
Reducing Timing Interferences in Real-Time
Applications Running on Multicore Architectures
Thomas Carle
Université Paul Sabatier, IRIT, CNRS
Toulouse, France
thomas.carle@irit.fr

Hugues Cassé
Université Paul Sabatier, IRIT, CNRS
Toulouse, France
casse@irit.fr

Abstract
We introduce a unified wcet analysis and scheduling framework for real-time applications de-
ployed on multicore architectures. Our method does not follow a particular programming model,
meaning that any piece of existing code (in particular legacy) can be re-used, and aims at re-
ducing automatically the worst-case number of timing interferences between tasks. Our method
is based on the notion of Time Interest Points (tips), which are instructions that can generate
and/or suffer from timing interferences. We show how such points can be extracted from the
binary code of applications and selected prior to performing the wcet analysis. We then rep-
resent real-time tasks as sequences of time intervals separated by tips, and schedule those tasks
so that the overall makespan (including the potential timing penalties incurred by interferences)
is minimized. This scheduling phase is performed using an Integer Linear Programming (ilp)
solver. Preliminary results on state-of-the-art benchmarks show promising results and pave the
way for future extensions of the model and optimizations.

2012 ACM Subject Classification Software and its engineering → Automated static analysis

Keywords and phrases Multicore architecture, WCET, Time Interest Points

Digital Object Identifier 10.4230/OASIcs.WCET.2018.3

1 Introduction

The advent of multicore architectures in embedded real-time systems raises multiple challenges
for the community. For single-task (single-threaded) applications running on single-core
architectures, the computation of safe-yet-precise Worst-Case Execution Time (wcet) bounds
is a mature research domain, in which the complexity of hardware acceleration mechanisms
(e.g. branch predictors) and of programs semantical properties (e.g. infeasible execution paths)
must be mitigated in the analysis in order for the problem to remain tractable. On single-
core machines, using preemptions to implement multi-task applications additionally incurs
Cache-Related Preemption Delays (crpds) [2]: since multiple tasks share the instruction and
data caches, a preemptive task can invalidate cache lines still needed by preempted tasks.
This leads to additional timing penalties that were not present in the analysis of single-task
applications.

For applications running on multicore architectures, deriving wcet bounds for the tasks
running on each core becomes even more complex. Indeed, logically independent tasks
can cause or suffer from timing interferences induced by the execution of tasks running
simultaneously on other cores. For architectures where multiple cores share caches, the same

© Thomas Carle and Hugues Cassé;
licensed under Creative Commons License CC-BY

18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018).
Editor: Florian Brandner; Article No. 3; pp. 3:1–3:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thomas.carle@irit.fr
mailto:casse@irit.fr
https://doi.org/10.4230/OASIcs.WCET.2018.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


3:2 Multicore WCET Analysis using TIPs

effect as crpd can be observed. However, caches are not the only source of contention in
multicore architectures, and subtler timing interferences between tasks can be generated in
other shared elements such as the interconnect.

We consider that closely integrating wcet analysis and Time-Triggered (TT) scheduling
can be a pragmatic and efficient way of coping with this increasing complexity by reducing
the temporal instability of the applications. Existing models [15, 6] have shown that this
approach yielded good results, but they require the analyzed applications to be written in a
particular fashion. On the other hand, we propose a unified, code-analysis centric approach
targetting arbitrary applications, and thus suited for legacy applications. Our technique
analyses each task’s code in isolation, and pinpoints all instructions that can generate or
suffer from timing interferences. We call these particular instructions Time Interest Points
(tips). Our method abstracts each task of the system into a sequence of code segments
delimited by two (not necessarily consecutive) tips. Each segment’s execution duration is
stabilized by injecting a busy-wait loop before the ending tip, directly in the binary code.
Each segment is represented by its duration and the worst number of tips executed on any
control flow path contained in the code of the segment. The objective of our approach is
to schedule the segment sequences according to the real-time (e.g. periods and deadlines)
and functional (data dependencies) constraints of their respective tasks, while reducing the
number of possible timing interferences. In this paper, we propose an ilp formulation of the
scheduling constraints in order to formally expose the problem. Since this paper presents
a preliminary investigation of this model we will only focus on applications composed of
two tasks running at the same frequency, yet the proposed approach can be easily extended
to more general task systems (e.g. multi-periodic dependent tasks). Our approach does
not rely on a particular programming model, and can be used on existing code without
re-writing it. It works at binary level, allowing the analysis and the automatic code injection
in pre-compiled code, and freeing our analysis from any programming language constraint.

