
Probabilistic Action Language pBC+

Yi Wang
Arizona State University
School of Computing, Informatics, and Decision Systems Engineering
Fulton Schools of Engineering, Arizona State University
P.O. Box 878809, Tempe, AZ 85287-8809, United States
ywang485@asu.edu

Abstract
We present an ongoing research on a probabilistic extension of action language BC+. Just like
BC+ is defined as a high-level notation of answer set programs for describing transition systems,
the proposed language, which we call pBC+, is defined as a high-level notation of LPMLN programs
– a probabilistic extension of answer set programs.

As preliminary results accomplished, we illustrate how probabilistic reasoning about trans-
ition systems, such as prediction, postdiction, and planning problems, as well as probabilistic
diagnosis for dynamic domains, can be modeled in pBC+ and computed using an implementa-
tion of LPMLN.

For future work, we plan to develop a compiler that automatically translates pBC+ descrip-
tion into LPMLN programs, as well as parameter learning in probabilistic action domains through
LPMLN weight learning. We will work on defining useful extensions of pBC+ to facilitate hypo-
thetical/counterfactual reasoning. We will also find real-world applications, possibly in robotic
domains, to empirically study the performance of this approach to probabilistic reasoning in
action domains.

2012 ACM Subject Classification Computing methodologies → Knowledge representation and
reasoning

Keywords and phrases action language, probabilistic reasoning, LPMLN

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.15

Acknowledgements We are grateful to the anonymous referees for their useful comments. This
work was partially supported by the National Science Foundation under Grant IIS-1526301.

1 Introduction and Problem Description

Action languages, such as A [9], B [10], C [12], C+ [11], and BC [15], are formalisms for
describing actions and their effects. Many of these languages can be viewed as high-level
notations of answer set programs structured to represent transition systems. The expressive
possibility of action languages, such as indirect effects, triggered actions, and additive fluents,
has been one of the main research topics. Most of the extensions accounting for that are logic-
oriented, and less attention has been paid to probabilistic reasoning, with a few exceptions
such as [6, 8], let alone automating such probabilistic reasoning and learning parameters of
an action description.

Action language BC+ [2], one of the most recent additions to the family of action languages,
is no exception. While the language is highly expressive to embed other action languages,
such as C+ [11] and BC [14], it does not have a natural way to express the likelihood of
histories (i.e., a sequence of transitions).

© Yi Wang;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 15; pp. 15:1–15:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ywang485@asu.edu
https://doi.org/10.4230/OASIcs.ICLP.2018.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

15:2 Probabilistic Action Language pBC+

I Example 1. Consider an extension of the robot example from [13]: A robot and a book
that can be picked up are located in a building with 2 rooms r1 and r2. The robot can move
to rooms, pick up the book and put down the book. There is 0.1 chance that it fails when it
tries to enter a room, a 0.2 chance that the robot drops the book when it has the book, and
0.3 chance that the robot fails when it tries to pick up the book. The robot, as well as the
book, was initially at r1. It executed the following actions to deliver the book from r1 to r2:
pick up the book; go to r2; put down the book. However, after the execution, it observes
that the book is not at r2. What was the problem?

To answer the above query, an action language needs the capabilities of not only probab-
ilistic reasoning, but also abductive reasoning in a probabilistic setting. In my research, we
are working on a probabilistic extension of BC+, which we call pBC+, with the expressivity
to answer queries such as the one in Example 1. Just like BC+ is defined as a high-level
notation of answer set programs for describing transition systems, pBC+ is defined as a
high-level notation of LPMLN programs – a probabilistic extension of answer set programs.
Language pBC+ inherits expressive logical modeling capabilities of BC+ but also allows us
to assign a probability to a sequence of transitions so that we may distinguish more probable
histories.

In this paper, as preliminary results accomplished, we will show how probabilistic reasoning
about transition systems, such as prediction, postdiction, and planning problems, can be
modeled in pBC+ and computed using an implementation of LPMLN[16]. Further, we will
show that it can be used for probabilistic abductive reasoning about dynamic domains, where
the likelihood of the abductive explanation is derived from the parameters manually specified
or automatically learned from the data.

For future work, we plan to develop a compiler that automatically translates pBC+
description into LPMLN programs, as well as parameter learning in probabilistic action
domains through LPMLN weight learning. We will work on defining useful extensions of pBC+
to facilitate hypothetical/counterfactual reasoning. We will also find real-world applications,
possibly in robotic domains, to empirically study the performance of this approach to
probabilistic reasoning in action domains.

