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—— Abstract

I point to some challenges for WCET analysis offered in the transition to integrated mixed-
criticality systems (MCSs) and to multi-core platforms, claim that proposed certification stand-
ards are inadequate, show that the MCS model heavily used by the scheduling community is
fraught, and clarify why the traditional abstract interface between WCET analysis and schedulab-

ility analysis is obsolete.

A central point is the insistence on sound approaches. I give a detailed account of how the
most rigid certification procedures, those of the avionics domain, are satisfied, to defend the
validity of my claims.
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1 Introduction

The general setting for WCET analysis is that a set of hard real-time tasks is to be executed
on a given hardware platform. Being hard real-time tasks means having associated deadlines
within which they have to finish their execution. Timing Verification has to verify that
these timing constraints are satisfied. Traditionally Timing Verification is split into a WCET
analysis, which determines upper bounds on the execution times, and a schedulability analysis,
which takes these upper bounds and attempts to verify that the given set of tasks when
executed on the given platform will all respect their deadlines.

There are two strong trends in the embedded-systems industry, the transition from
single-core to multi-core execution platforms and the transition from federated systems to
integrated systems comprising components with different levels of criticality.
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Mixed Criticality

The criticality level (aka Safety integrity level (SIL)) of a component is derived from
the impact of a failure of the component on the functioning of the system. It determines
the size of the effort to deliver assurance of the correct functioning of the component. A
mixed criticality system (MCS) is one that has two or more distinct criticality levels. Up to
five levels exist in the standards, e.g. the IEC 61508, DO-178B and DO-178C, DO-254 and
ISO 26262.

For architectures with instructions that had constant execution times, WCET analysis
methods using Timing Schemata [14] were the method of choice. Timing schemata describe
how (bounds on) the execution times of a programming-language construct were composed
from the (bounds on) the execution times of its components. These methods would thus do
structural induction over the structure of a program and determine bounds for ever bigger
parts of the program.

Performance-enhancing architectural components such as caches, pipelines, and spec-
ulation made previous methods for WCET analysis using Timing Schemata [14] obsolete.
Execution times do not compose any longer because instruction execution-times are now
dependent on the execution state in which they were executed. In the composition A;B the
execution time of statement B depends on the execution state produced by statement A. The
variability of execution times grew with several architectural parameters, e.g. the cache-miss
penalty and the costs for pipeline stalls and for control-flow mis-predictions.

1.1 The Central Idea — Proving Safety Properties

We started off to solve the WCET problem for architectures with state-dependent execution
times. Let me describe the central idea behind the microarchitectural-analysis phase in our
WCET-analysis method [18], first in a conceptual way, i.e. not quite like it is implemented,
later closer to how it is implemented:
Define any architectural effect that causes an instruction to execute longer than its fastest
execution time as a Timing Accident. Typical such timing accidents are cache misses,
pipeline stalls, bus-access conflicts, or branch mis-predictions. Each timing accident is
associated with a Timing Penalty. Timing penalties may be constant, but may also be
execution-state dependent.
The property that an instruction will not cause a particular timing accident is then a
safety property. The occurrence of a timing accident thus violates a corresponding safety
property.
Use an appropriate method for the verification of safety properties to prove that for the
instructions in the program some of the potential timing accidents will never happen. The
goal is to prove as many of such safety properties as possible. Conceptually, the safety
properties shown to hold could be used to reduce the worst-case execution-time bound
for an instruction, which a naive, sound WCET analysis would have to assume, by the
cost for the excluded timing accidents. In practice, pipeline analysis drives a cycle-wise
transition, which considers the abstract execution state, e.g. makes no transition under a
cache miss if a cache miss can be excluded.
Prove these safety properties by abstract interpretation (AI) [7] in the following way: Use
AT to compute invariants at each program point, in our case an upper approximation
of the set of execution states that are possible when execution reaches this program
point. Derive the above mentioned safety properties, that certain timing accidents will
not happen, from these invariants. For example, Al computes abstract cache states at
each program point, which represent the sets of concrete cache states that may reach this
program point. The abstract cache states are used to classify memory accesses at each
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program point as definite hits or misses. Predicted cache hits are then used to prove that
the timing accident, this memory access will miss the cache, will never happen [10].
This method for the micro-architectural analysis was the main innovation that made our
WCET analysis work for real-life architectures and scale to industrial-size software [9].