This paper is divided as follows: Section 2 gives a presentation of existing work in the
domain, Section 3 formally presents the problem and Section 4 details our method. Finally,
Section 5 provides a proof-of-concept and Section 6 concludes.

2 Related work

2.1 Multicore interference analysis frameworks
Several Worst Case Response Time analysis frameworks [1] for multicore architectures have
been devised in the past years. Their goal is to provide a schedulability criterion for a
multi-task real-time system prior to its deployment, in particular for task systems scheduled
using a non TT policy (e.g. fixed priority or EDF). The objective is to derive an exact or
conservative bound on the number of timing interferences that can occur on each task, and
to apply timing penalties to their wcets accordingly. In [3], the analysis framework is based
on the analysis of all possible execution traces of the task system on a given architecture,
and allows a very high level of precision in the modeling of the architecture components,
raising the concerns of the authors about the complexity of their analysis. Alternatively, the
authors of [14, 16] propose an analysis method based on real-time Calculus for applications
running on multicore architectures: tasks are approximated as sequences of time intervals
containing the minimum and maximum number of potential interferences that can occur for
the task on these intervals. However, to the best of our knowledge, the authors do not provide
methods to obtain such abstractions from actual code. Our method uses an intermediate
representation that is very close to the one defined in [14] and refined in [16]. However our



T. Carle and H. Cassé 3:3

model differs in several points. First, instead of verifying the schedulability of the system,
we use this representation to derive a schedule of the tasks. Second, in our method each
code portion corresponding to a segment in the representation is temporized using busy-wait
loops so that it executes for exactly the segment duration. Finally, our method targets the
general model of multicore architectures with starvation-free interconnects, instead of the
more restricted model of tdma interconnect based architectures of [16].

2.2 Multicore extensions of the PREM model
The PREM [13] model was designed to avoid timing interferences for applications running
on single core architectures connected to peripherals. The main idea is to separate the
application into phases of three types: Read phases perform reads in the memory to preload
the application code and the needed data, Execution phases perform the task calculation
using only the instructions and data present in the cache, and Write phases update the
values of modified variables in the main memory. The phases of the application can then
be statically scheduled so that no Read or Write phase occurs when a peripheral uses the
bus1. This model is extended to multicore architectures with scratchpad memories [15] and
caches [6] by separating each task in three phases (Read/Exec/Write for the rew model or
Acquisition/Execution/Restitution for the aer model) and by scheduling them statically
so that memory phases from two or more cores never happen simultaneously. Each phase
is time-triggered following the pre-computed starting dates. These methods work at the
granularity of tasks, meaning that each task is composed of exactly one Read, one Execution
and one Write phase. The Read (or Acquisition) phase prefetches all the data and instructions
potentially required for the execution of the task in the local L1 cache or scratchpad, even
though they may not be actually needed during the execution. To do so, it must be clear
what data will potentially be read or written, as well as what code may be executed, by the
task. This is defined by the programmer, using for example a system-level language such as
PRELUDE [12] or wrapper functions. Tasks whose memory requirements exceed the capacity
of the cache or scratchpad have to be manually divided into smaller subtasks. By contrast,
our method works at a finer grain level and does not require any programmer’s intervention.

3 Problem setting and formalism

In this section we define the formalism that will be used to describe our model and method
throughout the paper.

3.1 Architecture
Our model focuses on multicore architectures composed of N cores, each of them connected to
a private L1 cache. Each L1 cache is connected to the main memory through a starvation-free
interconnect.

