
SMT-Based Answer Set Solver CMODELS(DIFF)
(System Description)
Da Shen
Department of Computer Science, University of Nebraska at Omaha
South 67th Street, Omaha, NE 68182, USA
dashen@unomaha.edu

Yuliya Lierler
Department of Computer Science, University of Nebraska at Omaha
South 67th Street, Omaha, NE 68182, USA
ylierler@unomaha.edu

https://orcid.org/0000-0002-6146-623X

Abstract
Many answer set solvers utilize Satisfiability solvers for search. Satisfiability Modulo Theory
solvers extend Satisfiability solvers. This paper presents the CMODELS(DIFF) system that
uses Satisfiability Modulo Theory solvers to find answer sets of a logic program. Its theoretical
foundation is based on Niemala’s characterization of answer sets of a logic program via so called
level rankings. The comparative experimental analysis demonstrates that CMODELS(DIFF) is
a viable answer set solver.

2012 ACM Subject Classification Computing methodologies→ Logic programming and answer
set programming, Software and its engineering → Constraint and logic languages, Theory of
computation → Constraint and logic programming

Keywords and phrases answer set programming, satisfiability modulo theories, constraint satis-
faction processing

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.11

Acknowledgements We are grateful to Cesare Tinelli for valuable discussions on the subject of
the paper and for the insights on the cvc4 system. We are also thankful to Ben Susman. Da
Shen was supported by the 2017-FUSE (Fund for Undergraduate Scholarly Experiences) Grant
from the University of Nebraska at Omaha. Yuliya Lierler was partially supported by the NSF
1707371 grant.

1 Introduction

This paper describes a new answer set solver cmodels(diff). Its theoretical foundation lies
on the generalizations of Niemela’s ideas. Niemela [19] characterized answer sets of a normal
logic program as models of a propositional formula called program’s completion that satisfy
“level ranking” requirements. In this sense, this system is a close relative of an earlier answer
set solver lp2diff developed by Janhunen et al. [10]. Yet, lp2diff only accepts programs
of a very restricted form. For example, neither choice rules nor aggregate expressions are
allowed. Solver cmodels(diff) permits such important modeling constructs in its input.
Also, unlike lp2diff, the cmodels(diff) system is able to generate multiple solutions.

The cmodels(diff) system follows the tradition of answer set solvers such as assat [16]
and cmodels [11]. In place of designing specialized search procedures targeting logic
programs, these tools compute a program’s completion and utilize Satisfiability solvers [9]
– systems for finding satisfying assignments for propositional formulas – for search. Since

© Da Shen and Yuliya Lierler;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 11; pp. 11:1–11:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dashen@unomaha.edu
mailto:ylierler@unomaha.edu
https://orcid.org/0000-0002-6146-623X
https://doi.org/10.4230/OASIcs.ICLP.2018.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

11:2 SMT-Based Answer Set Solver CMODELS(DIFF) (System Description)

not all models of a program’s completion are answer sets of a program, both assat and
cmodels implement specialized procedures (based on loop formulas [16]) to weed out such
models. Satisfiability Modulo Theory (SMT) solvers [2] extend Satisfiability solvers. They
process formulas that go beyond propositional logic and may contain, for example, integer
linear expressions. The cmodels(diff) system utilizes this fact and translates a logic
program into an SMT formula so that any model of this formula corresponds to an answer
set of the program. It then uses SMT solvers for search. Unlike cmodels or assat, the
cmodels(diff) system does not need an additional step to weed out unwanted models. Also,
it utilizes smt-lib – a standard input language of SMT solvers [1] – to interface with these
systems. This makes its architecture open towards new developments in the realm of SMT
solving. There is practically no effort involved in incorporating a new SMT system into the
cmodels(diff) implementation.

Creation of the cmodels(diff) system was inspired by the development of recent
constraint answer set programming solver ezsmt [21] that utilizes SMT solvers for finding
solutions for “tight” constraint answer set programs. On the one hand, cmodels(diff)
restricts its attention to pure answer set programs. On the other hand, it goes beyond
tight programs. In the future, we will extend cmodels(diff) to accept non-tight constraint
answer set programs. The theory developed in this work paves the way for such an extension.

Lierler and Susman [13] demonstrate that SMT formulas are strongly related to constraint
programs [17]. Many efficient constraint solvers1 exist. Majority of these systems focus
on finite-domain constraint problems. The theoretical contributions of this work provide a
foundation for developing a novel constraint-solver-based method in processing logic programs.
Currently, cmodels(diff) utilizes SMT-LIB to interface with SMT solvers. By producing
output in minizinc – a standard input language of constraint solvers [18] – in place of
smt-lib, cmodels(diff) will become a constraint-based answer set solver. This is another
direction of future work.

The outline of the paper is as follows. We start by reviewing the concepts of a logic
program, a completion, tightness and an SMT logic smt(il). We then present a key concept
of this work, namely, a level ranking; and state theoretical results. Section 4 presents
transformations from logic programs to smt(il) by means of variants of level rankings.
After that, we introduce the architecture of the cmodels(diff) system and conclude with
comparative experimental analysis.

2 Preliminaries

A vocabulary is a finite set of propositional symbols also called atoms. As customary, a literal
is an atom a or its negation, denoted ¬a. A (propositional) logic program, denoted by Π,
over vocabulary σ is a finite set of rules of the form

a← b1, . . . , b`, not b`+1, . . . , not bm, not not bm+1, . . . , not not bn (1)

where a is an atom over σ or ⊥, and each bi, 1 ≤ i ≤ n, is an atom or symbol > and ⊥ in σ.
Sometimes we use the abbreviated form of rule (1)

a← B (2)

1 http://www.minizinc.org/

http://www.minizinc.org/

D. Shen and Y. Lierler 11:3

Π1 Π2
{c}. {c}.
a← c. a← c.

a← b.

b← a.

