
Formal Executable Models for Automatic
Detection of Timing Anomalies
Mihail Asavoae
CEA LIST
Gif-sur-Yvette, France
mihail.asavoae@cea.fr

Belgacem Ben Hedia
CEA LIST
Gif-sur-Yvette, France
belgacem.ben-hedia@cea.fr

Mathieu Jan
CEA LIST
Gif-sur-Yvette, France
mathieu.jan@cea.fr

Abstract
A timing anomaly is a counterintuitive timing behavior in the sense that a local fast execution
slows down an overall global execution. The presence of such behaviors is inconvenient for the
WCET analysis which requires, via abstractions, a certain monotony property to compute safe
bounds. In this paper we explore how to systematically execute a previously proposed formal
definition of timing anomalies. We ground our work on formal designs of architecture models
upon which we employ guided model checking techniques. Our goal is towards the automatic
detection of timing anomalies in given computer architecture designs.

2012 ACM Subject Classification Computer systems organization → Real-time systems, Com-
puter systems organization → Embedded systems

Keywords and phrases timing anomalies, predictability, formal methods, model checking

Digital Object Identifier 10.4230/OASIcs.WCET.2018.2

Acknowledgements The authors would like to thank Simon Wegener from AbsInt GmbH for
providing valuable feedback on this work.

1 Introduction

Modern computer architectures are designed to alleviate the bottleneck between processors,
and memory systems, leading to utilization of caches, pipelines and speculation mechanisms.
Such architectures are often used in embedded system design and hence required to satisfy, a
posteriori, stringent timing behavior. The alternative is to design predictable systems, which
focus on building systems with a priori guarantees of timing requirements.

The quest for predictability is a complicated endeavor as all components to build and
execute a system, such as processors, high/low-level languages, compilers, operating systems,
communication systems, etc., can impact the definition and verification of timing requirements.
Designs of predictable systems as well as associated timing analyses identify and circumvent
the sources of non-predictability in various ways: disabling the problematic component(s)
(e.g., a particular shared resource), proposing timewise restrictions (e.g., semantics based on
temporal isolation), using predictable components (e.g., LRU caches) or even straightforwardly

© Mihail Asavoae, Belgacem Ben Hedia, and Mathieu Jan;
licensed under Creative Commons License CC-BY

18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018).
Editor: Florian Brandner; Article No. 2; pp. 2:1–2:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mihail.asavoae@cea.fr
mailto:belgacem.ben-hedia@cea.fr
mailto:mathieu.jan@cea.fr
https://doi.org/10.4230/OASIcs.WCET.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

2:2 Formal Executable Models for Automatic Detection of Timing Anomalies

assuming the predictability. Timing analyses need to overcome various challenges: in single-
cores, the worst-case execution time (WCET) analysis is complicated by the presence of
timing anomalies [11] whereas in multi-cores, the worst-case response time (WCRT) analysis
is hampered by timing compositionality issues [5].

The WCET analysis computes sound and (desirably) tight worst-case execution bounds,
exploring, via convenient abstractions, all the execution paths of a program running on a
computer architecture. Typically, the WCET analysis works on the control-flow graph of the
binary code, augmented with semantic information from both the code (e.g., loop bounds)
and the underlying architecture (e.g., cache hits/misses). The WCET analysis workflow
integrates the results of cache analyses with accurate pipeline modeling to safely search
for the longest execution path. This searching process is complicated by the presence of
timing anomalies as these are non-monotonic behaviors. In essence, a timing anomaly is a
counterintuitive behavior in the sense that the local worst-case timing behavior does not
result in the global worst-case performance.

Formal-based methods, e.g., static analysis or model checking, soundly explore all system
behaviors, while mitigating precision and performance arguments. Formal reasoning could
either evaluate predictability issues of existing systems or guide the construction of predictable
systems. Hence the formal, systematic study of timing anomalies becomes essential. In this
direction, the first formal definition of timing anomaly is proposed in [14]. The contribution
of this paper is to execute this formal definition of a timing anomaly, based on model-checking,
towards the automatic detection of timing anomalies. Our method consists of three phases.
First, we consider formal executable models of particular computer architectures, specified
using the TLA+ language [8]. These models are deterministic and tested for conformance
against actual system behaviors. Second, we systematically enable, directly over the concrete
models, non-deterministic choices (i.e., abstract behaviors) as the necessary conditions to
facilitate the study of timing anomalies. Finally, we employ model checking, using the TLC
tool [18] for TLA+ models, to explore the execution paths of the abstract specification. While
our method for automatic detection of timing anomalies is general, our current investigation is
in its incipient stages. However, we evaluate our technique on standard examples of scheduling
timing anomalies while using models of resource contention in superscalar processors.