Each core has a programmable timer that can wake up a task sequencer (implementing
a schedule computed off-line) using an interrupt through a direct link (not going through
the shared interconnect).The core can program or rearm the timer through the shared
interconnect. Moreover, each core also has a time stamp counter register tsc_reg (or an
equivalent register) which counts CPU clock cycles with a fine granularity. These architecture
traits are present in commercial off-the-shelf microprocessors such as the Aurix Tricore [10]
or multicore ARMv8A [4].

1 In the PREM model, peripherals such as sensors are allowed to write to the main memory.

WCET 2018



3:4 Multicore WCET Analysis using TIPs

3.2 Real-time tasks
We consider real-time applications modeled under the form of non-preemptive mono-periodic
task systems. Formally, we denote T = {τi|1 ≤ i ≤ n} a task system composed of n tasks.
Each task τi ∈ T is characterized by:

its period2 τi.p ∈ N,
its deadline τi.d ∈ N (when τi.p = τi.d, the task is said to have an implicit deadline),

In the scope of this paper, we assume that each task runs on a separate core: this simplifies
the scheduling ILP system, and at the same time allows us to apply our technique in situations
where interferences are more likely to appear. This model is simple, yet complex enough to
capture the traits of real-time applications with regard to multicore timing interferences.

3.3 WCET Computation
The identification of tips and the proposed scheduling method require not only wcet
computation by static analysis but also intermediate results such as the analysis of the data
cache. To this end, we use the Implicit Path Enumeration Technique (ipet) [11] approach
which is made of three passes: (a) the path analysis, (b) the accelerator mechanism analysis
and (c) the time analysis.

The path analysis consists in parsing all executions of the program. In order to increase
the precision of the analysis, the ipet is performed on the binary form of the program and
therefore, a compact and complete representation of a task is the Control Flow Graph (cfg).
A cfg is a graph G = 〈V,E, ν, ω〉 where the nodes set V is composed of Basic Blocks (bb).
A bb is a sequence of instructions in which only the first instruction can be targeted by
a branch and only the last instruction can be a branch. E ⊆ V × V is the set of edges
representing sequential execution or branches of the program. ν, ω ∈ V are special empty
bbs ensuring that G contains exactly one entry point (ν) and one exit point (ω).

The second analysis (b) aims at estimating the impact of accelerator mechanisms such as
caches or branch predictors: these statistically improve the execution of the program (hit),
but they do not work all the time (miss). A very common approach to support them is to
statically compute abstract states (including all possible hardware states) and to assign a
category representing their behavior. For example, for data caches [7], we distinguish four
categories: Always Hit (AH), Always Miss (AM), Persistent (PE) or Not-Classified (NC).
NC is the most imprecise case and a fall-back when the cache behavior is too complex. PE
is a bit smarter and arises in loops: it means that the first access may cause a miss but the
following accesses will cause hits. Notice that only memory instructions classified as AH are
guaranteed to not generate interferences.

The last pass (c) computes the duration of bbs and weaves together (1) the wcet
expression as the sum of all bbs durations multiplied by their occurrence counts on the
wcet path, and (2) the constraints representing the execution paths and the effects of the
accelerator mechanisms. The result gives an ilp system whose maximization provides the
wcet.

3.4 TIPsGraph
We define TIPsGraphs as an intermediate representation in order to transform the cfg
representing the control flow of a task into a sequence of time intervals representing the
timing aspects of the task execution.

2 In the scope of this paper we only target mono-periodic systems, so all tasks have the same period.



T. Carle and H. Cassé 3:5

A TIPsGraph for task τi, GT IP s(τi) = {VT IP s(τi), ET IP s(τi)} is composed of tips
t ∈ VT IP s(τi) and of edges e ∈ ET IP s(τi).

tips t ∈ VT IP s(τi) are instructions of task τi which can create or suffer from interferences
in a multicore execution context, or pivot instructions which represent flow disjunctions (i.e.
conditional branches) and junctions in the cfg. Pivot instructions allow our algorithm to
encapsulate if and loop constructs into a single TIPsGraph edge, and thus to restrain the
complexity of the subsequent ILP system.

