

The dataset under study contains incidents that have several levels of categorization.
This study only takes into consideration the first and second level. Moreover, we compare the
performance achieved using the short and the full description, at both levels of categorization.

S. Silva, R. Ribeiro, and R. Pereira 17:3

Table 1 Incident ticket example.

Short description Adobe Reader XI
Full description User cannot open Internet Explorer.Error message displayed.
Category Software
Subcategory Managed Software Workplace
Caller id User X
Affected Location Location Y
Severity 4 - Low

Concerning the second level of categories, we explored two different approaches. The first one
is performing the categorization assuming that the first-level category is correctly assigned to
the incident. Basically, we use the first-level category as an attribute to build the classifier
that assigns the second-level category to a given incident. The second one does not take
into consideration the first-level categorization. Therefore, the incident is categorized with
the same data that we use in the first-level categorization. When building a classifier to
automatically assign a second-level category, we are also automatically assigning the respective
first-level category. The set of first-level categories is composed by the ten following categories:
application, collaboration, enterprise resource planning (ERP), hosting services, network,
security and access, output management, software, workplace, and support. After assigning a
first-level category to an incident, a second-level category is assigned. The set of second-level
categories is composed by 94 categories: 47 belong to application, 9 to collaboration, 3 to
ERP, 7 to hosting services, 6 to network, 3 to output management, 4 to security and access,
2 to software, 3 to support, and, finally, 10 to workplace.

In this work, we analyze the impact of different natural language pre-processing techniques,
as tokenization, TF-IDF, stemming, stop word removal, and entities recognition on incident
classification based on their textual description. We explore two classification approaches
commonly used for this task: support vector machine (SVM) and K-Nearest Neighbors
(KNN). SVM is an appropriate technique for text categorization, proving to be more robust
than other conventional techniques of text classification [6]. KNN is considered to be simple,
easy to implement [10] and a popular one in text categorization [11]. The goal is compare
the different approaches and conclude which performs better.

4 Implementation

To train the classifiers, we use a dataset composed by incident tickets correctly classified
with an appropriate first-level category and a second-level category. In this dataset, each
incident ticket has a short description, a full description, a caller id, which is the person
who opens the ticket, a severity, and, finally, the respective first-level (category) and a
second-level (subcategory) categories, as it is possible observe in Table 1. For the first-level
categories, we used 2000 incidents per category. For the second-level, we use a dataset with
2000 incidents per subcategory whenever was possible. The most times it was, however, there
are second-level categories with less incidents in dataset.

We start by analyzing the impact of using the short and full descriptions on the first-level
categories. Then, we consider that the first-level categorization is correct and analyze the
difference of using short and full descriptions on the second-level categorization. Finally, we
study the how second-level categorization performs when not using first-level information
and, again, the impact of using the short and full descriptions at this level.

The obtained results of the different approaches are presented in the next section.

SLATE 2018

17:4 Less is more in incident categorization

Figure 1 Short vs full description at the first-level categorization.

5 Results

To train and test the different techniques previously presented, we use cross-validation, which
consists on dividing the dataset into subsets with the equal number of tickets. One subset is
used to test the classifier, while the others are used to train the classifier. This process has
the advantage of preventing overfitting, because the training data is fully independent of the
test data [2, 5].

Figure 1 presents the accuracy results after applying the SVM algorithm, showing the
difference between using the short and the full description. Previous work [9] showed that
at the first-level categorization, the best results were achieved using an SVM (specifically,
when compared to KNN). When using the short description, we achieve an accuracy of
83%. Surprisingly, when using the full description the accuracy decreases to 81%. Figure 2
presents the results related to the second-level categorization (considering the correct first-
level categorization), also comparing the impact of using the short versus the full description.
The same behavior is observed at this level, with both approaches, SVM and KNN, achieving
better results using the short description. As we can see in Figure 2a, when using the SVM
the overall accuracy for the short description is 86% and for the full description is 85%.
Figure 2b shows the achieved results using the KNN algorithm: with the short description,
we obtained 73% of accuracy and with the full description we obtained 69%. Overall, using
the short description leads to better results, with the SVM consistently achieving the best
results. The results of the second-level categorization when considering all the categories at
this level without taking into account the first-level, as expected, decrease to accuracies of
75% using SVM and 65% using KNN.

Concerning the impact of pre-processing on the classification process, we start by analyzing
two different tokenization strategies: alphabetic and word tokenization. The alphabetic
tokenizer is a simple tokenizer that considers only tokens composed by alphabetic sequences.
The word tokenizer is a standard word tokenizer that splits words according to predefined
tokens, such as space, punctuation, etc. For this part of the work, we focus on the first-level
categorization using the short description, since the best results were achieved using this
attribute. Figure 3 presents the results of the application of the two tokenizers: with the
alphabetic tokenizer achieving an accuracy of 83% and the word tokenizer achieving an
accuracy of 82%.

S. Silva, R. Ribeiro, and R. Pereira 17:5

(a) Results using a SVM. (b) Results using KNN.

Figure 2 Accuracy at the second-level categorization (considering the correct first-level catego-
rization).

Figure 3 Accuracy of the alphabetic tokenizer vs the word tokenizer.

Another aspect that we have explored was the descriptions representation. In that sense,
we represent descriptions as feature vectors of term frequencies (TF), log(1 + fij), fij is
the frequency of word i in document j (other dampening strategies could be used); inverse
document frequencies (IDF), log(num of Docs/num of Docs with word i); and, TF × IDF.
TF× IDF increases with the number of times a term occurs in a document, but is offset by
the document frequency of the term in the corpus. The results are shown in Figure 4. As it
can be seen, the results are very similar (accuracies of approximately 82%). Our intuition is
that as we perform stop word removal and use short descriptions (small documents), the
impact of varying the weighting scheme in the feature representation is not significant.

We also explored stemming. Stemming consists on reducing the words to their base
form, lowering the number of entries of the dictionary. We compare the use of the Porter
Stemmer [8] to not using stemming at all. The use of stemming did not have any impact
on the results. Our intuition is that description representation did not benefit of the use of
stemming due to the specific vocabulary used in incident description.

Finally, we explored named-entity recognition focusing on the identification of organiza-
tions and use them as features to improve the categorization. This process did not impact
the results.

6 Conclusions and Future Work

Text processing plays an important role in incident categorization. In this work, we analyze
different natural language processing techniques and evaluate their impact on a real incident
tickets dataset. An interesting outcome of this study was that the use of the short description

SLATE 2018

17:6 Less is more in incident categorization

Figure 4 Accuracy when using TF×IDF, TF, and IDF.

of an incident leads to a greater accuracy than using the full description, on the different
levels of categorization (first level, 10 categories; second level, 49 categories) under analysis.
A possible reason that we found to justify such finding might be the fact that when the
user describes an incident with limited text that results in a greater focus on explaining the
incident. On the other hand, in the full description the user has tendency to disperse.

This analysis is critical to produce a positive impact in the categorization process and is
determinant to obtain a correct assignment and consequently improve the whole incident
route. This paper is part of a work related with the integration of a module in an Incident
Ticket System in a specific company. So as future work we plan to carry out the integration
and assess its impact by performing interviews to the IT teams responsible for the Incident
Management (IM) process. It is also intended to extend the categorization to the whole
activity of classification (which includes a third level) and initial support in the IM process,
which includes automating the assignment of a priority and urgency to incidents. Moreover,
we pretend to automate the resolution and recovery activities, finding and suggesting
automatically a possible resolution to an incoming incident.

References

1 Muchahit Altintas and A. Cuneyd Tantug. Machine learning based volume diagnosis. In
International Conference on Artificial Intelligence and Computer Science (AICS), pages
195–207, 2014.