Comp(Π1) Comp(Π2)
¬¬c→ c. ¬¬c→ c.

c→ a. c→ a.

c→ ¬¬c. b→ a.

a→ c. a→ b.

c→ ¬¬c.
a→ c ∨ b.

Figure 1 Sample programs and their completions.

where B stands for the right hand side of an arrow in (1) and is also called a body. We
identify rule (1) with the propositional formula

b1 ∧ . . . ∧ b` ∧ ¬b`+1 ∧ . . . ∧ ¬bm ∧ ¬¬bm+1 ∧ . . . ∧ ¬¬bn → a (3)

and B with the propositional formula

b1 ∧ . . . ∧ b` ∧ ¬b`+1 ∧ . . . ∧ ¬bm ∧ ¬¬bm+1 ∧ . . . ∧ ¬¬bn. (4)

Note that (i) the order of terms in (4) is immaterial, (ii) not is replaced with classical
negation (¬), and (iii) comma is replaced with conjunction (∧). When the body is empty it
corresponds to the empty conjunction or >. Expression b1 ∧ . . .∧ b` in formula (4) is referred
to as the positive part of the body and the remainder of (4) as the negative part of the body.

The expression a is the head of the rule. When a is ⊥, we often omit it and say that the
head is empty. We denote the set of nonempty heads of rules in Π by hd(Π). We call a rule
whose body is empty a fact. In such cases, we drop the arrow. We sometimes may identify a
set X of atoms with the set of facts {a. | a ∈ X}.

We say that a set X of atoms satisfies a rule (1) if X satisfies a formula (3). The reduct
ΠX of a program Π relative to a set X of atoms is obtained by first removing all rules (1)
such that X does not satisfy its negative part ¬b`+1 ∧ . . . ∧ ¬bm ∧ ¬¬bm+1 ∧ . . . ∧ ¬¬bn and
replacing all of its remaining rules with a← b1, . . . , b`. A set X of atoms is an answer set, if
it is a minimal set that satisfies all rules of ΠX [15].

Ferraris and Lifschitz [6] show that a choice rule {a} ← B can be seen as an abbreviation
for a rule a← not not a,B. We adopt this abbreviation here. Choice rules were introduced
in [20] and are commonly used in answer set programming languages.

It is customary for a given vocabulary σ, to identify a set X of atoms over σ with (i)
a complete and consistent set of literals over σ constructed as X ∪ {¬a | a ∈ σ \X}, and
respectively with (ii) an assignment function or interpretation that assigns truth value true
to every atom in X and false to every atom in σ \X.

Consider sample programs listed in Figure 1. Program Π1 has two answer sets, namely,
{a, c} and an empty set. Program Π2 has two answer sets: {a, b, c} and an empty set.

Completion and Tightness

Let σ be a vocabulary and Π be a program over σ. For every atom a in Π, by Bodies(Π, a)
we denote the set composed of the bodies B appearing in the rules of the form a← B in Π.
The completion of Π [3], denoted by Comp(Π), is the set of classical formulas that consists of
the rules (1) in Π (recall that we identify rule (1) with implication (3)) and the implications

a→
∨

a←B∈Π
B (5)

ICLP 2018

11:4 SMT-Based Answer Set Solver CMODELS(DIFF) (System Description)

for all atoms a in σ. When set Bodies(Π, a) is empty, the implication (5) has the form
a→ ⊥. When a rule (2) is a fact a. , then we identify this rule with the unit clause a.

For example, completions of programs Π1 and Π2 are presented in Figure 1.
For the large class of logic programs, called tight, their answer sets coincide with models

of their completion [5, 4]. This is the case for program Π1 (we illustrate that Π1 is tight,
shortly). Yet, for non-tight programs, every answer set is a model of completion but not
necessarily the other way around. For instance, set {a, b} is a model of Comp(Π2), but not
an answer set of Π2. It turns out that Π2 is not tight.

Tightness is a syntactic condition on a program that can be verified by means of program’s
dependency graph. The dependency graph of Π is the directed graph G such that

the nodes of G are the atoms occurring in Π, and
for every rule (1) in Π whose head is an atom, G has an edge from atom a to each atom
b1, . . . , b`.

A program is called tight if its dependency graph is acyclic.
For example, the dependency graph of program Π1 consists of two nodes, namely, a and

c, and a single edge from a to c . This graph is acyclic and hence Π1 is tight. On the other
hand, it is easy to see that the graph of Π2 is not acyclic.

Logic SMT(IL)

We now introduce the notion of Satisfiability Modulo Theory (SMT) [2] for the case when
Linear Integer Arithmetic is a considered theory. We denote this SMT instance by smt(il).

Let σ be a vocabulary and χ be a finite set of integer variables. The set of atomic formulas
of smt(il) consists of propositions in σ and linear constraints of the form

a1x1 ± · · · ± anxn ./ an+1 (6)

where a1, . . . , an+1 are integers and x1, . . . , xn are variables in χ, ± stands for + or −, and ./
belongs to {<,>,≤,≥,=, 6=}. When ai = 1 (1 ≤ i ≤ n) we may omit it from the expression.
The set of smt(il) formulas is the smallest set that contains the atomic formulas and is
closed under ¬ and conjunction ∧. Other connectives such as >, ⊥, ∨, →, and ↔ can be
defined in terms of ¬ and ∧ as customary.