This paper will give a summary of my research on pBC+, including the background and
some review of existing literature (Section 2), goal of the research (Section 3), the current
status of the research (Section 4), preliminary results accomplished (Section 5) as well as
issues and expected achievements (Section 6).

2 Background and Overview of Existing Literature

2.1 Probabilistic Reasoning and Diagnosis in the Context of Action
Languages

There are various formalisms for reasoning in probabilistic action domains. PC+ [8] is a
generalization of the action language C+ that allows for expressing probabilistic information.
PC+ expresses probabilistic transition of states through so-called context variables, which
are exogenous variables associated with predefined probability distributions. PC+ allows
for expressing qualitative and quantitative uncertainty about actions by referring to the
sequence of “belief” states – possible sets of states together with probabilistic information.
On the other hand, the semantics is highly complex and there is no implementation of PC+
as far as we know.

Y. Wang 15:3

[20] defined a probabilistic action language called NB, which is an extension of the
(deterministic) action language B. NB can be translated into P-log [4] and since there exists
a system for computing P-log, reasoning in NB action descriptions can be automated. Like
PC+, probabilistic transitions are expressed through dynamic causal laws with random
variables associated with predefined probability distribution. In NB, however, these random
variables are hidden from the action description and are only visible in the translated P-
log representation. In order to translate NB into executable low-level logic programming
languages, some semantical assumptions have to be made in NB, such as all actions have to
be always executable and nondeterminism can only be caused by random variables.

Probabilistic action domains, especially in terms of probabilistic effects of actions, can
be formalized as Markov Decision Process (MDP). The language proposed in [6] aims
at facilitating elaboration tolerant representations of MDPs. The syntax is similar to
NB and PC+. The semantics is more complex as it allows preconditions of actions and
imposes less semantical assumption. The concept of unknown variables associated with
probability distributions is similar to random variables in NB. There is, as far as we know,
no implementation of the language. There is no discussion about probabilistic diagnosis
in the context of the language. PPDDL [19] is a probabilistic extension of the planning
definition language PDDL. Like NB, the nondeterminism that PPDDL considers is only the
probabilistic effect of actions. The semantics of PDDL is defined in terms of MDP. There
are also probabilistic extensions of the Event Calculus such as [7] and [18].

In the above formalisms, the problem of probabilistic diagnosis is only discussed in
[20]. [3] and [5] studied the problem of diagnosis. However, they are focused on diagnosis
in deterministic and static domains. [13] has proposed a method for diagnosis in action
domains with situation calculus. Again, the diagnosis considered there does not involve any
probabilistic measure.

2.2 Review: Language LPMLN

We review the definition of LPMLN from [17]. An LPMLN program is a finite set of weighted
rules w : R where R is a rule and w is a real number (in which case, the weighted rule is
called soft) or α for denoting the infinite weight (in which case, the weighted rule is called
hard). An LPMLN program is called ground if its rules contain no variables. We assume a
finite Herbrand Universe so that the ground program is finite. Each ground instance of a
non-ground rule receives the same weight as the original non-ground formula.

For any ground LPMLN program Π and any interpretation I, Π denotes the usual
(unweighted) ASP program obtained from Π by dropping the weights, ΠI denotes the set of
w : R in Π such that I |= R, and SM[Π] denotes the set {I | I is a stable model of ΠI}. The
unnormalized weight of an interpretation I under Π is defined as

WΠ(I) =

exp
(∑
w:R ∈ ΠI

w

)
if I ∈ SM[Π];

0 otherwise.

The normalized weight (a.k.a. probability) of an interpretation I under Π is defined as

PΠ(I) = lim
α→∞

WΠ(I)∑
J∈SM[Π]

WΠ(J) .

Interpretation I is called a (probabilistic) stable model of Π if PΠ(I) 6= 0. The most probable
stable models of Π are the stable models with the highest probability.

ICLP 2018

15:4 Probabilistic Action Language pBC+

2.3 Review: Multi-Valued Probabilistic Programs
Multi-valued probabilistic programs [17] are a simple fragment of LPMLN that allows us to
represent probability more naturally.

We assume that the propositional signature σ is constructed from “constants” and their
“values.” A constant c is a symbol that is associated with a finite set Dom(c), called the
domain. The signature σ is constructed from a finite set of constants, consisting of atoms
c=v 1 for every constant c and every element v in Dom(c). If the domain of c is {f, t} then
we say that c is Boolean, and abbreviate c=t as c and c= f as ∼c.