2 Sylvain Arlot and Alain Celisse. A survey of cross-validation procedures for model selection.
Statistics Surveys, 4:40–79, 2010. doi:10.1214/09-SS054.

3 Rajeev Gupta, K. Hima Prasad, Laura Luan, Daniela Rosu, and Chris Ward. Multi-
dimensional knowledge integration for efficient incident management in a services cloud. In
IEEE International Conference on Services Computing, pages 57–64, 2009. doi:10.1109/
SCC.2009.48.

4 Rajeev Gupta, K. Hima Prasad, and Mukesh Mohania. Information integration techniques
to automate incident management. In IEEE Network Operations and Management Sympo-
sium (NOMS), pages 979–982, 2008. doi:10.1109/NOMS.2008.4575262.

5 Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to sup-
port vector classification. BJU international, 101(1):1396–1400, 2008. doi:10.1177/
02632760022050997.

http://dx.doi.org/10.1214/09-SS054
http://dx.doi.org/10.1109/SCC.2009.48
http://dx.doi.org/10.1109/SCC.2009.48
http://dx.doi.org/10.1109/NOMS.2008.4575262
http://dx.doi.org/10.1177/02632760022050997
http://dx.doi.org/10.1177/02632760022050997

S. Silva, R. Ribeiro, and R. Pereira 17:7

6 Thorsten Joachims. Text categorization with Support Vector Machines: Learning with
many relevant features. In Machine Learning: ECML-98, volume 1398 of Lecture Notes in
Computer Science, pages 137–142. Springer, Berlin, Heidelberg, 1998.

7 John O. Long. Service operation. In Itil Version 3 at a Glance: Information Quick Refer-
ence, pages 55–74. Springer, 2008. doi:10.1007/978-0-387-77393-3_5.

8 Martin F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
9 Sara Silva, Rúben Pereira, and Ricardo Ribeiro. Machine learning in incident categoriza-

tion automation. In Proceedings of CISTI’2018: 13th Iberian Conference on Information
Systems and Technologies, 2018.

10 Yang Song, Jian Huang, Ding Zhou, Hongyuan Zha, and C Lee Giles. IKNN: Informative
K-Nearest Neighbor Pattern Classification. Proceedings of the European conference on
Principles and Practice of Knowledge Discovery in Databases (PKDD), pages 248–264,
2007. doi:10.1007/978-3-540-74976-9{_}25.

11 Bruno Trstenjak, Sasa Mikac, and Dzenana Donko. KNN with TF-IDF based framework
for text categorization. Procedia Engineering, 69:1356–1364, 2014. doi:10.1016/j.proeng.
2014.03.129.

SLATE 2018

http://dx.doi.org/10.1007/978-0-387-77393-3_5
http://dx.doi.org/10.1007/978-3-540-74976-9{_}25
http://dx.doi.org/10.1016/j.proeng.2014.03.129
http://dx.doi.org/10.1016/j.proeng.2014.03.129

NLPPort: A Pipeline for Portuguese NLP
Ricardo Rodrigues
CISUC / ESEC, Polytechnic Institute of Coimbra, Portugal
rmanuel@dei.uc.pt

https://orcid.org/0000-0002-6262-7920

Hugo Gonçalo Oliveira
CISUC / Department of Informatics Engineering, University of Coimbra, Portugal
hroliv@dei.uc.pt

https://orcid.org/0000-0002-5779-8645

Paulo Gomes
CISUC, University of Coimbra, Portugal
pgomes@dei.uc.pt

https://orcid.org/0000-0002-4122-9018

Abstract
Although there are tools for some the most common natural language processing tasks in Por-
tuguese, there is a lack of available cross-platform tools specifically targeted for Portuguese, from
end to end, namely for integration in projects developed in Java. To address this issue, we have
developed and tweaked, over the last half-dozen years, NLPPort, a set of tools that can be
used in a pipelined fashion, which we have made publicly available. In this paper, we present the
major features of such set of tools.

2012 ACM Subject Classification Computing methodologies → Natural language processing

Keywords and phrases natural language processing, tools, Portuguese

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.18

Category Short Paper

1 Introduction

Many high-level natural language processing (NLP) tasks rely heavily on some kind of
language-specific pre-processing. Texts must be split into sentences and sentences into tokens
(words and punctuation), and words often have to be further analysed. For instance, when
searching for specific words, as happens in information retrieval (IR), their inflections must
be considered to broaden the results. Likewise, for information extraction (IE), tools are
also required for processing text and classifying its contents. Each of these tasks must be
addressed, mostly in a sequential way, with the output of one tool serving as the input of the
next, keeping them modular and easy to adapt and maintain.

Around 2010, in the early development stages of a question-answering system [10], in
Java, we felt the need for such kind of tools for Portuguese. Although at the time there were
not so many tools as those currently available, some did exist, but with several limitations,
specifically when it came to language-specific knowledge. We originally relied on OpenNLP,
but soon noticed that some of the tools underperformed when specific constructs of the
Portuguese language were not addressed, as is the case of contractions and clitics, that
conceal part of their constituents. Also missing were some essentials, like the lemmatizer.
Since then, we have been developing NLPPort, with OpenNLP being used as a starting

© Ricardo Rodrigues and Hugo Gonçalo Oliveira and Paulo Gomes;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 18; pp. 18:1–18:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rmanuel@dei.uc.pt
https://orcid.org/0000-0002-6262-7920
mailto:hroliv@dei.uc.pt
https://orcid.org/0000-0002-5779-8645
mailto:pgomes@dei.uc.pt
https://orcid.org/0000-0002-4122-9018
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

18:2 NLPPort: A Pipeline for Portuguese NLP

point for some of the tools – however with new models trained and other tweaks added,
some of which based on the manual compilation of language-specific knowledge –, alongside
MaltParser, and including other tools developed from scratch.

After a brief overview on related work, the next section present the tools of the NLPPort
suite, where key features and settings are described, together with some examples.

2 Related Work

Though some include other tasks, NLP suites of tools typically address: tokenization, part-
of-speech (POS) tagging, chunking, and named entity recognition (NER) or classification.
Well-established open suites, include Apache OpenNLP,1 Stanford CoreNLP [7],2 NLTK [6],3
FreeLing [9],4 spaCy,5 and LinguaKit [3].6 Most of them have a pipeline including the most
common NLP tasks. Still, although most of these suites support or can be trained for many
languages, available models do not fully support Portuguese, missing some essential tools (for
instance, OpenNLP and NLTK don’t include a lemmatizer for Portuguese), or are limited
when it comes to using language-specific knowledge, that is not always available or is harder
to compile without human intervention.

As for the application programming interfaces (API), LinguaKit uses Perl, NLTK and
spaCy use Python, FreeLing uses C++, and OpenNLP uses Java. Moreover, LinguaKit and
spaCy are recent – at least in the sense that when our work started, they were not available.
All things considered, even though it could be possible to develop an interface between APIs
in different programming languages, there was still a need for a suite of NLP tools in Java
for a more streamlined integration process.

Besides the tools commonly expected in a NLP pipeline, a tool that is increasingly
important is a fact extractor. Although there are some reference tools, mainly for English
(e.g., ReVerb, OLLIE, ExtrHech, ClausIE) [2], for Portuguese, the scenario is still mostly
barren, with the exception of LinguaKit.

That led to a decision to develop a set of tools in Java, although borrowing from already
proven tools whenever possible, as is the case of the OpenNLP suite, and the MaltParser7
dependency parser.

3 Tools

NLPPort includes a set of tools for Portuguese NLP that are either tweaked versions of
OpenNLP’s tools and MaltParser (including the creation of new models and compilation of
rules) or tools entirely developed by us. These go from a sentence splitter to a fact extractor
and can be used in a pipeline. In Figure 1, we can observe an overview of the pipeline of
tools and how they interact.