Typically, tips can be:
Memory instructions (stores and loads), when the static analysis cannot guarantee that
they will always result in AH,
Memory instructions addressing shared variables, or data residing in a cache block that
can be written by another task,
Instructions for which the static analysis cannot guarantee that they will always result in
a hit in the instruction cache,
Pivot instructions.

Instructions falling in the first and third categories can generate interferences for other
tasks or suffer from interferences from other tasks on the interconnect (e.g. memory bus).
Instructions falling in the second category are subject to interferences due to cache coherence
maintenance. In the scope of this paper, we will focus on instructions falling in the first
and last categories only, although the extraction of TIPsGraphs including tips falling in the
other two categories is performed using the same algorithm. The reason for this restriction
is that increasing the number of tips in the system dramatically complexifies the ilp system
that we use for scheduling. Consequently, for the scope of this paper we consider that the
tasks code is preloaded into the Instruction caches (or equivalently in private ScratchPad
Memories) when the system is powered up.

An edge e ∈ ET IP s(τi) is characterized by:
its source tip instruction e.src ∈ VT IP s(τi),
its destination instruction e.dst ∈ VT IP s(τi),
the worst-case number e.µ of tips encountered on any control-flow path linking e.src to
e.dst,
e.wcet: the wcet of control-flow paths linking e.src to e.dst.

3.5 Temporal segments sequence
Each task τi is represented as a sequence of time intervals (or segments) {(di.j , µi.j)0≤j<ni

}, ni

being the number of segments that compose τi. These sequences are used to generate the ilp
system which ultimately produces the tasks schedule. A time interval tii.j is characterized by
its duration di.j , as well as the worst case number of non-AH memory accesses µi.j performed
during the execution of the segment. An important point is that a segment is characterized
by an exact duration, and not by a wcet: in order to effectively reduce conflicts on the
interconnect through careful scheduling of the tasks, we must know in advance when a
task accesses memory. In order to suppress the temporal instability inherent to unbalanced
control-flow paths and to the conservatism of our wcet estimation technique, stabilization
loops are injected automatically in the binary code before the end of each segment. These
loops poll the tsc_reg of their core until a pre-computed date is reached. Once it has been
reached, the normal execution flow resumes. This technique has been introduced in the
PREM model [13] to stabilize the duration of the whole Execution phase of each task.

WCET 2018



3:6 Multicore WCET Analysis using TIPs

Figure 1 Example of graph extraction for
a linear sequence of bbs.

Figure 2 Example of graph extraction for
a non-linear control structure.

The segments are straightforwardly obtained from a TIPsGraph by translating each edge
in the graph into a segment.

4 Multicore WCET analysis using TIPs

In this section, we describe how TIPsGraphs are extracted from the cfg of tasks and then
transformed into sequences of temporal segments. We also explain how the ilp scheduling
system is generated from a set of temporal segments sequences.

4.1 Extracting a TIPsGraph from the CFG of a task
The extraction of the TIPsGraph of a task τi is performed by exploring the task’s cfg from
the entry point to the exit point. During this exploration, the extraction algorithm can be in
one of two situations: either it is exploring a linear sequence of bbs without pivot instruction,
or it has reached a pivot which marks a disjunction in the control flow. In this second case,
a subprocedure looks for the matching junction in the graph and creates an edge between
the disjuncting pivot and its matching join pivot (see 4.1.2).

4.1.1 Linear sequence of Basic Blocks
As long as the exploration procedure has not encountered a pivot instruction, it goes
through the instructions of the program in sequence. If an instruction inst is a memory
instruction (str/ldr/stm/ldm in ARM instruction set) which is not guaranteed to result
in a hit (non-AH) in the data cache, the procedure creates a corresponding tip new_TIP
in VT IP s(τi), and an edge e in ET IP s(τi) from the last encountered tip last_TIP to the
current tip, with e.µ = 0 since no memory operation is performed between the two tips,
and e.wcet equal to the wcet of the code portion between last_TIP and new_TIP . In
order to reduce the number of extracted tips, the procedure then regroups all non-AH
memory instructions directly following new_TIP in the code as part of the same tip (if
such instructions are present). It computes the number µ′ of all non-AH memory accesses
performed by the instruction(s) grouped in the tip, as well as the wcet of the corresponding
instruction(s) wcet′, and creates an edge e′, in which e′.src = e′.dst = new_TIP , e′.µ = µ′

and e′.wcet = wcet′. This self-edge looping on the tip accounts for the duration of
the instruction(s) represented by the tip, which generate traffic on the interconnect. The
procedure then resumes the exploration of the instructions in sequence. Figure 1 illustrates