We assume that constants are divided into probabilistic constants and non-probabilistic
constants. A multi-valued probabilistic program Π is a tuple 〈PF ,Π〉, where

PF contains probabilistic constant declarations of the following form:

p1 :: c=v1 | · · · | pn :: c=vn (1)

one for each probabilistic constant c, where {v1, . . . , vn} = Dom(c), vi 6= vj , 0 ≤
p1, . . . , pn ≤ 1 and

∑n
i=1 pi = 1. We use MΠ(c = vi) to denote pi. In other words, PF

describes the probability distribution over each “random variable” c.
Π is a set of rules such that the head contains no probabilistic constants.

The semantics of such a program Π is defined as a shorthand for LPMLN program T (Π)
of the same signature as follows.

For each probabilistic constant declaration (1), T (Π) contains, for each i = 1, . . . , n, (i)
ln(pi) : c=vi if 0 < pi < 1; (ii) α : c=vi if pi = 1; (iii) α : ⊥ ← c=vi if pi = 0.
For each rule Head ← Body in Π, T (Π) contains α : Head ← Body.
For each constant c, T (Π) contains the uniqueness of value constraints

α : ⊥ ← c=v1 ∧ c = v2 (2)

for all v1, v2 ∈ Dom(c) such that v1 6= v2, and the existence of value constraint

α : ⊥ ← ¬
∨

v∈Dom(c)
c=v . (3)

In the presence of the constraints (2) and (3), assuming T (Π) has at least one (probabil-
istic) stable model that satisfies all the hard rules, a (probabilistic) stable model I satisfies
c = v for exactly one value v, so we may identify I with the value assignment that assigns v
to c.

3 Goal of the Research

The following are our research objectives.
Designing Probabilistic Action Language on the Foundation of LPMLN. We
design the syntax and semantics of the language pBC+ to allow for commonsense reasoning,
probabilistic inference and statistical learning. Furthermore, we study the theoretical
properties of the action language to establish its relation with probabilistic transition
systems.

1 Note that here “=” is just a part of the symbol for propositional atoms, and is not equality in first-order
logic.

Y. Wang 15:5

Defining the Extension of the Action Language to Explain the Reason of
Failure in Dynamic Domains. We extend the probabilistic action language to
account for diagnostic reasoning when the observation conflicts with the way the system
is supposed to behave. This will be in contrast with diagnostic reasoning in other action
languages, which is logical and does not distinguish which diagnosis is more probable.
Extending the Action Language For Hypothetical/Counterfactual Reasoning.
We extend the probabilistic action language to answer queries involving hypothetical/-
counterfactual reasoning, where the diagnosis or observation is given, we are interested in
how the outcome would have been affected if some action happened instead.
Implementing a Compiler that Automatically Translates pBC+ Descriptions
to LPMLN Programs. Since pBC+ can be executable through translation to LPMLN, it
is desirable to have a compiler that automates this translation. We plan to develop such
a compiler.
Empirically Studying the Performance of pBC+ with Real-World Applications.
After we have the implementation for inference and learning on pBC+ action descriptions,
we will apply pBC+ on reasoning and learning tasks in real-world applications, possibly
robotic domains.

4 Current Status of the Research

This research is at its starting phase. In our recent paper accepted by ICLP 2018, we have
defined the syntax and semantics of pBC+, and experimented with several examples through
manual translation to LPMLN. We have also defined the extension that allows diagnostic
reasoning in probabilistic action domains.

Currently we are investigating on parameter learning of pBC+ through LPMLN weight
learning. We are developing a prototype system for LPMLN weight learning, and several
examples of parameter learning of pBC+ descriptions are part of the benchmarks we use for
the prototype system.

5 Preliminary Results Accomplished

In this section, we will present the syntax and semantics of pBC+, and illustrate how various
reasoning tasks involving probabilistic inference can be automated in this language, through
translation to LPMLN.

5.1 Syntax of pBC+
We assume a propositional signature σ as defined in Section 2.3. We further assume that
the signature of an action description is divided into four groups: fluent constants, action
constants, pf (probability fact) constants and initpf (initial probability fact) constants. Fluent
constants are further divided into regular and statically determined. The domain of every
action constant is Boolean. A fluent formula is a formula such that all constants occurring
in it are fluent constants.

The following definition of pBC+ is based on the definition of BC+ language.
A static law is an expression of the form

caused F if G (4)

where F and G are fluent formulas.

ICLP 2018

15:6 Probabilistic Action Language pBC+

A fluent dynamic law is an expression of the form

caused F if G after H (5)

where F and G are fluent formulas and H is a formula, provided that F does not contain
statically determined constants and H does not contain initpf constants.

A pf constant declaration is an expression of the form

caused pf = {v1 : p1, . . . , vn : pn} (6)

where pf is a pf constant with domain {v1, . . . , vn}, 0 < pi < 1 for each i ∈ {1, . . . , n}2, and
p1 + · · ·+ pn = 1. In other words, (6) describes the probability distribution of pf .