1 Apache OpenNLP: http://opennlp.apache.org/ [Accessed: April 2018].
2 Stanford CoreNLP: http://stanfordnlp.github.io/ [Accessed: April 2018].
3 NLTK : http://www.nltk.org/ [Accessed: April 2018].
4 FreeLing: http://nlp.lsi.upc.edu/ [Accessed: April 2018].
5 spaCy: http://www.spacy.io/ [Accessed: April 2018].
6 LinguaKit: http://linguakit.com/ [Accessed: April 2018].
7 MaltParser : http://www.maltparser.org/ [Accessed: April 2018].

http://opennlp.apache.org/
http://stanfordnlp.github.io/
http://www.nltk.org/
http://nlp.lsi.upc.edu/
http://www.spacy.io/
http://linguakit.com/
http://www.maltparser.org/

R. Rodrigues, H. Gonçalo Oliveira, and P. Gomes 18:3

SenPORT
(sentence splitter)

TokPORT
(tokenizer)

LemPORT
(lemmatizer)

ChkPORT
(phrase chunker)

EntPORT
(named entity

recognizer)

DepPORT
(dependency parser

& chunker)

FacPORT
(fact extractor)

TagPORT
(pos tagger)

Figure 1 NLPPort’s Pipeline Overview.

<replacement target="q.b."></replacement>
<replacement target="q.e.d."></replacement>
<replacement target="q.g."></replacement>

Figure 2 Examples of abbreviations used in the sentence splitter.

3.1 SenPORT
SenPORT splits text into sentences, enabling their individual processing by other tools. It
is based on OpenNLP’s sentence detector, the SentenceDetectorME class,8 with two major
tweaks on its input and output:

A list of abbreviations is used for avoiding splitting sentences on periods that commonly
occur in abbreviations. It is applied after sentence splitting: whenever a sentence ends
with an abbreviation, it is reattached to the following sentence, if any. Figure 29 shows a
few examples from the compiled abbreviation list.
An option for line breaks always resulting in a new sentence – arguably true for many
corpora. It is performed before applying OpenNLP’s sentence detector and is addressed
with a regular expression for the purpose: (\n\r?)|(\r\n?).

For sentence splitting, OpenNLP’s sentence detection model available for Portuguese
(pt-sent.bin) is used10. This model was trained on CoNLL-X Bosque 8.0 [1] data.

3.2 TokPORT
TokPORT is our tokenizer, which relies on OpenNLP’s TokenizerME class, the pre-trained
model for Portuguese (pt-token.bin), but includes some tweaks for considering contractions
and clitics when pre-processing the sentences, and for considering abbreviations in post-
processing. More precisely, after sentences are tokenized, tokens are optionally checked for
the presence of contractions and clitics, in order to better address POS tagging later, as
expanding clitics in tokens, clearly separating the verb from the personal pronouns, makes it
easier to identify the latter. For example, using one of the rules in Figure 3, we get the form

8 The ME suffix in some of OpenNLP’s classes denotes the use of a maximum entropy model.
9 In this figure and in others that follow, excerpts of an XML based format are shown, where all “rules”
are defined by means of a target, used to find matches in text, and of an eventual replacement, that,
depending on the task at hand, may be optional.

10This and other OpenNLP’s pre-trained models used in this suite of tools can be downloaded from
http://opennlp.sourceforge.net/models-1.5/ [Accessed: April 2018].

SLATE 2018

http://opennlp.sourceforge.net/models-1.5/

18:4 NLPPort: A Pipeline for Portuguese NLP

<replacement target="-me-emos">emos a mim</replacement>
<replacement target="-me-ia">ia a mim</replacement>
<replacement target="-me"> a mim</replacement>

Figure 3 Examples of clitics processed by the tokenizer.

<replacement target="à">a a</replacement>
<replacement target="ao">a o</replacement>
<replacement target="aos">a os</replacement>

Figure 4 Examples of contractions processed by the tokenizer.

<replacement target="em abono de"></replacement>
<replacement target="em bloco"></replacement>
<replacement target="em breve"></replacement>

Figure 5 Examples of token groups used in the tokenizer.

dar-me-ia – in English, “[it] would give me” –, that would be POS tagged just as a verb, to
daria a mim (even if not strictly in line with the structure of Portuguese), yielding as tags
a verb, a preposition and a pronoun, respectively for the three resulting tokens. The use
of one option over the other may also have implications in the classifications of the other
tokens by the POS tagger, by changing the entropy.

The reason for processing contractions is similar to that of clitics. In this case, prepositions
and pronouns are broken apart, as shown in Figure 4. For example, aos (preposition) is
changed into a os (preposition and pronoun).

Again, the abbreviation list is used for coupling the period with the respective abbreviation
(and classified together) instead of being addressed as punctuation and leading to incorrect
POS tags. For abbreviation examples, please refer back to Figure 2. Abbreviations with
multiple periods that may have been split by the tokenizer are also put back together (e.g.,
q. b. back to q.b.).

We have also opted for grouping tokens during the tokenization process: proper nouns
are combined in an “unbreakable” token, to be processed together (feeding back the resulting
entities from NER to the tokenizer); and adverbial expressions have their elements grouped
together, with some examples presented in Figure 5.

3.3 EntPORT
The named entity (NE) recognizer, EntPORT, is based on OpenNLP’s NameFinderME class,
and is used straight out-of-the box. Yet, as there was no pre-trained model for Portuguese
available among the OpenNLP models, one had to be trained, for which we used the Floresta
Virgem [1] treebank in the format árvores deitadas. Entities are thus classified as one of the
following: abstract, artprod (article or product), event, numeric, organization, person, place,
thing, or time. The trained model achieves a precision of 81.9%, a recall of 76.%8 and an
F -measure of 79.3% over the same treebank.

As stated before, the entities recognized by this tool are fed back to TokPORT in order
to bundle together the tokens that compose the entities, so that they can be identified and
processed as such. This way, when the tokens of a multiword NE get to the POS tagger, they

R. Rodrigues, H. Gonçalo Oliveira, and P. Gomes 18:5

get tagged together – for instance, as a proper noun in the case of the name of a person (e.g.,
{José da Silva} for {José} {da} {Silva}) – instead of being individually tagged, with benefits
in the POS tagging process itself and later in other tasks that depend on it.

3.4 TagPORT
Given that the previous processing in TokPORT already addressed most of the issues
that could affect the outcome of the tagging process, OpenNLP’s POS tagger was also used
straight out-of-the-box. Specifically, we use the POSTaggerME class with the available model
for Portuguese (pt-pos-maxent.bin). Only a wrapper was created to ease the integration
with the other NLPort tools, yielding TagPORT. For reference, the available POS tags
are “adjectivo,” “advérbio,” “artigo,” “nome,” “numeral,” “nome próprio,” “preposição” and
“verbo’ ’ – and, if considered as such, “pontuação”11.

3.5 LemPORT
For lemmatization, we have developed LemPORT, extensively described elsewhere [11].
Briefly, it allows for manner, number, superlative, augmentative, diminutive, gender and
verb normalization of words, using two complementary approaches: a lexicon and rules.
Among other data, the lexicon contains word inflections, their dictionary form and respective
morphological classification, and is used first for attempting normalization of a given word.
When that is not possible, the rules, including transformations and classes to which the
transformations should be applied to, are introduced iteratively until a match in the lexicon
is found or the rules are exhausted. LemPort currently achieves an accuracy over 98%
against Bosque 8.0.