We organize this paper as follows. In Section 5, we review some related work and in
Section 2, the formal definition of timing anomalies. In Section 3 we briefly introduce the
TLA+ language and present our formal architecture models. In Section 4 we describe the
automatic detection of timing anomalies. We conclude and outline future work in Section 6.

2 Timing Anomalies – Definition and Examples

Essentially, the first formal definition of timing anomalies, in [14], encodes an abstract state
space, constructed with respect to both an architecture and an input program and a property
pattern, expressed with respect to a locality concept. Our proposed method executes this
formal definition, towards an automatic technique for the detection of timing anomalies. Next,
we introduce the ingredients: the running examples and the necessary steps to formalize the
timing anomalies.

We consider as running examples the cases of scheduling timing anomalies introduced
in [16]. The goal is to study policies of resource allocation (e.g., functional units) in superscalar
architectures. Two snapshots of the execution stage of superscalar processors are shown in
Figure 1. On the left side, the resources FU1 and FU2 execute instructions in the program
order, while on the right side, the reservation stations RS11,2 and RS21,2 allow out-of-order

M. Asavoae, B. Ben Hedia, and M. Jan 2:3

Dispatch

FU1 FU2

Dispatch

RS11
RS12

RS21
RS22

FU1 FU2

Figure 1 Snapshot of superscalar processor with: (left) in-order resource allocation for both FUs
and (right), respectively out-of-order resource allocation for both FUs.

execution on both FU1 and FU2. On these platforms we execute program paths of size 4 (i.e.,
instructions A to D with the alphabetical order giving the program order), under certain
allocation constraints, as in Figure 2.

The architecture model in Figure 1 (left) is without reservation stations and the resource
allocation is dynamically decided for instructions like A, based on resource availability. The
resource FU1 is the default execution unit for such instructions in the case when both FUs
are available. Consequently, the program execution is guided by the program order. The
architecture model in Figure 1 (right) imposes different constraints on the set of instructions
with respect to resources. As supported by the constraints in Figure 2 (right), each instruction
could be executed on a single type of resource. The resources FU1 and FU2 can also execute
instructions in out-of-order fashion, based on the content of their respective reservation
stations. Consequently, the program execution is guided by the data dependencies between
instructions. In our example, the instructions B and C are independent and could be executed
in any order, whereas instructions A and B are always executed in the program order.

Examples of scheduling timing anomalies for the architecture models with in-order and
out-of-order resource allocation are shown in Figure 2 (left) and respectively (right). In both
cases, a pivot instruction with variable latency causes a timing anomaly. For example, a
faster execution of instruction B frees FU2 for the execution of instruction C. It further delays
the instruction D whose execution is conditioned by the availability of the same resource
FU2, in Figure 2 (left).

The formal definition of timing anomalies requires the following concepts:
(1) an (abstract) architecture model to provide the settings of the execution environment;
(2) a notion of locality to express local worst-case behaviors;
(3) a path mapping as a labeling function to correlate the program with the architecture.

Each of the three points requires specific assumptions. For example, the key ingredient
towards the construction of a convenient architecture model - point (1) is to enable non-
deterministic choices as a standard method to compactly encode system behaviors. The code
and the related input data are also part of the system (abstract) state. Point (2) defines
the locality as the sequence of abstract system states which satisfies particular constraints
with respect to system behaviors. For example, a system execution path is studied locally –
between two points of interest – (e.g., when instruction A is in a particular pipeline stage)

WCET 2018

2:4 Formal Executable Models for Automatic Detection of Timing Anomalies

1 2 3 4 5 6 7 8

FU1

FU2

FU1

FU2

A

B C D

A

B

C

D

A ∈ {FU1, FU2}
B ∈ {FU1, FU2}

C ∈ {FU1, FU2} D ∈ {FU2}

1 2 3 4 5 6 7 8 9 10

FU1

FU2

FU1

FU2

A

B C

D

A

C

D

B

A ∈ {FU1} B ∈ {FU2}
C ∈ {FU2} D ∈ {FU1}

Figure 2 Example of scheduling timing anomalies from [16], with out-of-order (left) and in-order
(right) resource allocation, under given allocation constraints for instructions A to D.

with respect to locality constraints (e.g., the interaction between A and all other possible
combinations of instructions). Lastly, point (3) is necessary to interpret the search for timing
anomalies on the specified architecture system. It relates the instruction-level view given by
the program paths with the cycle-level view of the architecture execution paths.