T. Carle and H. Cassé 3:7

this process: the boxes on the left represent bbs in the cfg of a task, and the graph in the
right is the part of the TIPsGraph corresponding to this part of the cfg. The str instruction
in the top is analyzed as non-AH, so a tip (a node) is created in the TIPsGraph. The
self-edge on this tip is labeled with µ = 1 because the str instruction only performs one
non-AH memory access. The wcet label for this edge corresponds to the wcet of this str
instruction3. The next non-AH memory access found by the procedure is made by the ldmfd
instruction at the bottom. A tip is added to represent this instruction in the TIPsGraph,
and an edge links it to the previous tip.

If a pivot instruction p is reached, the procedure creates a corresponding tip in VT IP s(τi),
as well as an edge e from the last encountered tip to p, with e.µ = 0 and e.WCET =
WCET (last_TIP, p). The procedure then follows the algorithm described in the next
section. Finally, when the procedure reaches the end of the cfg, it returns GT IP s(τi).

4.1.2 Non-linear control structures
When a pivot instruction p is reached, it necessarily marks a disjunction in the control
flow (an if branch or the start of a loop). In order to analyze the disjoint part of the cfg
as a whole, the procedure first looks for the unique pivot instruction p′ that marks the
corresponding junction of the control flow paths, and puts it in VT IP s(τi). This instruction
is the first instruction of the first bb that (a) is a (direct or transitive successor of the bb
containing p and (b) dominates the exit point (ω) of the cfg. Then the procedure explores
all control flow paths between p and p′, in order to find the maximum number of non-AH
memory instructions µmax present on any path linking p to p′. Finally, it creates an edge
e in ET IP s(τi), with e.src = p, e.dst = p′, e.µ = µmax and e.wcet = wcet(p, p′). The
procedure then resumes the linear exploration of the cfg described in Section 4.1.1.

The exploration of non-linear control structures is illustrated by Figure 2. The bhi
instruction is a pivot which opens a disjoint section of the CFG. The procedure adds a tip
corresponding to this pivot in the TIPsGraph. After this, it looks for the first instruction
after the disjoint portion of the cfg (the first instruction of the bottom bb) and creates a
corresponding tip. Then an analysis is performed on the two paths: the maximum number
of non-AH memory accesses on either paths is 2: the left path executes a ldmfd instruction
performing two memory accesses, both of which were labeled non-AH by the cache analysis.
On the other hand, the path on the right makes no non-AH memory access. The wcet of
the section between the bhi instruction and the first instruction in the bb at the bottom was
found to be 24 time units. This wcet does not necessarily correspond to the left path.

4.2 From a TIPsGraph to a temporal segments sequence
Once a TIPsGraph containing all tips of a task has been extracted, its translation into a
sequence of temporal segments is straightforward: the graph is traversed from its starting
node to its end node, passing by each edge exactly once, with a priority given to self-edges.
When traversing an edge e, it is translated into a segment s with s.d = e.WCET and
s.µ = e.µ. Figure 3 shows how a segment sequence is obtained from the TIPsGraph of a
task τ1: the TIPsGraph section considered in this example starts by a tip on the left. The
first edge e0 to be translated into a segment is a self-edge: a segment ti1.0 is created with

3 In the figures, the wcets are given in arbitrary time units.

WCET 2018



3:8 Multicore WCET Analysis using TIPs

Figure 3 Example of temporal segment sequence extraction.

d1.0 = e0.WCET = 2 and µ1.0 = e0.µ = 1. Then a second segment ti1.1 with µ1.1 = 0 is
extracted from edge e1, and so on. In the figure, the density of the color of the segments
reflects the number of tips they contain: the higher the µ, the darker the segment.