3.6 ChkPORT
ChkPORT uses OpenNLP’s phrase chunker, the class ChunkerME, out-of-the-box. Yet, as
it happens for NER, no prebuilt model for Portuguese was available. Once more, we have
used Bosque 8.0, both for training and testing the model, yielding an accuracy of 95%, recall
of 96%, and F -measure of 95%. The inputs of ChkPORT are the tokens, their POS tags,
and the lemmas. Chunks can be classified as nominal (NP), verbal (VP), prepositional (PP),
adjectival (ADJP) or adverbial (ADVP) phrases. Again, except for minor aspects related to
the presentation of results (e.g., including the use of the lemmas in the description of the
chunks), addressed by a wrapper, the results are used directly in the pipeline.

3.7 DepPORT
For dependency parsing, we have resorted to MaltParser as the basis of both our dependency
parser and, inherently, dependency chunker, bundled together as DepPORT. Instead of
using just the dependencies per se, they are used for aggregating tokens from a sentence in
chunks. For example, we want to group all the tokens related to the noun identified as the
subject of the sentence, rather than just get the noun itself.

The model for MaltParser was also trained with Bosque 8.0, after conversion to the
CoNLL-X format. Resulting from the application of that model, a token can be assigned

11 In English: adjective, adverb, article, noun, numeral, proper noun, preposition, verb, and punctuation,
respectively.

SLATE 2018

18:6 NLPPort: A Pipeline for Portuguese NLP

[tokens]
id form lemma pos head dependency
1 Mel_Blanc mel_blanc prop 21 SUBJ
2 era ser v-fin 0 ROOT
3 alérgico adj adj 21 SC
4 a a prp 22 A<
5 cenouras cenoura n 23 P<
6 . . punc 21 PUNC

7→

[chunks]
id head function tokens
1 2 SUBJ [Mel_Blanc]
2 0 ROOT [era]
3 2 SC [alérgico a cenouras]

Figure 6 Dependency parsing and chunking example.

one of many grammatical functions. Of those, only the following can be selected as direct
dependents of the root token in the next processing step (except for the root token itself and
punctuation tokens):

(Predicate) Auxiliary Verb (PAUX);
(Predicate) Main Verb (PMV);
Adjunct Adverbial (ADVL);
Adjunct Predicative (PRED);
Auxiliary Verb (AUX);
Complementizer Dependent (>S);
Dative Object (DAT);
Direct Object (ACC);
Focus Marker (FOC);
Main Verb (MV);
Object Complement (OC);
Object Related Arg. Adverbial (ADVO);

Passive Adjunct (PASS);
Predicator (P);
Prepositional Object (PIV);
Punctuation (PUNC);
Root (ROOT);
Statement Predicative (S<);
Subject (SUBJ);
Subject Complement (SC);
Subject Related Arg. Adverbial (ADVS);
Top Node Noun Phrase (NPHR);
Topic Constituent (TOP);
Vocative Adjunct (VOC).

Once a sentence is processed by the dependency parser, tokens are grouped in what we
call dependency chunks. These chunks are formed by selecting the tokens whose head is
the root of the sentence, and then by aggregating each of those tokens together with all of
their dependents. Please refer to Figure 6 for an example of dependency chunking. In the
same figure, we can observe the results of the tokenizer, the lemmatizer and the POS tagger,
alongside dependency parsing and chunking.

3.8 FacPORT
For fact extraction, FacPORT uses NEs and phrase or dependency chunks, combined with
a set of rules. Facts are, for all purposes, triples with extra information or metadata, which
are composed of:

an identifier – a unique identifier of a fact in relation to each sentence, auto-incremented;
a subject – the subject of the fact, usually a NE or some thing related to the object;
a predicate – the predicate of the fact, typically a verb;

R. Rodrigues, H. Gonçalo Oliveira, and P. Gomes 18:7

<replacement target="[NP][NP]">is a</replacement>
<replacement target="[NP][em:PP]">is in</replacement>
<replacement target="[NP][de:PP]">is part of</replacement>

Figure 7 Examples of rules for extracting facts of adjacent phrase chunks.

an object – the object of the fact, usually something related to the subject or a NE,
reverse mirroring the contents of the subject;
a sentence identifier – a unique identifier of a sentence in relation to each document,
auto-incremented;
a document identifier – a unique identifier for each document (e.g., its filename).

Rules for fact extraction from sentences are only used in the case of adjacent phrase
chunks. For dependency chunks, we use directly the dependency classification of the chunks, as
in SUBJ + ROOT + OBJ → subject + predicate + object12. Figure 7 shows some rules
for extracting facts from adjacent phrase chunks.

When using phrase chunks, the fact extractor checks them for the presence of NEs. When
a match occurs, adjacency relations between chunks are used to extract facts. For instance,
if a NP chunk contains a person NE and is immediately followed by another NP chunk, it is
highly probable that the second chunk is a definition or specification of the first, thus yielding
the fact NPn is a NPn + 1. The rules specify the classification of the adjacent chunks and
also some elements that the chunks may or must contain, appended using a prefix or a suffix
with a colon (:).

For dependency chunks, the subject and object chunks are checked for the presence of
entities, and a triple is built using the corresponding predicates and objects or subjects,
accordingly. Subject, predicate, and object chunks are then transposed into the corresponding
fields of a newly created fact.

Fact extraction is currently limited to the presence of NEs (or proper nouns, when no
NEs are available or recognized as such) in both the phrase and dependency chunks. It does
not have to be like that, but it is a form of reducing the extraction of spurious facts. We do
intend to revise this option, devising a way of selecting facts that may be meaningful even
without NEs or proper nouns in them.

In Figure 8, we present examples of facts extracted from a sentence, including an erroneous
fact identified with an asterisk. Nevertheless, it can be easily acknowledged that facts do
summarize the key information bits in the sentence.

4 Conclusions and Future Work

We have presented NLPPort, a set of tools that provide cross-platform (using Java) end-
to-end Portuguese NLP. It borrows from OpenNLP and MaltParser, but includes multiple
tweaks and compiled knowledge that allow for improving the output of its tools, considering
constructs such as clitics and contractions.

The tools can be used individually or in a pipeline, where the output of one is the input
of the next. A major feature is their modularity, allowing for changes and improvements
individually in each of them (eventually improving the overall results of the pipeline). As a

12Actually, objects (OBJ) are defined, for instance, as dative objects (DAT) or direct objects (ACC), or are
not objects at all, as is the case of subject complements (SC), but the structure maintains.

SLATE 2018

18:8 NLPPort: A Pipeline for Portuguese NLP

Mel Blanc, o homem que deu a sua voz a o coelho mais famoso de o mundo, Bugs
Bunny, era alérgico a cenouras.

7→

Fact : {subject=[Bugs_Bunny], predicate=[ser], object=[a sua voz a o coelho
mais famoso de o mundo]}*
+
Fact : {subject=[Mel_Blanc o homem que deu a sua voz a o coelho mais famoso de
o mundo Bugs_Bunny], predicate=[ser], object=[alérgico a cenouras]}
+
Fact : {subject=[Mel_Blanc], predicate=[ser], object=[o homem que deu a sua voz
a o coelho mais famoso de o mundo Bugs_Bunny]}
+
Fact : {[subject=[Mel_Blanc], predicate=[ser], object=[o homem]}
+
Fact : {[subject=[Mel_Blanc], predicate=[ser], object=[alérgico a cenouras]}

Figure 8 Example of facts extracted from a sentence.

whole or individually, some of these tools have been used in the past both inside our research
group (e.g., [4, 10, 5, 8]) and outside (e.g., [12]).

Although some of the tools have a only narrow margin for improvement, namely the
dependent from external ones, others can greatly benefit from increased interest and use, as
is the case of FacPORT, which remains to be properly evaluated against existing solutions.