A valuation τ consists of a pair of functions
τσ : σ → {true, false} and
τχ : χ→ Z, where Z is the set of integers.

A valuation interprets all smt(il) formulas by defining
τ(p) = τσ(p) when p ∈ σ,
τ(a1x1 ± · · · ± anxn ./ an+1) = true iff a1τχ(x1)± · · · ± anτχ(xn) ./ an+1 holds,

and applying the usual rules for the Boolean connectives.
We say that an smt(il) formula Φ is satisfied by a valuation τ when τ(Φ) = true. A set

of smt(il) formulas is satisfied by a valuation when every formula in the set is satisfied by
this valuation. We call a valuation that satisfies an smt(il) formula a model.

3 Level Rankings

Niemela [19] characterized answer sets of “normal” logic programs in terms of “level rankings”.
Normal programs consist of rules of the form (1), where n = m and a is an atom. Lierler and
Susman [13] generalized the concept of level ranking to programs considered in this paper
that include choice rules and denials (rules with empty head).

D. Shen and Y. Lierler 11:5

By N we denote the set of natural numbers. For a rule (2), by B+ we denote its positive
part and sometimes identify it with the set of atoms that occur in it, i.e., {b1, . . . , bl}. For a
program Π, by At(Π) we denote the set of atoms occurring in it.

I Definition 1. For a logic program Π and a set X of atoms over At(Π), a function lr:
X → N is a level ranking of X for Π when for each a ∈ X, there is B in Bodies(Π, a) such
that X satisfies B and for every b ∈ B+ it holds that lr(a)− 1 ≥ lr(b).

Niemela [19] observed that for a normal logic program, a model X of its completion is also
its answer set when there is a level ranking of X for the program. Lierler and Susman [13]
generalized this result to programs with double negation not not:

I Theorem 2 (Theorem 1 [13]). For a program Π and a set X of atoms that is a model of
its completion Comp(Π), X is an answer set of Π if and only if there is a level ranking of X
for Π.

The nature of a level ranking is such that there is an infinite number of level rankings for
the same answer set of a program. Theorem below illustrates that we can add a single linear
constraint to limit the number of level rankings by utilizing the size of a program.

I Theorem 3. For a logic program Π and its answer set X, we can always construct a level
ranking of X for Π such that, for every a ∈ X, lr(a) ≤ |At(Π)|.

Proof. Since there is an answer set X, by Theorem 2 there exists some level ranking lr′ of
X for Π. Then, we can always use the level ranking lr′ to construct a level ranking lr of X
for Π such that, for every a ∈ X, lr(a) ≤ |At(Π)|. Below we describe the method.

For an integer y, by s(y) we denote the following set of atoms

{a | a ∈ X, lr′(a) = y}.

Let Y be the set of integers so that

{y | a ∈ X, lr′(a) = y}.

Let Y s denote the sorted list [y1, . . . , yk] constructed from all integers of Y , such that
y1 < y2 < ... < yk. Note that yi > yj if and only if i > j. Obviously, |Y | ≤ |At(Π)|. Thus,
k ≤ |At(Π)|. For every element yi in Y s and every atom a ∈ s(yi), we assign lr(a) = i.
Consequently, lr(a) ≤ |At(Π)|.

Now we prove that lr is indeed a level ranking. According to the definition of lr′, for each
atom a ∈ X, there exists B in Bodies(Π, a) such that X satisfies B and for every b ∈ B+

it holds that lr′(a)− 1 ≥ lr′(b). We show that lr(a)− 1 ≥ lr(b) also holds for each b in this
B+. Atoms a, b belong to some sets s(yka

) and s(ykb
) respectively, where ka, kb ≤ k. By

the definition of s(·), yka
= lr′(a) and ykb

= lr′(b). Since lr′(a) > lr′(b), yka
> ykb

. Since
for any i and j, yi > yj if and only if i > j, we derive that ka > kb. By the construction of
lr, lr(a) = ka and lr(b) = kb. Consequently, lr(a)− 1 ≥ lr(b) also holds. Thus, lr is a level
ranking by definition. J

Strong level ranking

Niemela [19] introduced the concept of a strong level ranking so that only one strong level
ranking exists for an answer set. It is obviously stricter than the condition captured in
Theorem 3. Yet, the number of linear constraints in formulating the conditions of strong
level ranking is substantially greater. We now generalize the concept of a strong level ranking
to the case of logic programs considered here and then state the formal result on the relation
of answer sets and strong level rankings.

ICLP 2018

11:6 SMT-Based Answer Set Solver CMODELS(DIFF) (System Description)

I Definition 4. For a logic program Π and a set X of atoms over At(Π), a function lr:
X → N is a strong level ranking of X for Π when lr is a level ranking and for each a ∈ X the
following conditions hold:
1. If there is B in Bodies(Π, a) such that X satisfies B and B+ is empty, then lr(a) = 1.
2. For every B in Bodies(Π, a) such that X satisfies B and B+ is not empty, there is at

least one b ∈ B+ such that lr(b) + 1 ≥ lr(a).

I Theorem 5. For a program Π and a set X of atoms that is a model of its completion
Comp(Π), X is an answer set of Π if and only if there is a strong level ranking of X for Π.

Proof. This proof follows the argument provided for Theorem 2 in [19], but respects the
terminology used here. We start by defining an operator TΠ(I) for a program Π and a set I
over At(Π) ∪ ⊥ as follows:

TΠ(I) = {a | a← B ∈ Π, I satisfies B}.

For this operator we define

TΠ ↑ 0 = ∅,

and for i= 0,1,2, ...

TΠ ↑ (i+ 1) = TΠ(TΠ ↑ i).