Our approach towards the automatic detection of timing anomalies encodes this formaliz-
ation. Briefly, we address point (1) when we define, using the TLA+ specification language,
a cycle-accurate computer architecture specification; we refer to it as the concrete archi-
tecture model. Furthermore, we abstract this concrete model as we encode the necessary
non-deterministic choices; we refer to the new specification as the abstract architecture
model. Then, we address point (2) when we consider the locality as defined by a particular
pipeline stage, hence the locality is a priori encoded by our abstract/concrete architecture
state. The locality constraints are either directly represented in the model (as constraints on
the input data/program) or computed during the exploration of the state space. Finally, we
directly insert the labeling function, i.e., point (3) in the abstract architecture model, more
specifically in the code component of the abstract model state. We elaborate next on all
these points.

3 Design of Formal Executable Models

Our modeling for automatic detection of timing anomalies fully adheres to the formalization
steps (1) – (3), which are required by the definition of timing anomalies from [14]. Our
concrete and abstract models are TLA+ specifications.

We choose the TLA+ modeling language because of several semantic considerations.
TLA+ features an advanced module system based on interfaces, parameters, local declarations
etc. which allow accurate construction of (concrete and abstract) architecture models from
simpler components. The modeling language also features untyped set theory (and predicate
logic) to specify rich state information. Abstraction in TLA+ is ensured by temporal
existential quantification which hides unnecessary state elements. Refinement in TLA+ is
ensured by supporting stuttering invariance (i.e., execution steps that do not change the
values of state variables of interest) which allows reasoning about system paths on different
levels of granularity. All the aforementioned concepts establish TLA+ as an unified logical

M. Asavoae, B. Ben Hedia, and M. Jan 2:5

language designed to specify both systems and their properties, as well as verifying, using the
same specification, both a system and its possible refinements. This latter characteristics of
TLA+ is particularly attractive for our investigation towards automatic detection of timing
anomalies as our framework is based on a single formal specification (i.e., of the concrete
hardware model), which is then systematically refined. We recommend [12] for an in-depth
and comprehensive survey of the TLA+ language semantics and its applications. Next,
we introduce several elements of the TLA+ language and we exemplify their usage with
snapshots of our formal models.

A TLA+ specification is two-tiered. The first level contains state and state transition
formulas (i.e., system specification) and the second level contains temporal formulas evaluated
on sequences of states (i.e., system properties). A particularity of the TLA+ language is the
transition predicate (also called action) which establishes a relation between variable values
in the current and next states. For example, if x is a state variable, the action x’ = x + 1
means that the next value of x (the primed variant) is the current value of x (the unprimed
variant) incremented by 1. Whenever state elements are unmodified by a transition, for
example x’ = x, the TLA+ notation is UNCHANGED x. If x is a record with two fields fst
and snd, an individual field is accessed with “.”, for example x.fst. As such, the TLA+ action
x’ = [x EXCEPT!.fst = 1] means that only the value of fst of x is modified in the next
state. When a TLA+ module X with an internal state variable x and a transition Act is
used in another module, the operator “!” gives access to each, e.g., X!x and respectively
X!Act. Finally, we denote by 〈 S 〉 the state configuration of an TLA+ specification Spec
(i.e., S is the set of semantic entities that are necessary to define the behaviors of Spec).

(1) The hardware model – concrete

We define the two instances of superscalar architectures from [16] and for each instance we
define a concrete model which is then systematically transformed into an abstract model.
The formal computer architecture model is developed in a modular fashion, according to the
principles described in [9], using the TLA+ module system.

The state configuration C of our concrete architecture model consists of two state com-
ponents: the architecture Arch and the input program Code.

C = 〈 Arch, Code 〉 .

The concrete Arch consists of several variables to represent the pipeline stages; these variables
are updated cycle-wise based on the content of their inner states and the necessary signals
from the memory system, as in [16]. Since we aim for the detection of scheduling timing
anomalies, we implicitly represent the signals from the memory system, while fully specifying
the execution pipeline stage and an instruction progress through the pipeline. The Arch

state configuration for the architecture model in Figure 1 (left) is that of a standard 5-stage
pipeline:

Arch = 〈 _IF, _ID, _EX, _MEM, _WB 〉 .

whereas for the architecture model in Figure 1 (right) is a 6-stage pipeline, with an extra
instruction issue stage. The names for the pipeline stages stand for instruction fetch (_IF),
instruction decode (_ID), execute (_EX), memory access (_MEM) and write-back (_WB).