We will now present how such sets of sequences are translated into ILP variables and
constraints in order to schedule the task system.

4.3 Multicore scheduling using ILP
In this section, we present the variables and constraints that are used to model our scheduling
problem in ilp. Multiple objective functions can be used, optimizing different aspects, but
overall the constraints presented here remain the same regardless of the optimization criterion.
Finally, some constraints make use of ∞ : these constraints are encoded using a sufficiently
large integer number (i.e. at least one order of magnitude larger than the variables of the
system)4.

For each task τi in our system, we first introduce two sets of variables : {si.j |0 ≤ j < ni}
and {γi.j |0 ≤ j < ni}, which represent respectively the start time and the number of inter-
ferences for each segment tii.j . In addition to these variables, we define si.ni

as the end date
of the last temporal segment of τi (i.e. the end date of tii.ni−1). Using these variables, the
following constraints impose the sequential execution of τi and the application of deadline
τi.d (cinter represents the cost of an interference):

si.0 ≥ 0 (1)
si.ni

≤ τi.d (2)
∀j : 0 ≤ j < ni, si.j+1 = si.j + di.j + cinter × γi.j (3)

The tricky part concerns the evaluation of γi.j which depends on the segments of tasks
running on other cores, k.l (segment l of task k), that overlap the execution of segment i.j.
Variable χi.j−k.l ∈ {0, 1} asserts whether i.j and k.l overlap. In this case, i.j undergoes at
most min(µi.j , µk.l) interferences from k.l. In fact, considering all segments of τk overlapping
i.j, our conservative approximation is that i.j suffers in the worst case from the sum of
interferences generated by each overlapping segment of core k, with at most µi.j interferences
in total. The interferences with τk are recorded in γi.j−k and, as exposed below, γi.j is the
sum of interferences of τi with all other tasks:

γi.j =
∑

0≤k<n∧k 6=i

γi.j−k , with: γi.j−k = min

µi.j ,
∑

0≤l<nk

µk.l × χi.j−k.l


The formulation of γi.j−k cannot be translated as is in the ilp system because of the min

4 As a result, ∞× 0 = 0



T. Carle and H. Cassé 3:9

but we can rewrite it as:

γi.j−k ≤ µi.j (4)

γi.j−k ≤

 ∑
0≤l<nk

µk.l × χi.j−k.l

 (5)

γi.j−k ≥ µi.j −∞× (1− αi.j−k) (6)

γi.j−k ≥

 ∑
0≤l<nk

µk.l × χi.j−k.l

−∞× αi.j−k (7)

0 ≤ αi.j−k ≤ 1 (8)

Eq. (4) and (5) enforce the selection of the minimum but, according to the trend of the
objective function, a possible value for γi.j−k could be 0. This is prevented by the variable
αi.j−k and Eq. (6) and (7) which ensure that either µi.j , or the sum of µk.l is selected.

To detect overlapping and define χi.j−k.l, we have to compare start and end dates of
segments of tasks running on different cores, i.j and k.l:

θi.j−k.l ⇐⇒ sk.l ≤ si.j < sk.l+1 , and θk.l−i.j ⇐⇒ si.j ≤ sk.l < si.j+1

Considering the trend to minimize γi.j , θi.j−k.l (and symmetrically θk.l−i.j) can be viewed
as the selection of exactly one of the following constraints:

sk.l ≤ si.j < sk.l+1 (θi.j−k.l = 1); si.j < sk.l (θi.j−k.l = 0); sk.l+1 ≤ si.j(θi.j−k.l = 0)

Introducing the cancellation variable βi.j−k.l, the ilp formulation becomes:

sk.l ≤ si.j +∞× (1− θi.j−k.l) (9)
si.j < sk.l+1 +∞× (1− θi.j−k.l) (10)
si.j < sk.l +∞× (1− βi.j−k.l) (11)
sk.l+1 ≤ si.j +∞× (βi.j−k.l + θi.j−k.l) (12)
0 ≤ βi.j−k.l + θi.j−k.l ≤ 1 (13)

Eq. (9) and (10) apply only if θi.j−k.l = 1 (overlapping of segments i.j and k.l). When
θi.j−k.l = 0, only one constraint between Eq. (11) and (12) holds, depending on the value of
βi.j−k.l ∈ {0, 1}. The last constraint ensures that βi.j−k.l and θi.j−k.l are not both set to 1
at the same time.