Left-to-right: Assume X is an answer set of Π. We can construct a strong level ranking lr
of X for Π using the TΠX (·) operator. As X is an answer set of Π, we know that X = TΠX ↑ ω
and for each a ∈ X there is a unique i such that a ∈ TΠX ↑ i, but a /∈ TΠX ↑ (i − 1). Let
lr(a) = i. We now illustrate that lr is indeed a strong level ranking.

First, we illustrate that lr is a level ranking. For a ∈ X there is a rule a ← B of the
form (1) such that a← b1, . . . , bl ∈ ΠX and TΠX ↑ (i− 1) satisfies b1 ∧ · · · ∧ bl. Consequently,
for every bj in {b1, . . . , bl}, lr(bj) ≤ i− 1. Thus, lr(a)− 1 ≥ lr(bj). Also, from the way the
reduct is constructed, it follows that X satisfies body B of rule a← B.

Second, we show that Condition 1 of the definition of strong level ranking holds for lr.
If there is a← B ∈ Π such that X satisfies B and B+ is empty, then a← > is in ΠX . By
definition of the TΠX (·) operator, a ∈ TΠX ↑ 1. Consequently, lr(a) = 1 holds.

Third, we demonstrate that Condition 2 holds for lr. For a ∈ X, by the construction of lr
using the TΠX (·) operator we know that there is a unique i such that lr(a) = i, a ∈ TΠX ↑ i,
but a /∈ TΠX ↑ (i − 1). Proof by contradiction. Assume that there is a rule a ← B ∈ Π
such that X satisfies B and B+ is not empty, but for all b ∈ B+, lr(b) + 1 < lr(a) holds.
Then for all b ∈ B+, lr(b) < lr(a) − 1. Thus, lr(b) < i − 1. It follows that all b ∈ B+

belong to TΠX ↑ (i − 2). Hence, by the definition of TΠX (·) operator, a ∈ TΠX ↑ (i − 1),
which contradicts that a /∈ TΠX ↑ (i − 1). Thus, there is at least one b ∈ B+ such that
lr(b) + 1 ≥ lr(a).

Right-to-left: Assume that there is a strong level ranking of X for Π. By the definition,
it is also a level ranking. Recall that X is a model of Comp(Π). By Theorem 2, X is an
answer set of Π. J

SCC level ranking

Niemela [19] illustrated how one can utilize the structure of the dependency graph correspond-
ing to a normal program to reduce the number of linear constraints in capturing conditions
similar to these of level ranking. We now generalize these results to logic programs with
doubly negated atoms and denials.

D. Shen and Y. Lierler 11:7

Recall that a strongly connected component of a directed graph is a maximal set V of
nodes such that each pair of nodes in V is reachable from each other. We call a set of atoms
in a program Π a strongly connected component (SCC) of Π when it is a strongly connected
component in the dependency graph of Π. The SCC including an atom a is denoted by
SCC(a). A non-trivial SCC is an SCC that consists of at least two atoms. We denote the
set of atoms in all non-trivial SCCs of Π by NT (Π).

I Definition 6. For a logic program Π and a set X of atoms over At(Π), a function lr:
X ∩NT (Π) → N is a SCC level ranking of X for Π when for each a ∈ X ∩NT (Π), there
is B in Bodies(Π, a) such that X satisfies B and for every b ∈ B+ ∩ SCC(a) it holds that
lr(a)− 1 ≥ lr(b).

The byproduct of the definition of SCC level rankings is that for tight programs SCC
level ranking trivially exists since it is a function whose domain is empty. Thus no linear
constraints are produced.

I Theorem 7. For a program Π and a set X of atoms that is a model of its completion
Comp(Π), X is an answer set of Π if and only if there is an SCC level ranking of X for Π.

This is a generalization of Theorem 4 in [19]. Its proof follows the lines of the proof presented
there with the reference to Theorem 2.

I Theorem 8. For a satisfiable logic program Π and its answer set X, we can always
construct an SCC level ranking of X for Π such that, for every a ∈ X, lr(a) ≤ |SCC(a)|.

This theorem can be proved by applying the similar argument as in the proof of Theorem 3
to each SCC. This result allows us to set minimal upper bounds for lr(a) in order to reduce
search space.

Further, Niemela [19] introduces the concept of strong SCC level ranking and states a
similar result to Theorem 7 for that concept. It is straightforward to generalize these results
to logic programs considered here.

4 From Logic Programs to SMT(IL)

In this section we present a mapping from a logic program to smt(il) such that the models
of a constructed smt(il) theory are in one-to-one correspondence with answer sets of the
program. Thus, any SMT solver capable of processing smt(il) expressions can be used to
find answer sets of logic programs. The developed mappings generalize the ones presented by
Niemela [19].

For a rule a← B of the form (1), the auxiliary atom βB , equivalent to its body, is defined
as

βB ↔ b1 ∧ . . . ∧ b` ∧ ¬b`+1 ∧ . . . ∧ ¬bm ∧ bm+1 ∧ . . . ∧ bn (7)

When the body of a rule consist of a single element, no auxiliary atom is introduced (the
single element itself serves the role of an auxiliary atom).

Let Π be a program. We say that an atom a is a head atom in Π if it is the head of some
rule. Any atom a in Π such that

it is a head atom, or
it occurs in some positive part of the body of some rule whose head is an atom,

ICLP 2018

11:8 SMT-Based Answer Set Solver CMODELS(DIFF) (System Description)

we associate with an integer variable denoted by lra. We call such variables level ranking
variables. For each head atom a in Π, we construct an smt(il) formula

a→
∨

a←B∈Π
(βB ∧

∧
b∈B+

lra − 1 ≥ lrb). (8)

We call the conjunction of formulas (8) for the head atoms in program Π a level ranking
formula of Π.