Now follows the description of the microarchitectural analysis that is closer to the
implementation. Driver of this analysis is the pipeline analysis [15]. It goes through the
instruction stream, instruction by instruction, and executes the current instruction on the
current abstract execution state. This abstract execution state contains uncertainty, i.e.
misses some components. Transitions to all potential successor states are performed whenever
the transition to the next state depends on such a missing part of the state. The timing
contributions of these transitions are accumulated until an instruction can be retired. In the
end upper bounds on the execution times of basic blocks are obtained that are coeflicients in
an Integer Linear Program representing the control flow of the program [18].

We currently experience two significant developments in the safety-critical embedded-
systems industry that are of concern to the WCET-analysis domain, the introduction of
multi-core execution platforms and the integration of applications of different criticalities on
such platforms. As we will later see, the clean interface between schedulability and timing
analyses becomes obsolete as soon as multi-core architectures with shared resources are used
for the implementation of hard real-time systems, and the (extremely productive) scheduling
community has adopted a system model, ignoring fundamentals of WCET analysis.

1.2 Terminology

We consider only sound WCET-analysis methods. Soundness means that a method and
associated tool will always produce conservative WCET estimates, i.e. estimates that will
never be exceeded in any execution. Being conservative is a Boolean property. Unfortunately,
conservative is often used as a metric property, more conservative meaning less precise.
However, calling results of an unsound method conservative is a misnomer. The really meant,
other dimension, in addition to soundness, is accuracy. Accuracy of some WCET estimate,
obtained by a sound method, expresses the degree of over-estimation, the difference between
a WCET estimate and the real WCET. It does not make sense to talk about the accuracy
of an unsafe estimate or an unsound method. In case of an unsound method it is not even
clear whether a "more conservative” estimate moves towards the real WCET from below or
is larger than the real WCET and moves further away from it.

WCET analysis can be seen as the search for a longest path in the state space spanned
by the program under analysis and by the architectural platform. Most real-time software is
written as to guarantee termination. Its state space can thus be easily abstracted to a finite
abstract state space, which is still too large to be exhaustively explored. We can, therefore,
not expect to identify the real WCET, but only safe upper bounds to all execution times,
which we will call WCET estimates. (Safe) over-approximation is used in several places. In
particular, an abstraction of the execution platform is employed by the WCET analysis. How
to convince oneself (or the certification authorities) of the correctness of this architectural
model is the subject of the next section.

2 Certification

The claim that our WCET-analysis tools produce safe results is a strong one and often
disputed by some proponents of unsound WCET-analysis methods. Their argument is, to
develop an error-free instantiation of the, in principle, sound WCET-analysis technology
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Figure 1 The architecture of the aiT tool.

is so difficult, that one might use a simpler unsound method in the first place. The main
complaint is the complexity of the abstract architectural models. So, what is the basis for
our claims?

Tool Qualification according to DO178

Let us start with a description of the safety standards and the tool-qualification processes of
the avionics industry, which are the most rigid of the safety-critical industries. Certification of
avionics systems is regulated by the international standard DO-178C [1]. WCET-analysis tools
fare under verification tools. Verification tools have no overly rigid certification requirements,
unlike development tools. They require a specification of the tool functionality, from which
several levels of requirements are derived. DO-178C exhales a test-based spirit. Most of
the qualification is test based, requiring some coverage criteria to be observed. However,
note that in case of a static verification tool, test coverage means something different from
the usual interpretation as, e.g. coverage of the program control flow. At analysis time, a
static-analysis tool analyses all paths and does not need coverage criteria for its analysis.
It is the ISA and the set of paths through the execution platform that need to be covered.
Huge sets of test traces in qualification suites are used at tool-qualification time to cover the
sets of paths through the execution platform.

Certification becomes more challenging through DO-333, the Formal-Methods Supplement
to DO-178C. It asks for a statement that a formal method including the underlying theory is
adequate for solving the corresponding verification problem. This introduces and enforces
soundness of the methods and tools.