Finally, a missing tool that is being considered for future development and integration in
the suite is one for coreference resolution, which could be easily exploited by FacPORT.

The NLPPort suite of tools is freely available for download, as a whole or each of the
tools individually, at GitHub13.

References

1 Cláudia Freitas, Paulo Rocha, and Eckhard Bick. Floresta Sintá(c)tica: Bigger, thicker
and easier. In 8th Conference on Computational Processing of the Portuguese Language
(PROPOR), pages 216–219, 2008.

2 Pablo Gamallo. An overview of open information extraction. In 3rd Symposium on Lan-
guages, Applications and Technologies (SLATE), pages 13–16, 2014.

3 Pablo Gamallo and Marcos Garcia. LinguaKit: Uma ferramenta multilingue para a análise
linguística e a extracção de informação. Linguamática, 9(1):19–28, 2017.

4 Hugo Gonçalo Oliveira. Onto.PT: Towards the Automatic Construction of a Lexical On-
tology for Portuguese. PhD thesis, University of Coimbra, 2013.

5 Hugo Gonçalo Oliveira, Diogo Costa, and Alexandre Pinto. Automatic generation of In-
ternet Memes from Portuguese news headlines. In 12th Conference on Computational
Processing of the Portuguese Language (PROPOR), volume 9727, pages 340–346, 2016.

6 Edward Loper and Steven Bird. NLTK: the natural language toolkit. InWorkshop on Effec-
tive Tools and Methodologies for Teaching Natural Language Processing and Computational
Linguistics (ETMTNLP), pages 63–70, 2002.

7 Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven Bethard,
and David McClosky. The Stanford CoreNLP natural language processing toolkit. In 52nd

Annual Meeting of the Association for Computational Linguistics, pages 55–60, 2014.

13 http://github.com/rikarudo/

http://github.com/rikarudo/

R. Rodrigues, H. Gonçalo Oliveira, and P. Gomes 18:9

8 Ana Oliveira Alves, Ricardo Rodrigues, and Hugo Gonçalo Oliveira. ASAPP: Alinhamento
semântico automático de palavras aplicado ao Português. Linguamática, 8(2):43–58, 2016.

9 Lluís Padró, Miquel Collado, Samuel Reese, Marina Lloberes, and Irene Castellón. FreeLing
2.1: five years of open-source language processing tools. In 7th Language Resources and
Evaluation Conference (LREC), pages 931–936, 2010.

10 Ricardo Rodrigues. RAPPort: A Fact-Based Question Answering System for Portuguese.
PhD thesis, University of Coimbra, 2017.

11 Ricardo Rodrigues, Hugo Gonçalo Oliveira, and Paulo Gomes. LemPORT: a high-accuracy
cross-platform lemmatizer for Portuguese. In 3rd Symposium on Languages, Applications
and Technologies (SLATE), pages 267–274, 2014.

12 Derry Tanti Wijaya and Tom Mitchell. Mapping verbs in different languages to knowledge
base relations using web text as interlingua. In 15th Annual Conference of the North
American Chapter of the Association for Computational Linguistics (NAACL), pages 818–
827, 2016.

SLATE 2018

Predicting Performance Problems Through
Emotional Analysis

Ricardo Martins
Centro Algoritmi / Departamento de Informática
Universidade do Minho, Campus de Gualtar, Braga, Portugal
ricardo.martins@algoritmi.uminho.pt

https://orcid.org/0000-0003-1993-5343

José João Almeida
Centro Algoritmi / Departamento de Informática
Universidade do Minho, Campus de Gualtar, Braga, Portugal
jj@di.uminho.pt

https://orcid.org/0000-0002-0722-2031

Pedro Henriques
Centro Algoritmi / Departamento de Informática
Universidade do Minho, Campus de Gualtar, Braga, Portugal
prh@di.uminho.pt

https://orcid.org/0000-0002-3208-0207

Paulo Novais
Centro Algoritmi / Departamento de Informática
Universidade do Minho, Campus de Gualtar, Braga, Portugal
pjon@di.uminho.pt

https://orcid.org/0000-0002-3549-0754

Abstract
In the cartoons, every time a character is nervous he/she begins to count to ten to keep calm.
This is a technique, among hundreds, that helps to control the emotional state. However, what
would be the impact if the emotions would not be controlled? Are the emotions important in
terms of impairing the ability to perform tasks correctly?

Using a case study of typing text, this paper is about a process to predict the number of
writing errors from a person based on the emotional state and some characteristics of the writing
process. Using preprocessing techniques, lexicon-based approaches and machine learning, we
achieved a percentage of 80% of correct values, when considering the emotional profile on the
writing style.

2012 ACM Subject Classification Computing methodologies → Natural language processing

Keywords and phrases emotion analysis, machine learning, natural processing language

Digital Object Identifier 10.4230/OASIcs.SLATE.2018.19

Category Short Paper

Funding This work has been supported by COMPETE: POCI-01-0145-FEDER-0070 43 and FCT
– Fundação para a Ciência e Tecnologia – within the Project Scope UID/CEC/ 00319/2013.

© Ricardo Martins, José João Almeida, Pedro Henriques, and Paulo Novais;
licensed under Creative Commons License CC-BY

7th Symposium on Languages, Applications and Technologies (SLATE 2018).
Editors: Pedro Rangel Henriques, José Paulo Leal, António Leitão, and Xavier Gómez Guinovart
Article No. 19; pp. 19:1–19:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ricardo.martins@algoritmi.uminho.pt
https://orcid.org/0000-0003-1993-5343
mailto:jj@di.uminho.pt
https://orcid.org/0000-0002-0722-2031
mailto:prh@di.uminho.pt
https://orcid.org/0000-0002-3208-0207
mailto:pjon@di.uminho.pt
https://orcid.org/0000-0002-3549-0754
http://dx.doi.org/10.4230/OASIcs.SLATE.2018.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

19:2 Predicting Performance Problems Through Emotional Analysis

1 Introduction

In any kind of relationship, a golden rule to avoid problems is not taking decisions under
emotional pressure. There are several strategies to do this: from counting to ten before
responding an unpolished message until taking a break to “refresh the mind” before the
decision.

However, there are situations, such as tests, where it is impossible to avoid emotional
pressure and its consequences. When in a stressful situation, or under strong emotional
conditions, people tend to make mistakes more frequently. This situation happens in any
profession, and so being able to predict these errors that are consequences of emotional states
is an important approach to plan a strategy to decrease or avoid them. For example, how
important would it be for transportation companies to know the drivers’ emotional state
before travelling, aiming to reduce the risk of accidents? How important would be for a
hospital to predict the errors of a doctor, based on his emotions?

Errors differ from profession to profession and also the effect of emotions over the work is
different. Different data sets must be collected to identify these errors, and to correlate them
with the emotional state of the worker.

As writers usually express their emotions in the texts they produce through the bag of
words they use in each situations, and the typing errors they do along an editing session
ca be measured, we intend to model the relation between emotions and errors, using the
computer as a case of study. The purpose of the study here reported is to analyse a big
collection of texts annotated with editing data to demonstrate that the relation between
errors and emotions can be identified, and quantified in order to predict undesired situations.

In this paper, we present an approach using Sentiment Analysis and Machine Learning to
characterize the impact of emotions in the number of errors during a typing process. After
training the model, it will be used to predict new cases in order to assess it.

It is not our intention to claim that this approach is an alternative for predicting errors
in all situations, however, we think that the approach will lead further future investigation
in this relevant topic.