For example, the level ranking formula of program Π2 in Figure 1 follows(
c→ ¬¬c

)
∧
(
a→ (c∧ lra− 1 ≥ lrc)∨ (b∧ lra− 1 ≥ lrb)

)
∧
(
b→ a∧ lrb− 1 ≥ lra

)
. (9)

I Theorem 9. For a logic program Π and the set F of smt(il) formulas composed of
Comp(Π) and a level ranking formula of Π
1. If a set X of atoms is an answer set of Π, then there is a satisfying valuation τ for F

such that X = {a | a ∈ At(Π) and τ(a) = true}.
2. If valuation τ is satisfying for F , then the set {a | a ∈ At(Π) and τ(a) = true} is an

answer set for Π.
This is a generalization of Theorem 6 in [19]. Its proof follows the lines of the proof presented
there with the reference to Theorem 2.

SCC level ranking

For each atom a in the set NT (Π), we introduce an auxiliary atom exta. If there exists some
rule a← B in Π such that B+ ∩ SCC(a) = ∅, then we construct an smt(il) formula

exta ↔
∨

a←B∈Π and B+∩SCC(a)=∅

βB ; (10)

otherwise, we construct a formula

¬exta. (11)

We also introduce an smt(il) formula:

a→ exta ∨
∨

a←B∈Π and B+∩SCC(a)6=∅

(βB ∧
∧

b∈B+∩SCC(a)

lra − 1 ≥ lrb). (12)

We call the conjunction of formulas (10), (11) and (12) a SCC level ranking formula of Π.
For instance, NT (Π1) is empty, so we introduce no SCC level ranking formula for program

Π1. The SCC level ranking formula of program Π2 follows(
exta ↔ c

)
∧ ¬extb ∧

(
a→ exta∨(b∧lra−1 ≥ lrb)

)
∧
(
b→ extb∨(a∧lrb−1 ≥ lra)

)
. (13)

The claim of Theorem 9 holds also when we replace a level ranking formula of Π with
an SCC level ranking formula of Π in its statement.

Strong level ranking

For each rule a← B in program Π we construct an smt(il) formula

a ∧ βB → lra = 1 when B+ = ∅,
a ∧ βB →

∨
b∈B+

lrb + 1 ≥ lra otherwise. (14)

D. Shen and Y. Lierler 11:9

We call the conjunction of formulas (8) and (14) a strong level ranking formula of Π.
For example, the strong level ranking formula of program Π2 is a conjunction of formula (9)

and formula(
c ∧ ¬¬c→ lrc = 1

)
∧
(
a ∧ c→ lrc + 1 ≥ lra

)
∧(

a ∧ b→ lrb + 1 ≥ lra
)
∧
(
b ∧ a→ lra + 1 ≥ lrb

)
.

We now state a similar result to Theorem 9 that makes an additional claim on one-to-one
correspondence between the models of a constructed smt(il) formula with the use of strong
level ranking formula and answer sets of a program.

I Theorem 10. For a logic program Π and the set F of smt(il) formulas composed of
Comp(Π) and a strong level ranking formula of Π
1. If a set X of atoms is an answer set of Π, then there is a satisfying valuation τ for F

such that X = {a | a ∈ At(Π) and τ(a) = true}.
2. If valuation τ is satisfying for F , then the set {a | a ∈ At(Π) and τ(a) = true} is an

answer set for Π.
3. If valuations τ and τ ′ satisfy F and are distinct, then

{a | a ∈ At(Π) and τ(a) = true} 6= {a | a ∈ At(Π) and τ ′(a) = true}.

Strong SCC level ranking

For each atom a ∈ NT (Π), we construct a formula

exta → lra = 1, (15)

and for each rule a← B such that B+ ∩ SCC(a) 6= ∅, we introduce a formula

a ∧ βB →
∨

b∈B+∩SCC(a)

lrb + 1 ≥ lra. (16)

We call the conjunction of formulas (10), (11), (12), (15) and (16) a strong SCC level ranking
formulas of Π.

For instance, NT (Π1) is empty, so we introduce no strong SCC level ranking formula
for program Π1. The strong SCC level ranking formula of program Π2 is a conjunction of
formula (13) and formula(

exta → lra = 1
)
∧
(
extb → lrb = 1

)
∧
(
a ∧ b→ lrb + 1 ≥ lra

)
∧
(
b ∧ a→ lra + 1 ≥ lrb

)
.

The claim of Theorem 10 holds also when we replace a strong level ranking formula of Π
with a strong SCC level ranking formula of Π in its statement.

5 The CMODELS(DIFF) system

We are now ready to describe the the cmodels(diff)2 system in detail. It is an extension of
the cmodels [11] system. Figure 2 illustrates the pipeline architecture of cmodels(diff).
This system takes an arbitrary (tight or non-tight) logic program in the language supported

2 cmodels(diff) is posted at https://www.unomaha.edu/college-of-information-science-and-
technology/natural-language-processing-and-knowledge-representation-lab/software/
cmodels-diff.php

ICLP 2018

https://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/cmodels-diff.php
https://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/cmodels-diff.php
https://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/cmodels-diff.php

11:10 SMT-Based Answer Set Solver CMODELS(DIFF) (System Description)

Figure 2 cmodels(diff) Pipeline.

by cmodels as an input. These logic programs may contain such features as choice rules
and aggregate expressions. The rules with these features are translated by cmodels [11]
into rules considered here. The cmodels(diff) system translates a logic program into
smt(il) formulas, after which an SMT solver is called to find models of these formulas (that
correspond to answer sets).