Several component analyses in the tools are instances of abstract interpretation [7], a
scientific method with a strong underlying theory, relating analysis results to semantic
properties of analyzed programs. Value analysis and control-flow analysis, c.f. Figure 1



R. Wilhelm

Static Prediction
Analysis Event Graph

Test J { Trace } [ Validation J

—>[ Validation Result

Case

Board Observed
or VHDL Trace

Figure 2 Trace Validation according to [11]. The instruction sequences together with the
generated prediction graphs, annotated by state and timing information are part of the Qualification
Support Kit.

are more or less standard abstract interpretations, the difference is that these analyses
are performed on the binary level and not on the source level. Still, adequacy of these
analyses is easily accepted. The instantiation of the abstract-interpretation framework for
the microarchitectural analysis, however, is far from trivial. In particular, each contains an
abstraction of the execution platform. How does one make sure that such an abstraction is
conservative? The European Aviation Safety Agency (EASA) is strict on this issue. It has
accepted AbsInt’s aiT as a validated WCET-analysis tool for several time-critical subsystems
in the Airbus A380 and A350 planes.

Trace Validation

EASA requires the tool user to perform a tool qualification. As written above, the most
complex part of the WCET-analysis tool is the abstract architectural model. Therefore,
the most complex task in tool qualification is the validation of this abstract architectural
model. It is done by Trace Validation. The tool user may ask the tool provider to support
them by providing a Qualification Support Kit (QSK) containing the abstract architectural
model and sets of test traces, annotated with timing information. The abstract model is
used as a generator of event traces. Typically, only events that can be externally observed
are generated and thus contained in traces in the prediction graph. Several (hand-written)
instruction sequences, test cases according to Figure 2, are run through this abstract model,
each producing a graph of traces, the so-called Prediction Graph [11].

In trace validation, an instruction sequence is executed on the actual hardware. Interrupts
are used to stop execution at each desired execution cycle. This way, the execution of
instruction sequences are extended cycle by cycle to observe actual execution states and
execution times. Whatever machine information can be read out is used. The observed
trace, the reached execution state and the consumed time are checked for containment in the
prediction graph. The predicted execution time may be larger than the observed execution
time, but never smaller. Some interesting components of the architectural state, e.g. the cache
state, are not directly observable. These need to be indirectly observed through executions
that are forced to lead to cache hits and cache misses. A tremendous effort is invested to
cover both all instructions and all architectural components, essentially by triggering many
different initial architectural states.

In the case of the AbsInt static WCET tool, aiT, the validation suite may contain several
thousand event traces, even for a simple DLX-like architecture like the ARM Cortex-M4.
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Testing in the Operating Environment

In addition, DO-178 asks the user of a tool to be qualified to test the tool in their operating
environment. This includes testing it on on representative user code, besides testing it
possibly on synthetic examples. In model-based design processes, which are quite common
in the safety-critical embedded-systems domain, this is often done by exhaustively testing
patterns used by the code generators.

3  Multi-Core Architectures

WCET analysis for single-core architectures is theoretically understood and practically solved.
The significance of timing-predictability of execution platforms is recognized, but has left
few traces in the architectural domain, a notable exception being the Kalray MPPA [8].
The transition of the embedded systems industry to multi-core platforms presented new
challenges by increasing the complexity of WCET analysis considerably. In general, all
possible interleavings of the concurrently executed tasks have to be analyzed, since different
interleavings may lead to different execution times. The reason was is the interaction on
shared resources of tasks executing on different cores [2].

The interference on shared resources of tasks running on different cores invalidates
the traditional interface between WCET analysis and schedulability analysis, which is the
following: WCET analysis determines an upper bound on the execution times of a task,
and schedulability analysis uses this bound as input. However, different schedules on the
different cores lead to different interactions on the shared resources, and in consequence,
to different execution times of the tasks. So, the WCET estimate determine the schedules,
and the schedules influence the execution times. This fact is ignored by quite a few people
working on multi-core scheduling.

A position paper on the use of multi-core platforms in future avionics systems [6],
written by an international consortium, recognizes that the interference on shared resources
makes the traditional spatial and temporal partitioning methods required by ARINC 653
problematic. They require robust partitioning of the co-executing tasks to allow separate
WCET determination. The relevant necessary condition for robust partitioning reads,
Software partitions cannot consume more than their allocations of shared resources. This
formulation, while applicable to bandwidth resources like buses, ignores the important
differences between storage resources and bandwidth resources. Caches are typical storage
resources. Analyzing shared caches is particularly challenging. It is clear that the cache
state, and therefore also the cache-miss rate and the execution time, depend on the particular
interleaving of the executions of different co-executed tasks. Buses are typical bandwidth
resources. Competition for this resource is resolved by bus protocols, which then influence,
for example, the memory-access time. Bus protocols become part of the WCET analysis.