Both pipeline models are dual-issue. Structurally, our architecture models are increment-
ally built from simple parameterized modules of buffers and functional units, which are
instantiated into pipeline stages. Each functional unit and internal buffers of the pipeline

WCET 2018

2:6 Formal Executable Models for Automatic Detection of Timing Anomalies

AcquireFU1 ,
∧ condAcquireFU1
∧ IF isCurrIns

(1) THEN _IF ′ = [_IF EXCEPT !.buff = FBUFF !Set(code.currIns)]
ELSE _IF ′ = [_IF EXCEPT !.buff = FBUFF !Reset]
∧_ID′ = updateID (_ID)
∧_EX ′ = [_EX EXCEPT !.fu1 = FU1!Acquire(_ID.buff.instr)]
∧_MEM ′ = updateMEM (_MEM)
∧_WB′ = updateWB (_WB)
∧_code′ = updateCode (code)
∧ cycle′ = updateClk (cycle)

∧ IF isCurrIns
(2) THEN ∃ d ∈ code.currInstr.tvar:

_IF ′ = [_IF EXCEPT !.buff = FBUFF !Set(code.currIns, d)]
ELSE _IF ′ = [_IF EXCEPT !.buff = FBUFF !Reset]

Figure 3 The TLA+ rule for acquiring the functional unit FU1. With (1), the rule presents the
concrete architecture behavior. When (1) is replaced by (2), the rule shows the abstract architecture
behavior when exploiting timing variations for the current instruction.

stages provide an interface for theirs operations, accessible via the “!” operators. Semantic-
ally, our architecture model for the out-of-order resource allocation supports the Tomasulo
algorithm, as in [1], whereas the in-order resource allocation is driven by the program order.

Let us briefly explain our concrete architecture model using an excerpt of the TLA+
formal model, in Figure 3. We recall that our objective is to study scheduling timing
anomalies which manifest when instructions are deployed for functional units in the execute
stage of the pipeline. This scheduling mechanism consists of operations of acquire and/or
release of one or both functional units (i.e., in short FUs). Figure 3 presents the specification
of acquiring the functional unit FU1, a rule named AcquireFU1. Other TLA+ rules specify
pipeline stalls, flushes, simultaneous acquires of both FUs, etc. Each rule is guarded by a
predicate (e.g., condAcquireFU1) and contains the actions to update the Arch and Code (i.e.,
variable _code) parts of the concrete configuration, as well as the clock variable (i.e., cycle).
In our example, the guard condAcquireFU1 is a predicate which establishes the necessary
conditions to activate the rule AcquireFU1:

condAcquireFU1 , ∧ ¬ emptyID ∧ isAvaiFU(_ID.buff.instr, FU1!fname)
∧ (emptyEX ∨ (emptyFU1 ∧ FU2!inExec(_EX.fu2)))

The first line ensures that there is an instruction in the decode stage which is ready and
needs to be executed by FU1 as isAvaiFU checks whether instruction instr from the decode
stage can be executed over the functional unit FU1. The second line ensures that there is
not another case of acquire or release of either FUs at the same time.

When condAcquireFU1 is true, the new content of the instruction stage (emphasized by
(1)), _IF’, retrieves a new instruction, if it exists (variable isCurrIns), and sets the internal
state of this stage (using the accessor “.buff”) to this instruction. If a new instruction is not
available, the new internal state of the instruction stage is reset, i.e. it is emptied, using
the operation Reset. The new content of the execute stage, _EX’, is modified only for the
first functional unit (using the accessor “.fu1”) with an instruction from the decode stage

M. Asavoae, B. Ben Hedia, and M. Jan 2:7

(i.e., _ID.buff.instr). In a similar way, the other pipeline stages (decode, memory access and
write-back) and the code update their next state, via the corresponding update functions.
Finally, the clock cycle advances using the updateClk function.

Let us recall that the input program is represented in the concrete state configuration C
by the state component Code. In our TLA+ models, the program is represented by its set of
program paths and each path is a sequence of instructions. An instruction is represented by
several parameters: the program counter, the execution resources (as the set of necessary
FUs), the latencies (the concrete representation considers exactly one latency per instruction),
the dependencies with respect to other instructions and finally the temporal availability (in
this latter case, it is borrowed from the task-oriented model of computation). Whereas our
instruction representation does not model a particular instruction set architecture (ISA), it
contains all the necessary semantic ingredients to capture existing ISAs semantics. Figure 2
shows examples of instructions respecting the properties of our instruction model.