(1, 2) Computing Completion and Level Ranking Formulas

The cmodels(diff) system utilizes the original algorithm of cmodels to compute comple-
tion, during which cmodels determines whether the program is tight or not. If the program
is not tight, the corresponding level ranking formula is added.

Flags -levelRanking, -levelRankingStrong, -SCClevelRanking, and
-SCClevelRankingStrong instruct cmodels(diff) to construct a level ranking formula,
a strong level ranking formula, a SCC level ranking formula, and a strong SCC level ranking
formula, respectively. And, -SCClevelRanking is chosen by default. Finally, completion
and the level ranking formula are clausified using the same technique as in original cmodels.
The cmodels(diff) system outputs the resulting clauses into a text file in semi-Dimacs
format [21].

(3, 4) Transformation and Solving

The transformer is taken from ezsmt v1.1. It converts the semi- Dimacs output from step (2)
into smt-lib syntax (smt-lib is a standard input language for SMT solvers [1]). By default,
the smt-lib output contains an instruction that sets the logic of SMT solvers to Linear
Integer Arithmetic. If the transformer is invoked with the parameter difference-logic,
then the smt-lib output sets the logic of SMT solvers to Difference Logic instead.

Finally, one of the SMT solvers cvc4, z3, or yices is called to compute models by using
flags -cvc4, -z3, or -yices. (In fact, any other SMT solver supporting SMT-LIB can
be utilized.) The cmodels(diff) system post-processes the output of the SMT solvers

D. Shen and Y. Lierler 11:11

mentioned above to produce answer sets in a typical format disregarding any auxiliary atoms
or integer variables that are created during the system’s execution.

The cmodels(diff) system allows us to compute multiple answer sets. Currently, SMT
solvers typically find only a single model. We design a process to enumerate all models.
For a logic program Π, after an SMT solver finds a model and exits, the cmodels(diff)
system constructs a clause that consists of (i) atoms in At(Π) that are assigned false by the
model and (i) negations of atoms in At(Π) that are assigned true by the model. This clause
is added into the smt-lib formula previously computed. Then, the SMT solver is called
again taking the new input. The process is performed repeatedly, until the smt-lib formula
becomes unsatisfiable.

In summary, cmodels(diff) has eight possible configurations. We can choose one from
the four variants of level ranking formulas, and choose a logic from either Linear Integer
Arithmetic or Difference Logic for the invoked SMT solver.

6 Experiments

We benchmark cmodels(diff) on seven problems, to compare its performance with that of
other ASP solvers, namely cmodels and clasp [7]. All considered benchmarks are non-tight
programs. The first two benchmarks are Labyrinth and Connected Still Life, which are
obtained from the Fifth Answer Set Programming Competition3. We note that the original
encoding of Still Life is an optimization problem, and we turn it into a decision one. The next
three benchmarks originate from Asparagus4. The selected problems are RandomNonTight,
Hamiltonian Cycle and Wire Routing. We also consider five instances of Wire Routing
from RST Construction5. Then, we use Bounded Models as the sixth benchmark6. Our
last benchmark, Mutual Exclusion, comes from Synthesis Benchmarks7. We rewrite the
seven encodings to fit the syntax of gringo 4, and call gringo v. 4.5.38 to produce ground
programs serving as input to all benchmarked systems. All benchmarks are posted at the
cmodels(diff) website provided at Footnote 2.

All benchmarks are run on an Ubuntu 16.04.1 LTS (64-bit) system with an Intel core
i5-4250U processor. The resource allocated for each benchmark is limited to one cpu core
and 4GB RAM. We set a timeout of 1800 seconds. No problems are solved simultaneously.

Numbers of instances are shown in parentheses after names of benchmarks. We present
cumulative time of all instances for each benchmark with numbers of unsolved instances
due to timeout or insufficient memory inside parentheses. All the steps involved, including
grounding and transformation, are reported as parts of solving time.

Five distinct solvers are benchmarked: (1) cmodels(diff) invoking SMT solver cvc4 v.
1.4; (2) cmodels(diff) invoking SMT solver z3 v. 4.5.1; (3) cmodels(diff) invoking SMT
solver yices v. 2.5.4; (4) clasp v. 3.1.3; (5) cmodels v. 3.86.1 with Satisfiability solver
Minisat v. 2.0 beta. We use diff-cvc4, diff-z3, and diff-yices to denote three variants of
cmodels(diff) used in the experiments.

3 https://www.mat.unical.it/aspcomp2014/
4 https://asp.haiti.cs.uni-potsdam.de/
5 http://people.sabanciuniv.edu/~esraerdem/ASP-benchmarks/rst-basic.html
6 http://users.ics.aalto.fi/~kepa/experiments/boundsmodels/
7 http://www2.informatik.uni-stuttgart.de/fmi/szs/research/projects/synthesis/

benchmarks030923.html
8 http://potassco.sourceforge.net/

ICLP 2018

https://www.mat.unical.it/aspcomp2014/
https://asp.haiti.cs.uni-potsdam.de/
http://people.sabanciuniv.edu/~esraerdem/ASP-benchmarks/rst-basic.html
http://users.ics.aalto.fi/~kepa/experiments/boundsmodels/
http://www2.informatik.uni-stuttgart.de/fmi/szs/research/projects/synthesis/benchmarks030923.html
http://www2.informatik.uni-stuttgart.de/fmi/szs/research/projects/synthesis/benchmarks030923.html
http://potassco.sourceforge.net/

11:12 SMT-Based Answer Set Solver CMODELS(DIFF) (System Description)

Table 1 Experimental Summary.