The remainder of the paper is as follows: Section 2 introduces the concept of basic
emotions, which is a well-known theory used in Sentiment Analysis. Section 3 discusses
related work concerned with the detection of emotions from a text that inspired this work,
while Section 4 describes the creation of a dataset for our tests. Section 5 presents our
proposal, explains the steps used in the analysis, discusses the results obtained from a set of
tests performed. The paper ends in Section 6 with the conclusions and future work.

2 Theory of Basic Emotions

Basic emotion theorists explain that every human emotion is composed of a set of discrete
basic emotions [2, 4, 11].

Many researchers have identified some basic universal emotions. One of the first attempts
is a study by Paul Ekman [3] which concluded that there are six basic emotions are Dislike,
Happiness, Sadness, Anger, Fear and Surprise. His work is based on the theory that human
faces can represent this basic emotion as universal pictures.

For Plutchik [11], every sentiment is composed of a set of 8 basic emotions: Anger,
Anticipation, Disgust, Fear, Joy, Sadness, Surprise and Trust, represented as a “wheel of
emotions”. Furthermore, the combination of basic emotions results in dyads. Plutchik
created rules for building the dyads, defining the primary dyads emotions as the sum of two
adjacent basic emotions, as Optimism = Anticipation + Joy. Meanwhile, secondary dyads

R. Martins, J. J. Almeida, P. Henriques, and P. Novais 19:3

emotions are composed of emotions that are one step apart on the “emotion wheel”, as
Unbelief = Surprise + Disgust. The tertiary emotions are generated from emotions that are
two steps apart on the wheel, as Outrage = Surprise + Anger.

Other well-known emotions model is the Five Factor Model (as known as Big Five),
introduced by McCrae [8] which suggests that the personality is composed of 5 independent
factors:
Openness to experience: People with high scores like news and tend to be creative. At the

other end of the scale are the conventional and orderly, those who like the routine and
have a keen sense of right and wrong;

Conscientiousness: It measures the level of concentration. Those with high scores are
highly motivated, disciplined, committed and trustworthy. Those with low results are
undisciplined and easily distracted;

Extroversion: It measures the sense of well-being, the level of energy, and the ability in
interpersonal relationships. High scores mean affability, sociability, and ability to impose
oneself. Lows indicate introversion, reservation, and submission;

Agreeableness: It refers to how we relate to others. Many points indicate a compassionate,
friendly and warm person. At the other end are the withdrawn, critical and egocentric;

Neuroticism: It measures emotional instability. People with high scores on this scale are
anxious, inhibited, melancholic and have low self-esteem. Those that get low scores are
easy to deal with, optimistic and well-liked with themselves.

In this paper, we adopt the Plutchik’s model to represent emotions because we consider
more realistic, easy to use and this model allows to represent several different emotions
through dyads emotion. Moreover, there are some libraries and lexicons used in this work
which represent and process the emotions according to this model.

3 Related work

There are several works using sentiment analysis for diversified objectives, and some are
more relevant for the present paper as they have been used as a source for the idea proposed.
In this section, we survey these inspiring works. However, predicting typing errors from an
emotional analysis is an unexplored field and we have not found specific previous works to
reference.

The usage of emotional labels for predictions was inspired by the work of Martins et
al. [7], which uses emotional labels to improve the authorship identification. This is made
using Facebook posts from personalities known and a hybrid approach containing lexicon
and machine learning approaches.

Moreover, Thewall et al. [12] have presented a work to extract sentiment strength from
the informal English text, using new methods to exploit the de facto grammars and spelling
styles of cyberspace, which contributed with the idea of extract sentiment polarities from text.

Finally, the work presented by Meier et al. [9] contributed to the idea of predicting writing
performance using affective variables to relate to efficacy expectations.

4 Data creation

In order to analyse the impact of the emotions during the text writing process, it was
necessary to analyse texts containing emotional load and meta-information about its creation.
For this purpose, the dataset provided by Banerjee et al [1] containing keystroke logs for

SLATE 2018

19:4 Predicting Performance Problems Through Emotional Analysis

Figure 1 Dataset creation process.

opinion texts about gun control1 was used as the basis for a new dataset creation. To perform
the intended analysis we actually needed a text repository with emotional load and editing
numerical data for each written piece. The option of a keystroke log is justified by the
necessity of gather information about the text creation process. So, in our study all texts are
considered written “from beginning to end”, i.e., the first typing step without a posterior
text revision phase. This is important for levelling possible errors and editing in a same
identifiable pattern.

The process of the new datasets creation is performed in 2 steps: Meta-information
Creation and Emotional Analysis, as presented in Figure 1.

4.1 Meta-information
The Meta-information Creation step analyses the keystroke log and calculates metrics about
the text creation. For analysis purposes, we defined some metrics considered important in
this study. These metrics are:

TimeText: It represents the time spent during the text writing. It is the amount of
time span in milliseconds between press and release for each character and white space
key in the keyboard. Punctuations, numbers, and others are discarded;
AveragePerWord: Is the average between the total words in the text and the time
spent during typing process;
AmountErrors: It is the number of errors during the typing process. It is important
to emphasize that due to dataset limitations that do not store mouse movements or
selections, it is impossible to detect all forms of removing characters (for example, single
character or block removing). For convenience of this study, it is considered an error
each backspace occurrence2;
AverageErrors: It is the average of the total words in the text and the number of errors
during typing process;
TimeBetweenKeys: It is the average time span between the keyboard press;
RepeatedCharacterFrequence: It is the frequency of a character is repeated in the
text. A repeated character is considered the same character those have been pressed im-
mediately before and the time between them is at least 15% lower than TimeBetweenKeys.
This is important to detect situations when a key is pressed for a long time, repeating
the character.

1 This is a hot, sensible, topic provoking emotive reactions on commenters.
2 We are aware that counting backspaces is not the more adequate way to count errors, because other

reasons can lead the writer to backspace and delete characters, and also many errors are made without
being detected and corrected. Anyway we feel that there is a clear relation between both.

R. Martins, J. J. Almeida, P. Henriques, and P. Novais 19:5

Figure 2 Preprocessing pipeline.

4.2 Emotional Analysis

The Emotional Analysis step is responsible for identification of each basic emotion according
to Plutchik’s model [11]. This model was chosen because there are many libraries to process
information according to it and lexicons which contain the basic emotions for each word. To
achieve this objective, all sentences are analysed using the EmoLex [10] lexicon.

For this analysis, all texts have been submitted to a preprocessing pipeline; at the end of
this phase, only the relevant information remained.

This pipeline was composed of n-Gram identification, tokenization, stopwords removal,
part of speech tagging and named entity removal, as presented in Figure 2.

Using the Stanford Core NLP toolkit [6] for these tasks, the preprocessing is divided into
3 parallel tasks. This is important because both Part of Speech Tagging and Named Entity
Recognition need the text in the original format in order to identify the information.

The preprocessing begins with the N-Gram identification, where a predefined set of
n-grams are identified in the text and labelled to be interpreted as a single word. Later,
the tokenizer splits the text in a list of words (tokens) and these tokens are syntactically
analysed in Part of Speech, where the nouns, verbs, adverbs, and adjectives are identified
and stored for future purposes. In parallel, the tokens identified in a predefined stopwords
list are removed and the tokens in named entity process are analysed in order to identify
names (persons, locations or organizations) and discard them.

Later, the common tokens in these processes are stored and the emotions from each
preprocessed text are identified through a process in R which queries the NRC lexicon [10]
and identifies the basic emotions.

Finally, all information is stored in a new dataset containing the opinion and preprocessed
text (from the original dataset), the 6 metrics created in Meta-Information Creation step, 8
basic emotions percentages and 2 polarities identified in the Emotional Analysis step.

5 Data analysis

The objective of this analysis is to find some evidence that emotions influence the writing
process. In order to achieve this objective, some experiments were performed to relate
emotions and writing patterns.