The concrete architecture models are cycle-accurate and deterministic. The part Code of
C is instantiated with concrete program paths and executed using the TLC model checker.
We rely on the TLC statistics on the state space to assess the determinism aspect of our
architecture models and to drive, whenever necessary, model refinements. We extensively test
both concrete models to gain confidence in their correct functionality and determinism. The
abstract models are constructed directly over the concrete models, e.g., replacing predicate
(1) with (2) in Figure 3. We detail this procedure in the next section.

(2) The locality concept

It is accepted [11, 14] that locality matches an instruction progress through the pipeline
stages. The notion of locality is thus formalized as a path fragment of interest, for any
execution path in the model. The particular example of scheduling timing anomalies, which
appear in processors due to contention for functional units defines the locality level as the
execution pipeline stage, i.e. the _EX stage in our pipeline models.

The locality constraints are convex predicates which hold locally – on path fragments of
interest. They could be (a) pre-determined and encoded in the program part of the state
configuration, e.g., in our case in Code, or (b) dynamically calculated during the model
execution. We experiment with both variants and henceforward and without the loss of
generality, our locality constraints are given, i.e., we assume (a). Precisely, we work with
convex predicates in the form of single linear inequalities where an instruction latency is
bounded by a pre-computed value. For example, in Figure 2 (left), the execution time for B
is bounded by 1 for the first execution and by 3 for the second execution.

(3) The labeling function

We use the Arch configuration to construct cycle-accurate architecture models. It is necessary
to relate them to the instruction-level information presented in the Code configuration. We
address this aspect directly in the concrete architecture model, as our method is centered
around the program path. Hence, Code encodes all the program paths [10] which are
evaluated path by path. In the general form, our code-related configuration is:

Code = 〈 [Paths], CurrPath 〉.

with the input program and data in [Paths] and the current program path in CurrPath.
Since the study of timing anomalies require input variations at the path level, we assume,
without loss of generality, that a simplified Code contains only CurrPath. Structurally, a

WCET 2018

2:8 Formal Executable Models for Automatic Detection of Timing Anomalies

program path is encoded as a list of instructions. Semantically, each instruction advances in
the program order, given by the program counter, through the pipeline stages until Execute,
where a corresponding resource allocation takes place. TLA+ facilitates a flexible encoding
of path-related variations with its set-theoretic semantics. For example, the latency 3 of
instruction B from Figure 2 is adequately represented in CurrPath by a singleton.

The design of concrete architecture models follows the principles of the formal definition
of timing anomalies: the architecture is deterministic and cycle accurate, the code is part
of the model; the program paths are evaluated one by one etc. Over such infrastructures,
we systematically construct abstract models which are checked for timing anomalies. We
present next how we perform abstractions over the concrete model and how we use model
checking for the detection of timing anomalies.

4 Detection of Timing Anomalies

Generally, a TLA+ specification Spec consists of the definition of the initial state Init and a
state transformer Trans applied over the state variables, e.g., in our case C:

Spec == Init ∧� TransC .

where � is the temporal operator “always”. Trans contains guarded transitions for pipeline
stalls, flushes, single acquire of FU1 or FU2, simultaneous acquires of both FUs, simultaneous
acquire of FU1 and release of FU2 etc.

(1) The hardware model – abstract

We construct an abstract architecture model which augments the concrete model Spec with
non-deterministic choices. The abstraction creates “diamonds” in the specification which are
to be explored with the model checker. The abstract state configuration, A refines C in both
architecture AArch and program ACode components:

A = 〈 AArch, ACode 〉 .

For example, variable latency {1, 3} of instruction B in Figure 2 (left) form a diamond in
the abstract architecture model. Similar variations lead to have CurrPath of the ACode

configuration encoding sets of concrete paths. The state transformer Trans′ associated to
AArch extends its concrete counterpart based on Arch to fully explore these sets of paths.
For example, for the aforementioned instruction B, the latency is non-deterministically chosen
between 1 and 3, when applicable (i.e., in certain states of interest). The model checking
explores both possibilities of the new abstract architecture model – Spec′:

Spec′ == Init ∧� Trans′
A.

The abstract architecture model includes the path-level variations, as presented in
Figure 3 on rule AcquireFU1 where predicate (2) replaces (1). This particular rule shows
two important aspects of our abstract model: it is constructed directly over the concrete
model and the abstraction points – the “diamonds” – are visible in the specification. This
latter point opens the possibility of exploring the diamonds in a guided way, which establishes
the third step of our systematic framework for automatic detection of timing anomalies.