Benchmark diff-cvc4 diff-z3 diff-yices diff-z3 diff-yices cmodels clasp
LIA LIA LIA DL DL

Still Life (26) 731 5423(1) 203 899 194 647 10.8
Ham. Cycl. (50) 15.39 9.78 4.54 6.61 3.57 1.19 0.53
Wire Rout. (10) 1378 562.36 1562 2983(1) 2089(1) 409 12.5

Bound. Mod. (8) 6.08 4.30 2.34 2.93 2.20 1.59 1.38
Labyrinth (30) 19543(8) 27794(12) 20425(10) 22023(9) 21836(9) 16408(7) 5826(2)

Rand. Nont. (20) 27.8 8.65 6.84 7.72 6.47 1.39 3.52
Mut. Excl. (5) 5.26 2.72 1.70 2.28 1.50 0.30 0.13

Table 1 summarizes main results. Under the name of variants of the cmodels(diff)
systems, we state the configuration used for this solver. Namely, “LIA” and “DL” denote that
the logic of SMT solvers is set to Linear Integer Arithmetic and Difference Logic, respectively.
All diff systems in the table are invoked with flag -SCClevelRanking. Systems clasp
and cmodels are run with default settings. We benchmarked cmodels(diff) with all
eight possible configurations. Yet, we do not present all of the data here. cmodels(diff)
invoked with -levelRanking and -levelRankingStrong flags shows worse performance than
settings -SCClevelRanking and -SCClevelRankingStrong, respectively. That is why we
avoid presenting the results on configurations -levelRanking and -levelRankingStrong.
Also, adding constraints for strong level ranking typically slightly degrades the performance so
we do not present the results for the -SCClevelRankingStrong configuration. We note that
SMT solver cvc4 implements the same procedure for processing Difference Logic statement
and Linear Integer Arithmetic statements.

Observations

We observe that system clasp almost always displays the best results. This is not surprising
as this is one of the best native answer set solvers currently available. Its search method is
attuned towards processing logic programs. Given that SMT solvers are agnostic towards
specifics of logic programs it is remarkable how good the performance of cmodels(diff) is.
In some cases it is comparable to that of clasp.

It is the case that many Satisfiability solvers and answer set solvers share a lot in com-
mon [12]. For example, answer set solver clasp starts by computing clausified programs
completion and then later applies to it Unit propagator search technique stemming from
Satisfiability solving. That is reminiscent of the process that system cmodels(diff) un-
dertakes. It also computes program’s completion so that Unit propagator of SMT solvers is
applicable to it.

We conjecture that the greatest difference between cmodels(diff) and clasp lies in the
fact that

in cmodels(diff) integer linear constraints encode the conditions to weed out unwanted
models of completion; SMT solvers implement search techniques/propagators to target
these integer linear constraint;
in clasp the structure of the program is taken into account by the so called Unfounded
propagator for this task.

In case of Still Life, Hamiltonian Cycle, Wire Routing, and Bounded Models benchmarks
(marked in bold in Table 1) there is one more substantial difference. These encodings contain
aggregates. clasp implements specialized search techniques to benefit from the compact

D. Shen and Y. Lierler 11:13

representations that aggregates provide. System cmodels(diff) translates aggregates
away, which often results in a bigger problem encoding that the system has to deal with.
System cmodels also translates aggregates away. This is why we underline the solving
times of cmodels, as it is insightful to compare the performance of cmodels to that
of cmodels(diff) alone. Indeed, cmodels(diff) utilizes the routines of cmodels for
eliminating aggregates and computing the completion of the resulting program. Thus, the
only difference between these systems is in how they eliminate models of completion that are
not answer sets. System cmodels(diff) utilizes level rankings for that. System cmodels
implements a propagator in spirit of Unfounded propagator of clasp, but the propagator of
cmodels is only used when a model of completion is found; clasp utilizes this propagator
as frequently as it utilizes Unit propagator [14, Section 5]. We believe that when we observe
a big difference in performance of cmodels(diff) and clasp, this attributes to the benefits
gained by the utilization of specialized Unfounded and “aggregate” propagators by clasp.
Yet, level ranking formulas seem to provide a viable alternative to Unfounded propagator
and open a door for utilization of SMT solvers for dealing with non-tight programs. This
gives us grounds to believe that the future work on extending constraint answer set solver
ezsmt to accept non-tight programs is a viable direction.

As we noted earlier SCC level rankings yield best performance among the four variants
of level rankings. Furthermore, Table 1 illustrates the following. The logic of SMT solvers
does not make an essential difference. Overall, cmodels(diff)-yices with Linear Integer
Arithmetic logic performs best within the presented cmodels(diff) configurations. Obvi-
ously, utilizing better SMT solvers can improve the performance of cmodels(diff) in the
future. Notably, this does not require modifications to cmodels(diff), since smt-lib used
by cmodels(diff) is a standard input language of SMT solvers.

7 Conclusion

In this paper we presents the cmodels(diff) system that takes a logic program and translates
it into an smt-lib formula which is then solved by an SMT solver to find answer sets of the
given program. Our work parallels the efforts of an earlier answer set solver lp2diff [10]. The
cmodels(diff) system allows richer syntax such as choice rules and aggregate expressions,
and enables computation of multiple solutions. (In this work we extended the theory of
level rankings to the case of programs with choice rules and denials.) We note that the
lp2normal9 tool can be used as a preprocessor for lp2diff in order to enable this system
to process logic programs with richer syntax. In the future, we will compare performance of
cmodels(diff) and lp2diff experimentally. Yet, we do not expect to see great difference
in their performance when the same SMT solver is used as a backend. Also, we would like to
conduct more extensive experimental analysis to support our conjecture on the benefits of
specialized “aggregate” propagator and Unfounded propagator employed by clasp.