SLATE 2018

19:6 Predicting Performance Problems Through Emotional Analysis

Table 1 Correlations between AmountErrors and emotions.

Emotion r2 Emotion r2 Emotion r2 Emotion r2

Anger 0.35 Optimism 0.30 Pessimism 0.42 Trust 0.36
Anticipation 0.31 Hope 0.39 Awe 0.38 Curiosity 0.37

Disgust 0.26 Anxiety 0.52 Despair 0.38 Pride 0.38
Fear 0.38 Love 0.35 Shame 0.38 Surprise 0.19
Joy 0.23 Guilt 0.41 Disapproval 0.30 Remorse 0.31

Sadness 0.30 Delight 0.25 Unbelief 0.27 Outrage 0.34

5.1 Emotional correlations
As initial step, the values for some Plutchik’s basic emotions and defined dyad emotions[11]
were calculated in order to provide more sources of information to analyse the data. To
calculate these emotions, we used the package Syuzhet [5] in R, which analyses the text
provided and returns the values of each basic emotion contained into the text, according to
the NRC lexicon [10]. The dyad emotions were calculated according to the formula below:

Optimism = Anticipation + Joy;
Disapproval = Surprise + Sadness;
Hope = Anticipation + Trust;
Unbelief = Surprise + Disgust;
Anxiety = Anticipation + Fear;
Outrage = Surprise + Anger;
Love = Joy + Trust;
Remorse = Sadness + Disgust;

Guilt= Joy + Fear;
Delight = Joy + Surprise;
Pessimism = Sadness + Anticipation;
Curiosity = Trust + Surprise;
Awe = Fear + Surprise;
Despair = Fear + Sadness;
Pride = Anger + Joy;
Shame = Fear + Disgust;

Later, the Pearson correlation (r2) was applied to both each basic emotion and dyad
emotions, to obtaining the correlation between the number of backspaces in the writing
process3 (AmountErrors as presented in subsection 4.1) and the emotions, according to
Table 1.

Despite no single emotion having a strong correlation, it is possible to identify that among
all emotions analysed, anxiety is the most relevant for the number of errors during typing,
having a moderate correlation.

5.2 Machine learning predictions
A machine learning analysis was applied to determine the influence of the meta-information
and emotional labels on the number of errors prediction. For this purpose, 5 different
scenarios were considered:

Scenario A: Only text and opinion – no meta-information neither emotional labels;
Scenario B: Only meta-information and emotional labels;
Scenario C: Only meta-information;
Scenario D: Only emotional labels;
Scenario E: All dataset information – text, opinion, meta-information and emotional
labels.

3 Remember that we are using this measure to compute the errors number.

R. Martins, J. J. Almeida, P. Henriques, and P. Novais 19:7

Table 2 Algorithms correlations and their Root Mean Squared Error (RMSE).

Scenario Linear
Regression RMSE SVM RMSE Random

Forest RMSE Decision
Table RMSE

Scenario A 0.171 391.28 0.347 208.62 0.429 145.36 0.321 104.78
Scenario B 0.774 99.62 0.769 103.32 0.791 96.67 0.739 106.37
Scenario C 0.777 99.14 0.770 103.08 0.780 98.66 0.739 106.37
Scenario D 0.525 134.10 0.528 137.73 0.492 141.70 0.426 143.54
Scenario E 0.320 437.12 0.696 131.79 0.586 127.88 0.591 129.18

Table 3 Ranges of AmountErrors per emotions.

Emotions

AmountErrors Anger Anticipation Disgust Fear Joy Sadness Surprise Trust

0.0-204.5 2.5-3.5 0.5-1.5 0.5-1.5 0.0-4.5 0.0-0.5 0.0-1.5 0.0-0.5 2.5-4.5
204.5-256.5 3.5-5.5 1.5-2.5 0.0-0.5 5.5-7.5 1.5-2.5 2.5-3.5 0.5-1.5 4.5-∞
256.5-340 3.5-5.5 0.5-1.5 1.5-2.5 5.5-7.5 0.5-1.5 3.5-∞ 0.0-1 2.5-4.5

340-∞ 5.5-∞ 2.5-∞ 2.5-∞ 7.5-∞ 2.5-∞ 3.5-∞ 2.5-∞ 4.5-∞

The dataset used for both training and validation is the same created in subsection 4.2.
In this analysis, the meta-information AverageErrors was discarded because it has strong
correlation with AmountErrors, induced by AmountErrors ≈ AverageErrors ∗ TimeText.

For each scenario, the following machine learning algorithms were applied: Linear Regres-
sion, SVM, Random Forest and Decision Table.

All tests were performed using a 10-fold cross-validation in Weka; the correlation coeffi-
cients obtained with each algorithm between AmountErrors and the dimensions analysed in
each scenario are shown in Table 2.

After the tests, the best correlation coefficient for predicting the number of errors was
obtained with the Random Forest algorithm for Scenario B (only meta-information and
emotional labels).

Once identified that the meta-information and emotional labels are an adequate to predict
the number of errors, the next step was to identify the patterns for these predictions. For
this purpose, all values were discretized into 4 groups and a K-Means algorithm was used to
cluster the data (meta-information and emotional labels) into 4 different clusters representing
respectively 39%, 17%, 23% and 21% of the information available.

In a preliminary analysis, all meta-information was identified with the same value range,
and for this reason, it was considered irrelevant for this objective and removed from the
visualization. Also, as the purpose of this analysis is to measure the emotional influence in
the AmountErrors values, the dimensions Positive and Negative were removed too. Then the
relevant information remaining was grouped by AmountErrors and is presented in Table 3,
where the range in AmountErros refers to the number of errors identified, while the range
for each emotion refers to the number of words containing the emotion in the text.

Having in mind the results in Table 3, it is possible to conclude that in general, as higher
the emotions are, higher is the impact on the AmountErrors number.

SLATE 2018

19:8 Predicting Performance Problems Through Emotional Analysis

6 Conclusion

A typist certainly will have fewer errors than a normal person when typing. However, even
this typist will do more mistakes if he is, for instance, anxious or feeling guilty.

As a first step in a research direction we want to further explore – the sentiment analysis
in different tasks to understand the effect of the worker’s emotional state on his performance,
to reduce mistakes – this paper presents a combination of lexicon-based and machine learning
approaches to correlate the number of typing errors based on the emotional labels and metrics
associated with the text creation (text first typing/editing). That model can be used to
predict errors based on the information of the emotional state; in this way we will have a
rigorous criterion to recommend people to stop doing some task under some personal states
to avoid dangerous faults.

Everyone has particular characteristics of expressing himself and these personal character-
istics can of course influence that prediction. Maybe on account of that, the study results so
far obtained were a bit surprising, and the measured influence of emotions on users tendency
to make mistakes is moderate (we were expecting bigger values). In our tests, the best
approaches for predicting errors based on human behaviour were obtained using emotional
information (emotions inferred from the text lexical analysis)and meta-information (metrics
evaluated based on the text creation process) collected during text typing. Clustering the
data revealed how the emotions can affect the number of errors. It is a promising result.

Despite the final outcomes, this work is the beginning of a research line, and some premises
were assumed (like, calculate typing errors by counting the backspace-key strokes) in order
to get objective data to produce numerical, trustable, results. However, when advancing this
research line, these premises will be revisited and new detection/measuring approaches will
be considered.

As future work, it is planned to increase the accuracy of the system to handle with
character block removing (i.e. removing several characters at once with a mouse text
selection and one backspace press). Moreover, it is planned to detect and handle typos as a
different category of errors, as well as to determine on an individual scale, how the emotions
affect people in their usual routine, increasing the risks of errors in their activities. Also,
it is planned to analyse different texts from different authors. It is important to avoid bias
in themes and identify “stressive patterns” which increase the number of errors in different
authors and themes.