A timing anomaly is characterized by a pair of execution paths because it “compares”
local worst-case variations with respect to global worst-cases. For example, let us consider
two execution paths, as in Figure 4 (left), where local variations ∆1 and respectively ∆2,

M. Asavoae, B. Ben Hedia, and M. Jan 2:9

∆1 ∆2

ET1 ET2

∆1

∆2

Figure 4 Abstraction diamond (left) and timing anomaly on the search tree (right).

with ∆1 > ∆2 result in global execution times ET1 and respectively ET2, with ET1 < ET2.
Intuitively, automated detection of timing anomalies over the abstract model Spec′ means
searching for such pairs of execution paths with counter-intuitive behavior. Now, it remains
to encode this property in TLA+ and launch the TLC model checker to search for timing
anomalies. A simple way to encode this property is as an invariant of the form:

PropT A = � ¬ (∆1 > ∆2 ∧ ET1 < ET2)

and the property is checked on Spec′.
We accommodate such a formulation over a transformed search tree, as in Figure 4 (right),

where, intuitively, each path consists of two different paths of the original encoding of the
search space. More simply, a diamond is fully unfolded along a single path, while respecting
the initial conditions of its cases. For example, the two execution paths in Figure 2 (left)
form a single execution path in the new search tree, with ∆1 = 1, ∆2 = 3, ET1 = 8 and
ET2 = 7. This new search tree is constructed on-the-fly and the detection procedure stops
when the first “long” path which violates the property PropT A is found. Intuitively, the
diamond unfolding corresponds to a simple observer automaton which toggles between two
states (e.g., with a set/reset-like semantics).

We guide the model checker to find “long” paths, implementing a mechanism to track the
exploration of all diamonds. We opt to encode this mechanism directly in the abstract model
(it can also be automatically generated for a given abstract model). As such, we extend the
abstract configuration A to accommodate the guiding mechanism:

Astate = 〈 AArch, ACode, Guide 〉 .

In its simplest form, Guide monitors the execution, records taken decisions and direct
subsequent executions to the unexplored state space. Precisely, our Guide encodes how to
construct long paths and then how to fully explore the new state space. We address the first
point using a single TLA+ rule which is activated only when the first (red) execution in
Figure 4 (right) terminates and under the same initial conditions, the second (blue) execution
starts. With respect to the second point, our current implementation supports a rudimentary,
though systematic, exploration of all diamonds in our abstract model. For example, if the
set of timing variations of a particular instruction is {2, 4, 5}, Guide explores (in this order)
the diamonds {2, 4}, {2, 5} and {4, 5}. Variations on multiple instructions are handled in

WCET 2018

2:10 Formal Executable Models for Automatic Detection of Timing Anomalies

a similar fashion with the order of diamonds also depending on the instruction program
counters. More refined heuristics to speed-up the model checking (e.g., with interpolation
techniques as in [6]) are left for future work.

We detect (scheduling) timing anomalies like those in Figure 2, from [16]. We experiment
with small scale architecture models, in total around 2K lines of TLA+ specification, upon
which we execute both concrete and abstract program paths. At the architecture level, we
consider two dual-issue pipelines with 5 stages for the in-order functional unit allocation and
respectively with 6 stages for the out-of-order variant, with precise modeling of the instruction
advancement in the pipelines and with complete specification of resource contention in the
execution stages. We also perform preliminary experimentation with variants of the in-order
architecture models based on pipeline stalls, as indicated in [4]. At the program level, we
consider program paths which activate the worst-case contention scenarios for the model
in Figure 1 (right), when all reservation stations and functional units are full. Next, we
elaborate on some experimentation, conducted on a quad-core Intel i7 at 2.8GHz with 16GB
RAM and with the TLA+ Toolbox using the TLC model checker version 2.19.

Let us exemplify with the following test scenario, named T , upon which we construct
several test variants. At the architecture level, we consider the 5-stage pipeline with in-order
functional unit allocation. At the code level, we use a program path of size 20, with multiple
variations for instruction latencies and resource allocations (actual statistics on the size of
the both feasible and infeasible search space are subsequently given). We investigated several
aspects of our approach: (a) the concrete executions are deterministic, (b) the absence of
timing anomalies in T and finally (c) the detection of timing anomalies in methodically-
constructed variants of T , using the guide mechanism. The TLC model checker provides
several statistics on the search space, notably the problem diameter, the number of existing
states and the number of distinct states. Our extensive evaluation of (a), on concrete
executions (i.e., the instruction latencies are given as singletons) of T end, after 2-3 seconds,
with identical numbers on all these parameters. The absence of timing anomalies (b) requires
full exploration of the state space of T . As such, we employ bounded model checking (with
a bound value of 100) and prove that T does not have timing anomalies in approximately 7
hours and with a maximum memory consumption of 39GB. The statistics on the entire state
space of T include 839M states found with 835M distinct states (i.e., around 0.5% duplicated
states). Finally, we address (c) the detection of timing anomalies in T , using Guide. We
produce several variants of T , “inserting” timing anomalies (as variations of instruction
latencies) into the test scenario. For example, small timing variations (i.e., |∆1 −∆2| ≤ 2
cycles), at various path locations (i.e., program counters of 5, 14 and 20) cause timing
anomalies with ET s variations of up to 20 cycles. The timing anomalies are found as ”long”
paths in the search tree of Figure 4 (right) using bounded model checking with the bound
value of 1000. The running time varies between 1-2 minutes, with around 10M states covered.
We also experimented with variants of T with well-concealed timing anomalies, yielding a
running time time of around 1 hour and up to 200M explored states.