The technique implemented by cmodels(diff) for enumerating multiple answer sets of
a program is basic. In the future we would like to adopt the nontrivial methods for model
enumeration discussed in [8] to our settings. The theory developed in this paper provides
a foundation to extend the recent constraint answer set programming solver ezsmt [21] to
accept non-tight constraint answer set programs. The contributions of this work also open a
door to the development of a novel constraint-based method in processing logic programs

9 https://research.ics.aalto.fi/software/asp/lp2normal/

ICLP 2018

https://research.ics.aalto.fi/software/asp/lp2normal/

11:14 SMT-Based Answer Set Solver CMODELS(DIFF) (System Description)

by producing intermediate output in minizinc [18] in place of smt-lib. We believe our
work will boost the cross-fertilization between the three areas: SMT, constraint answer set
programming, and constraint programming.

References
1 Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Version 2.5.

Technical report, Department of Computer Science, The University of Iowa, 2015.
2 Clark Barrett and Cesare Tinelli. Satisfiability Modulo Theories. In Edmund Clarke, Tom

Henzinger, and Helmut Veith, editors, Handbook of Model Checking. Springer, 2014.
3 Keith Clark. Negation as failure. In Herve Gallaire and Jack Minker, editors, Logic and

Data Bases, pages 293–322. Plenum Press, New York, 1978.
4 Esra Erdem and Vladimir Lifschitz. Fages’ theorem for programs with nested expressions.

In Proceedings of International Conference on Logic Programming (ICLP), pages 242–254,
2001.

5 François Fages. Consistency of Clark’s completion and existence of stable models. Journal
of Methods of Logic in Computer Science, 1:51–60, 1994.

6 Paolo Ferraris and Vladimir Lifschitz. Weight constraints as nested expressions. Theory
and Practice of Logic Programming, 5:45–74, 2005.

7 Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Javier Romero, and Torsten
Schaub. Progress in clasp Series 3. In Proceedings of the Thirteenth International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR’15), 2015.

8 Martin Gebser, Benjamin Kaufmann, André Neumann, and Torsten Schaub. Conflict-
driven Answer Set Enumeration. In Proceedings of the 9th International Conference on
Logic Programming and Nonmonotonic Reasoning, LPNMR’07, pages 136–148, Berlin, Hei-
delberg, 2007. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=1758481.
1758496.

9 Carla P. Gomes, Henry Kautz, Ashish Sabharwal, and Bart Selman. Satisfiability Solvers.
In Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter, editors, Handbook of Knowl-
edge Representation, pages 89–134. Elsevier, 2008.

10 Tomi Janhunen, Ilkka Niemelä, and Mark Sevalnev. Computing Stable Models via Re-
ductions to Difference Logic. In Logic Programming and Nonmonotonic Reasoning, pages
142–154. Springer Berlin Heidelberg, 2009.

11 Yuliya Lierler. SAT-based Answer Set Programming. PhD thesis, University of Texas at
Austin, 2010.

12 Yuliya Lierler. What is answer set programming to propositional satisfiability. Constraints,
pages 1–31, 2016. doi:10.1007/s10601-016-9257-7.

13 Yuliya Lierler and Benjamin Susman. On relation between constraint answer set pro-
gramming and satisfiability modulo theories. Theory and Practice of Logic Programming,
17(4):559–590, 2017.

14 Yuliya Lierler and Miroslaw Truszczyński. Transition Systems for Model Generators — A
Unifying Approach. Theory and Practice of Logic Programming, 27th Int’l. Conference on
Logic Programming (ICLP) Special Issue, 11(4-5):629–646, 2011.

15 Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. Nested expressions in logic
programs. Annals of Mathematics and Artificial Intelligence, 25:369–389, 1999.

16 Fangzhen Lin and Yuting Zhao. ASSAT: Computing answer sets of a logic program by
SAT solvers. Artificial Intelligence, 157:115–137, 2004.

17 Kim Marriott and Peter J. Stuckey. Programming with Constraints: An Introduction. MIT
Press, 1998.

http://dl.acm.org/citation.cfm?id=1758481.1758496
http://dl.acm.org/citation.cfm?id=1758481.1758496
http://dx.doi.org/10.1007/s10601-016-9257-7

D. Shen and Y. Lierler 11:15

18 N. Nethercote, P.J. Stuckey, R. Becket, S. Brand, G.J. Duck, , and G. Tack. MiniZinc:
Towards a standard CP modelling language. In Proceedings of the 13th International Con-
ference on Principles and Practice of Constraint Programming, page 529–543, 2007.

19 Ilkka Niemela. Stable models and difference logic. Annals of Mathematics and Artificial
Intelligence, 53:313–329, 2008.

20 Ilkka Niemelä and Patrik Simons. Extending the Smodels System with Cardinality and
Weight Constraints. In Jack Minker, editor, Logic-Based Artificial Intelligence, pages 491–
521. Kluwer, 2000.

21 Benjamin Susman and Yuliya Lierler. SMT-Based Constraint Answer Set Solver EZSMT
(System Description). In Technical Communications of the 32nd International Conference
on Logic Programming (ICLP 2016), volume 52, pages 1:1–1:15, 2016.

ICLP 2018

	Introduction
	Preliminaries
	Level Rankings
	From Logic Programs to SMT(IL)
	The CMODELS(DIFF) system
	Experiments
	Conclusion