Notice that θi.j−k.l and θk.l−i.j can be set to 1 together when the segments start at the
same date (si.j = sk.l). Finally, χi.j−k.l is defined as:

0 ≤ χi.j−k.l ≤ 1 (14)
χi.j−k.l ≥ θi.j−k.l (15)
χi.j−k.l ≥ θk.l−i.j (16)

At this point, we have presented all the models and algorithms required to apply our
method. In the next section, we present our preliminary results on realistic applications.

WCET 2018



3:10 Multicore WCET Analysis using TIPs

Table 1 Summary of applications profiles.

wcet in isolation longest segment max tips
bench (in clock cycles) # segments # tips (in clock cycles) in a segment
edn 416221 70 5882 208056 3400

insertsort 2968 30 13 2796 1
fibcall 942 18 69 761 60

5 Proof-of-concept

We developed a prototype application5 based on the OTAWA [5] wcet analyzer and applied
it on three benchmarks from the Mälardalen [8] suite: edn, fibcall and insertsort. These
benchmarks exhibit common traits of embedded applications, and as we will see, they show
very different profiles in terms of wcet and of number of memory accesses.

The first result of our analysis method is that we are able to exhibit and analyze a safe
and refined timing profile of memory accesses of these applications. These profiles can also
be used to extract precise arrival curves suited for methods such as [14]. We summarize key
points in Table 1.

These three applications show varied profiles in number of segments, overall size and
number of tips. Yet, one common trait is that each of them has one segment that lasts
around half of its total wcet or more (wcets and segment lengths are given in number of
processor cycles). This is the result of aggregating ifs and loops inside one segment. However,
we are currently working on adding more precision to the analysis of such constructs, and
in particular on allowing the extraction of segments delimited by a chosen number of loop
iterations.

Once this profiling is done, our prototype calls CPLEX [9] to schedule tasks two-by-two on
separate cores, minimizing the makespan of the task system. We chose to fix the interference
cost cinter to 10 processor cycles, because it is approximately the cost of accessing the shared
data scratchpad in the Aurix Tricore architecture. The result for insertsort and fibcall with
this objective function is an interference-free schedule in which insertsort begins its execution
at date 0 and finishes at date 2968. fibcall starts at date 170 and finishes at date 1112.
Without our method the worst-case of 13 interferences should have been assumed, incurring
a total additional duration of 130 cycles, which is more than a 10% overhead for fibcall. This
preliminary experiment on real applications illustrates the possibility to reduce the number
of timing interferences without having to re-write existing code, as well as the necessity
to define precise analysis models in order to do so. We also tried to apply our method on
application pairs featuring edn, but CPLEX failed to provide a solution. We believe this is
linked to this application having a too long overall wcet, which increases dramatically the
feasible region to be explored. These experiments convince us that our method should rely
on efficient scheduling heuristics rather than on ilp solvers if we are to successfully deal with
large tasks and/or large task systems.

5 Following this proof-of-concept, a complete analysis application is now under development.



T. Carle and H. Cassé 3:11

6 Conclusion and future work

In this paper we proposed a novel approach for the wcet analysis of applications running on
multicore architectures. This method is particularly well-suited for legacy applications, since
it can be fully automated, requires no re-writing of existing code, and works directly at the
binary level. It is based on the notion of Time Interest Points, which are instructions in the
binary code that potentially cause or suffer from timing interferences on the interconnect. Our
method extracts such tips and abstracts the application tasks as sequences of tips separated
by temporal segments. In order to increase the timing stability of this representation, waiting
loops are automatically injected at the end of each segment. These sequences of temporal
segments are then scheduled in order to minimize the application makespan. In order to
illustrate how this approach works, we implemented a prototype application and applied it
on benchmarks from the Mälardalen suite. Our preliminary results (application profiling and
scheduling) lead to the following conclusions:

This method is technically feasible and promising, especially for the analysis of legacy
code,
Our next efforts should target the definition of fast-yet-efficient scheduling heuristics, to
free our method from the limitations inherent to ilp and allow the resolution of larger
systems as well as the introduction of new kinds of tips in our problems (e.g. Instruction
Cache tips),
In order to aggressively reduce the number of interferences, we must break down large
temporal segments that represent ifs and loops. For example, we want to make it possible
to extract temporal segments as specified chunks of loop iterations.