We address next some advantages and weaknesses of our detection algorithm. We present
a general method, which it is not restricted to scheduling timing anomalies, as exemplified
here. Because our approach is constructed over a concrete architecture model, it is possible to
subject the detection of timing anomalies to guided, but non-exhaustive, heuristics (as they
were firstly observed in [11]). Also, our detection procedure could be tuned to compute the
local variations (deltas) of [13]. Finally, our formal architecture models could be adapted to
experiment with newly proposed and/or predictability-driven architecture modifications [4].
On the other hand, our approach relies on two daunting tasks: the construction of the formal

M. Asavoae, B. Ben Hedia, and M. Jan 2:11

infrastructure and the handling of the state space explosion. While we discussed possible
approaches towards the latter, building a cycle accurate formal executable architecture
remains complicated. A possible solution is to use already constructed formal models,
another is to automatically extract them from existing HDL designs (as suggested in [1, 3]).

5 Related Works

The first assessment of timing anomalies in the context of the WCET analysis is presented in
[11]. It reports timing anomalies caused by caches (and identified in [14] as speculation timing
anomalies) in out-of-order architectures. The first formal definition of timing anomalies is
proposed in [14]. We elaborate on its technical aspects in Section 2 as it establishes the
foundation of our work. A class of timing anomalies (and identified in [14] as scheduling
timing anomalies) is studied in [16] on two superscalar models with in-order and respectively
out-of-order resource allocation. The work in [2] presents an actual computer architecture –
the LEON2 processor – with timing anomalies (i.e., speculation timing anomalies).

Our approach shares similarities with two other approaches [1, 3] on the formal investiga-
tion of timing anomalies. Briefly, the work in [1] focuses on proving the absence of timing
anomalies using bounded model checking, whereas the work in [3] combines static analysis
with measurement-based techniques towards detection of timing anomalies. Both approaches,
as well as ours, follow a similar pattern – the construction of a convenient representation
of the abstract architecture state space and work, as in our case, under the assumption
that the input program has a finite number of paths. With respect to [1], our framework
targets the detection of timing anomalies, hence our Guide (through simple) advances on
the straightforward model-checking algorithm of [1]. Moreover, our framework checks the
presence of timing anomalies on a single model and with the property PropT A given as an
invariant, whereas the technique in [1] requires two models out of which one is assumed
without timing anomalies and with a property expressed over the execution paths of both
models. Also, the work in [1] focuses on identification of timing anomalies independently from
a given program, but no complexity analysis or runtime performance results are reported
and no specifics of the formal models are presented. We instead focus on the identification
of code-specific scheduling timing anomalies and provide details on the formal models in
Sections 3 and 4. Note that we could also add constraints in our work to upgrade to a
code-independent problem. However, we believe that the code-specific problem is more
interesting from an industrial point of view as most hardware architectures are subject to
timing anomalies. Identifying where within a code such anomalous behavior can happen
are useful to later insert mitigation mechanisms. With respect to [3] which checks timing
variations of the worst-case path (computed with an WCET analyzer) using program runs
on the actual architecture, our approach directly integrates the concrete architecture model
in order to support such runs. The approach in [3] constructs a prediction graph which is a
compact representation of instruction-level simulations of program paths. Whereas the work
in [3], though extensive, relies on non-exhaustive investigation of the architecture, ours is
able to provide formal guarantees with respect to it (though subjected to scalability issues).

The work [11] which introduces timing anomalies in context of the WCET analysis also
proposes a simple code modification to eliminate their effects. An alternative approach,
in [13] explores the abstract hardware state space using pre-computed local worst-cases
called deltas. [7] proposes to speed-up WCET analyses by parallelizing their computations.
However, this computation methodology generates timing anomalies that are not necessarily

WCET 2018

2:12 Formal Executable Models for Automatic Detection of Timing Anomalies

present in the underlying architecture model. Lastly, the compositional timing analyses for
multicores, from [4], address the problem of timing anomalies with sound techniques, ranging
from pipeline stalls to overapproximation of local effects with integer linear programming.