In case the requirement for robust partitioning is violated the position paper asks for
mitigation by the developer. The only problem is that it remains unclear how such mitigation
could look like. [19] gives a survey of promising approaches for achieving robust partitioning.

4 Mixed Feelings about Mixed Criticality

Steve Vestal [17] has proposed a model of mixed-criticality systems for schedulability analysis.
This model is based on a conjecture that the higher the degree of assurance required that actual
task execution times will never exceed the WCET parameters used for analysis, the larger
and more conservative the latter values become in practice. The survey [5] of mixed-criticality
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systems by Burns and Davis adopts the same assumption, A key aspect of MCS is that
system parameters, such as tasks’ worst-case execution times (WCETs), become dependent
on the criticality level of the tasks. These authors, however, seem to be skeptical about
this assumption: Although it is reasonable to assume confidence increases (i.e. uncertainty
decreases) with larger estimates of worst-case execution time, this may not be universally
true. It would certainly be hard to estimate what increase in confidence would result from,

say, a 10% increase in all Cs. It is illuminating that both articles do not mention soundness.

as if it were of no concern in the safety-critical systems domain.

I see no inherent reason why higher criticality should entail higher WCET estimates. It
seems that this assumption is intuitively based on the assumption that WCET estimates are
determined by measurement; higher criticality levels require higher assurance, and higher
assurance is achieved by performing increasing sets of tests. Since WCETs monotonically
increase with increasing the set of tests — an observed WCET does not disappear, when more
tests are added — more tests can, in fact, not produce lower WCET estimates.

4.1 Exploitation of Hardware Resources

Another motivation is an assumed higher exploitation of the hardware performance: Let us
assume that by extensive measurement the Maximum Observed Execution Time (MOET) of
the high-criticality task T}, is found to be substantially less than the WCET estimate, Cy,(HT)
provided by a sound tool. This MOET may be considered as an intermediate (low-criticality)
budget, Cy(LO). Some low criticality software, T;, with no strong guarantees, which will be
run on the same hardware platform, might have a MOET of C;(LO). The scheduler may
drop or degrade the low-criticality task in the event that either T; exceeds its MOET of
Ci(LO) or Ty, exceeds its MOET of C,(LO). Since the high-criticality task must execute and
must meet its timing constraints, the overall performance required of the system is given by

max(Cy(LO) + Cy(LO), Cyr(HI)), which may be substantially less than Cy(LO) + Cy(HI).

The strength of this motivation, of course, depends on the size of Cy,(HI) — Cp,(LO), i.e. on
the amount of over-estimation. There are a few publications documenting the amount of
over-estimation, see [16]. Between 15 and 25 % over-estimation were observed on real Airbus
code. Of course, the amount of over-estimation depends on many factors, in particular on
the timing predictability of the execution platform [12, 13, 4].

4.2 Schedulability Analysis

Vestal thus starts with the assumption that different WCETs are associated with different
criticality levels of a task, the higher the criticality level, the higher the WCET estimate,
and then proposes to use two different versions of preemptive fixed-priority (PFP) scheduling

with deadline-monotonic priority assignment; tasks with smaller deadlines get higher priority.

The first approach attempts to solve the problem that low-criticality tasks with shorter
deadlines than higher-criticality tasks would receive higher priorities. By cutting the longer

execution times of higher-criticality tasks into short time slices they receive higher priorities.

The scheduling algorithm then is able to use time left over by higher-criticality tasks not
exhausting their WCET estimate for lower-criticality tasks. So far so good! No treatment
is dedicated to the case that the high-criticality task exceeds its WCET estimate and
in consequence its deadline. This is possible since measurement-based analyses are not
guaranteed to produce safe upper bounds.

Vestal’s second approach uses Audsley’s priority-assignment algorithm [3] in a setting

with WCET bounds increasing with criticality level, for which it was not originally described.

I assume that the algorithm can be adapted to work for a setting with different WCET
estimates associated with different criticalities.
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4.3 Consequences of Ignoring Sound Approaches

So, Vestal’s schedulability test is only sound with respect to correct WCET estimates and
will, if given incorrect estimates, accept task sets whose high-criticality tasks may at run

time exceed their deadlines. The scheduling community on the one hand would claim that

their algorithms are sound, but gladly accepts input produced by unsound methods, which
invalidates the overall correctness claim. However, his model has been and still is the
underlying model for most scheduling research on mixed-criticality systems. [5] lists almost
200 publications.
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