References

1 A. Abel, F. Benz, J. Doerfert, B. Dörr, S. Hahn, F. Haupenthal, M. Jacobs, A. H. Moin,
J. Reineke, B. Schommer, and R. Wilhelm. Impact of resource sharing on performance and
performance prediction: A survey. In CONCUR, 2013.

2 S. Altmeyer and C. Maiza Burguière. Cache-related preemption delay via useful cache
blocks: Survey and redefinition. Journal of Systems Architecture, 2011.

3 S. Altmeyer, R. I. Davis, L. Soares Indrusiak, C. Maiza, V. Nélis, and J. Reineke. A generic
and compositional framework for multicore response time analysis. In RTNS, 2015.

4 ARM. ARM Cortex-A Series – Programmer’s Guide for ARMv8 - A, v1.0 edition, 2015.
5 C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. Otawa: An open toolbox for adaptive

wcet analysis. In Software Technologies for Embedded and Ubiquitous Systems, 2010.
6 G. Durieu, M. Faugère, S. Girbal, D. Gracia Pérez, C. Pagetti, andW. Puffitsch. Predictable

flight management system implementation on a multicore processor. In ERTS2, 2014.
7 C. Ferdinand and R. Wilhelm. On predicting data cache behavior for real-time systems.

Lecture notes in computer science, 1998.
8 J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper. The mälardalen WCET benchmarks:

Past, present and future. In 10th International Workshop on Worst-Case Execution Time
Analysis, WCET, 2010.

9 IBM. Cplex user’s manual. https://www.ibm.com/support/knowledgecenter/SSSA5P_
12.7.0/ilog.odms.studio.help/pdf/usrcplex.pdf, 2016.

10 Infineon. AURIX TC27x D-Step (32-Bit Single-Chip Microcontroller) User’s Manual, v2.2,
2014.

11 Y.-T. S. Li and S. Malik. Performance analysis of embedded software using implicit path
enumeration. In Workshop on Languages, Compilers, and Tools for Real-Time Systems,
1995.

WCET 2018

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.studio.help/pdf/usrcplex.pdf
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.studio.help/pdf/usrcplex.pdf


3:12 Multicore WCET Analysis using TIPs

12 C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and D. Lesens. Multi-task implementation
of multi-periodic synchronous programs. Discrete Event Dynamic Systems, 21(3), 2011.
doi:10.1007/s10626-011-0107-x.

13 R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley. A
predictable execution model for cots-based embedded systems. RTAS, 2011.

14 R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele. Worst case delay
analysis for memory interference in multicore systems. DATE, 2010.

15 B. Rouxel, S. Derrien, and I. Puaut. Tightening contention delays while scheduling parallel
applications on multi-core architectures. ACM Trans. Embed. Comput. Syst., 2017.

16 A. Schranzhofer, J.-J. Chen, and L. Thiele. Timing analysis for tdma arbitration in resource
sharing systems. RTAS, 2010.

http://dx.doi.org/10.1007/s10626-011-0107-x

	Introduction
	Related work
	Multicore interference analysis frameworks
	Multicore extensions of the PREM model

	Problem setting and formalism
	Architecture
	Real-time tasks
	WCET Computation
	TIPsGraph
	Temporal segments sequence

	Multicore WCET analysis using TIPs
	Extracting a TIPsGraph from the CFG of a task
	Linear sequence of Basic Blocks
	Non-linear control structures

	From a TIPsGraph to a temporal segments sequence
	Multicore scheduling using ILP 

	Proof-of-concept
	Conclusion and future work