Automatic detection of timing anomalies supports the design of predictable/compositional
systems as, according to [15], the timing anomalies are “at the heart of unpredictability at
processor level”. The timing anomalies could have bounded or unbounded effects (also known
as domino effects), leading to a classification of computer architectures [17] into: fully timing
compositional (i.e., without timing anomalies), compositional with constant bounded effects
(i.e., only with bounded timing anomalies) and non-compositional (i.e., with domino effects).

6 Conclusions and Future Work

We presented a methodology to automatically detect timing anomalies based on formal models
of computer architectures. Our proposal is systematic; it starts with a concrete architecture
model, thoroughly tested to gain confidence in its concrete semantics. Then, we constructed
abstractions, which are necessary to facilitate the study of timing anomalies, directly over
the concrete architecture model. Finally, we described a detection procedure based on guided
model checking. Our preliminary investigation considered a simple transformation of the
search space to check for timing anomalies expressed as invariants.

New designs of either whole systems or specific components claim to be free of timing
anomalies and it is important to rely on formal techniques to validate their behavior. Our
preliminary study remains to be developed in several directions. We leave as our future work
a similar investigation of timing anomalies due to prefetching, towards our goal for complete
architecture models and the development of heuristic techniques to accelerate the model
checking phase (e.g., using cuts, as in [6]).

References
1 J. Eisinger, I. Polian, B. Becker, A. Metzner, S. Thesing, and R. Wilhelm. Automatic

identification of timing anomalies for cycle-accurate worst-case execution time analysis. In
DDECS, pages 15–20, 2006.

2 G. Gebhard. Timing anomalies reloaded. In WCET, pages 1–10, 2010.
3 G. Gebhard. Static timing analysis tool validation in the presence of timing anomalies.

PhD thesis, Saarland University, 2013.
4 S. Hahn, M. Jacobs, and J. Reineke. Enabling compositionality for multicore timing ana-

lysis. In RTNS, pages 299–308, 2016.
5 S. Hahn, J. Reineke, and R. Wilhelm. Towards compositionality in execution time analysis:

Definition and challenges. SIGBED Rev., 12(1):28–36, 2015.
6 J. Henry, M. Asavoae, D. Monniaux, and C. Maiza. How to compute worst-case execution

time by optimization modulo theory and a clever encoding of program semantics. In LCTES,
pages 43–52, 2014.

7 R. Kirner, A. Kadlec, and P. Puschner. Precise worst-case execution time analysis for
processors with timing anomalies. In ECRTS, pages 119–128, 2009.

8 L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Addison-Wesley Longman Publishing Co., Inc., 2002.

9 M. Langenbach, S. Thesing, and R. Heckmann. Pipeline modeling for timing analysis. In
SAS, pages 294–309, 2002.

10 J. Larus. Whole program paths. In PLDI, pages 259–269, 1999.
11 T. Lundqvist and P. Stenström. Timing anomalies in dynamically scheduled micropro-

cessors. In RTSS, pages 12–21, 1999.

M. Asavoae, B. Ben Hedia, and M. Jan 2:13

12 S. Merz. On the logic of TLA+. Comp. and Artificial Intelligence, 22(3-4):351–379, 2003.
13 J. Reineke and R. Sen. Sound and efficient WCET analysis in the presence of timing

anomalies. In WCET, 2009.
14 J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger, and B. Becker. A

definition and classification of timing anomalies. In WCET, 2006.
15 L. Thiele and R. Wilhelm. Design for timing predictability. Real-Time Systems, 28(2-

3):157–177, 2004.
16 I. Wenzel, R. Kirner, P. Puschner, and B. Rieder. Principles of timing anomalies in super-

scalar processors. In QSIC, pages 295–306, 2005.
17 R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and C. Ferdinand. Memory

hierarchies, pipelines, and buses for future architectures in time-critical embedded systems.
IEEE Trans. on CAD of Integrated Circuits and Systems, 28(7):966–978, 2009.

18 Y. Yu, P. Manolios, and L. Lamport. Model checking TLA+ specifications. In CHARME,
pages 54–66, 1999.

WCET 2018

	Introduction
	Timing Anomalies – Definition and Examples
	Design of Formal Executable Models
	Detection of Timing Anomalies
	Related Works
	Conclusions and Future Work