References

1 Ritwik Banerjee, Song Feng, Jun Seok Kang, and Yejin Choi. Keystroke patterns as prosody
in digital writings: A case study with deceptive reviews and essays. In Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1469–1473, 2014.

2 Paul Ekman. An argument for basic emotions. Cognition & emotion, 6(3-4):169–200, 1992.
3 Paul Ekman and Richard J. Davidson. The nature of emotion: Fundamental questions.

Oxford University Press, 1994.
4 Carroll E. Izard. Human emotions. Springer Science & Business Media, 2013.
5 Matthew L. Jockers. Syuzhet: Extract Sentiment and Plot Arcs from Text, 2015. URL:

https://github.com/mjockers/syuzhet.
6 Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and

David McClosky. The Stanford CoreNLP natural language processing toolkit. In 52nd
Annual Meeting of the Association for Computational Linguistics, pages 55–60, 2014.

https://github.com/mjockers/syuzhet

R. Martins, J. J. Almeida, P. Henriques, and P. Novais 19:9

7 Ricardo Martins, José João Dias de Almeida, Pedro Rangel Henriques, and Paulo Novais.
Increasing authorship identification through emotional analysis. In Trends and Advances in
Information Systems and Technologies, volume 745, pages 763–772. Springer International
Publishing, 2018. doi:10.1007/978-3-319-77703-0_76.

8 Robert R. McCrae and Oliver P. John. An introduction to the five-factor model and its
applications. Journal of personality, 60(2):175–215, 1992.

9 Scott Meier, Patricia R. McCarthy, and Ronald R. Schmeck. Validity of self-efficacy as a
predictor of writing performance. Cognitive therapy and research, 8(2):107–120, 1984.

10 Saif Mohammad and Peter D. Turney. Crowdsourcing a word-emotion association lexicon.
Computational Intelligence, 29(3):436–465, 2013. doi:10.1111/j.1467-8640.2012.00460.
x.

11 Robert Plutchik. Emotion: A psychoevolutionary synthesis. Harpercollins College Division,
1980.

12 Mike Thelwall, Kevan Buckley, Georgios Paltoglou, Di Cai, and Arvid Kappas. Sentiment
strength detection in short informal text. Journal of the Association for Information Science
and Technology, 61(12):2544–2558, 2010.

SLATE 2018

http://dx.doi.org/10.1007/978-3-319-77703-0_76
http://dx.doi.org/10.1111/j.1467-8640.2012.00460.x
http://dx.doi.org/10.1111/j.1467-8640.2012.00460.x

	p000-frontmatter
	Preface

	p001-Queiros
	Introduction
	Web development workflow
	Frontend tooling
	REST API generators
	Maturity
	Coverage
	Performance

	Kaang
	Architecture
	Structure and Input
	Routes and Models
	Testing
	Documentation

	Validation
	Conclusions

	p002-Queiros
	Introduction
	Related Work
	LearnJS
	LearnJS Management Tool
	GUI component
	The resources schema
	The activity schema

	LearnJS Playground

	Conclusions

	p003-Correia
	Introduction
	Background
	Mooshak 2.0
	Question and Test Interoperability (QTI)
	Bebras
	General Import Format Template (GIFT)

	Moozz
	Authoring Tool
	Architecture
	User Interface
	Moo Language

	Conclusions and Future Work

	p004-Silva
	Introduction
	State of the Art
	Mooshak 2.0 REST API
	Raccode
	API integration
	Design

	Conclusions

	p005-Mendes
	Introduction
	On the automatic evaluation of programming assignments
	Overview of existing systems
	Creating programming assignments

	Framework
	Registering problems
	Describing inputs and outputs
	A simple example
	Parsing the input or output
	An example with special comparators
	Source invariants
	Batch creation of exercises
	Defining new languages

	Discussion
	Conclusions

	p006-Pecka
	Introduction
	Basic Definitions
	Trees
	Regular Tree Expressions
	Pushdown Automata

	Converting RTE to PDA
	Analysing RTE
	Pushdown Automaton Construction

	Reducing the Number of Transitions
	Conclusion and Future Work

	p007-Ferreira
	Introduction
	Context-Oriented Programming
	Objectives

	Related Work
	Aspect-Oriented Programming
	Subject-Oriented Programming
	COP Implementations
	ContextL
	PyContext and ContextPy
	ContextJ
	Other COP Implementations

	Comparison

	Context-Oriented Algorithmic Design
	Implementation

	Evaluation
	Conclusions and Future Work

	p008-Almeida
	Introduction
	Abc music notation
	Accompany Chords
	In this paper

	Abcl by example
	Abcl preprocessor tool
	Conclusions
	Cannon

	p009-Paiva
	Introduction
	State-of-the-Art
	Asura
	Evaluator
	Builder
	Tournament Manager
	Viewer

	Experiment Guidelines
	Conclusions and Future Work

	p010-Martini
	Introduction
	MVIF at a glance
	CaVa Language
	MVIF specified in CaVa

	CaVa
	Generating and Rendering MVIF virtual LS with CaVa
	Conclusion

	p011-Sierra
	Introduction
	Multiple operator definitions with the same name and fixity
	Opposite associativities at the same precedence level
	Overloading an operator with infix and postfix fixities
	Overloading an operator with infix, prefix and postfix fixities
	Related work
	Conclusions and Future work

	p012-Alves
	Introduction
	Related Work
	Features for Semantic Textual Similarity in Portuguese
	Lexical Features
	Syntactic Features
	Semantic Features
	Distributional Features
	Unsupervised Results
	Set similarity and LKBs
	N-grams
	Word embeddings

	Learning a model for Portuguese STS
	Regression Algorithms
	Training and Testing
	Training on both collections

	Concluding Remarks

	p013-Gamallo
	Introduction
	The Datasets for Outlier Detection
	A Filtered-Based Distributional Model
	Experiments and Evaluation
	The 8-8-8 Dataset
	The 12-8-8 Expanded Dataset
	Portuguese 12-8-8 Dataset

	Conclusions

	p014-Simoes
	Introduction
	Language resources
	WordNet and Galnet
	The CLUVI multilingual Bible

	Related work
	Methodology
	Multilingual Bible Preprocessing
	Extraction of Variant Proposals
	Similarity Measure

	Evaluation and results
	Error analysis
	MCR source
	Lemmatisation
	Galician normative
	False friends
	Levenshtein distance

	Evaluation results

	Final remarks

	p015-Leal
	Introduction
	Related Work
	Antigraph definition
	Motivation
	Diagram language
	Antigraphs and ontologies

	Antigraph browser
	Back end processing
	Diagram layout
	User interface

	Validation
	WordNet
	Yago

	Conclusions and future work

	p016-Canosa
	Introduction
	Parallel corpora and units considered in alignments
	Tartaria parallel corpus
	Transcriptions
	Annotation
	Text segmentation
	Bitext

	Results
	Discussion: which units show evidence of both texts being alignable?
	Conclusion

	p017-Silva
	Introduction
	Related Work
	Proposed Method
	Implementation
	Results
	Conclusions and Future Work

	p018-Rodrigues
	Introduction
	Related Work
	Tools
	SenPORT
	TokPORT
	EntPORT
	TagPORT
	LemPORT
	ChkPORT
	DepPORT
	FacPORT

	Conclusions and Future Work

	p019-Martins
	Introduction
	Theory of Basic Emotions
	Related work
	Data creation
	Meta-information
	Emotional Analysis

	Data analysis
	Emotional correlations
	Machine learning predictions

	Conclusion