An initpf constant declaration is an expression of the form (6) where pf is an initpf
constant.

An initial static law is an expression of the form

initially F if G (7)

where F is a fluent formula and G is a formula that contains neither action constant nor pf
constant.

A causal law is a static law, a fluent dynamic law, a pf constant declaration, an initpf
constant declaration, or an initial static law. An action description is a finite set of causal
laws.

We use σfl to denote the set of fluent constants, σact to denote the set of action constants,
σpf to denote the set of pf constants, and σinitpf to denote the set of initpf constants in D.
For any signature σ′ and any i ∈ {0, . . . ,m}, we use i : σ′ to denote the set {i : a | a ∈ σ′}.

By i : F we denote the result of inserting i : in front of every occurrence of every constant
in formula F . This notation is straightforwardly extended when F is a set of formulas.

I Example 2. The following is an action description in pBC+ for the transition system
shown in Figure 1, P is a Boolean regular fluent constant, and A is an action constant.
Action A toggles the value of P with probability 0.8. Initially, P is true with probability
0.6 and false with probability 0.4. We call this action description PSD. (x is a schematic
variable that ranges over {t, f}.)

caused P if > after ∼P ∧A ∧ Pf ,
caused ∼P if > after P ∧A ∧ Pf ,
caused {P}ch if > after P,
caused {∼P}ch if > after ∼P,

caused Pf = {t : 0.8, f : 0.2},
caused Init_P = {t : 0.6, f : 0.4},
initially P = x if Init_P = x.

({P}ch is a choice formula standing for P ∨ ¬P .)

5.2 Semantics of pBC+
Given a non-negative integer m denoting the maximum length of histories, the semantics
of an action description D in pBC+ is defined by a reduction to multi-valued probabilistic
program Tr(D,m), which is the union of two subprograms Dm and Dinit as defined below.

2 We require 0 < pi < 1 for each i ∈ {1, . . . , n} for the sake of simplicity. On the other hand, if pi = 0 or
pi = 1 for some i, that means either vi can be removed from the domain of pf or there is not really a
need to introduce pf as a pf constant. So this assumption does not really sacrifice expressivity.

Y. Wang 15:7

P = t P = f

A: 0.8

A: 0.8

~A: 1; A: 0.2 ~A: 1; A: 0.2

Figure 1 A transition system with probabilistic transitions.

For an action description D of a signature σ, we define a sequence of multi-valued
probabilistic program D0, D1, . . . , Dm so that the stable models of Dm can be identified
with the paths in the transition system described by D. The signature σm of Dm consists of
atoms of the form i : c = v such that

for each fluent constant c of D, i ∈ {0, . . . ,m} and v ∈ Dom(c),
for each action constant or pf constant c of D, i ∈ {0, . . . ,m− 1} and v ∈ Dom(c).

We use σxm, where x ∈ {act, fl, pf}, to denote the subset of σm

{i : c = v | i : c = v ∈ σm and c ∈ σx}.

We define Dm to be the multi-valued probabilistic program 〈PF,Π〉, where Π is the
conjunction of

i : F ← i : G (8)

for every static law (4) in D and every i ∈ {0, . . . ,m};

i+1 : F ← (i+1 : G) ∧ (i : H) (9)

for every fluent dynamic law (5) in D and every i ∈ {0, . . . ,m− 1};

{0:c = v}ch (10)

for every regular fluent constant c and every v ∈ Dom(c);

{i : c = t}ch, {i : c = f}ch (11)

for every action constant c; and PF consists of

p1 :: i : pf = v1 | · · · | pn :: i : pf = vn (12)

(i = 0, . . . ,m− 1) for each pf constant declaration (6) in D that describes the probability
distribution of pf .

In addition, we define the program Dinit, whose signature is 0 :σinitpf ∪ 0:σfl. Dinit is
the multi-valued probabilistic program

Dinit = 〈PF init,Πinit〉

where Πinit consists of the rule

⊥ ← ¬(0 :F) ∧ 0:G

ICLP 2018

15:8 Probabilistic Action Language pBC+

for each initial static law (7), and PF init consists of

p1 :: 0 :c = v1 | · · · | pn :: 0 :c = vn

for each initpf constant declaration (6).
We define Tr(D,m) to be the union of the two multi-valued probabilistic program

〈PF ∪ PF init,Π ∪Πinit〉.

I Example 3. For the action description PSD in Example 2, PSDinit is the following
multi-valued probabilistic program (x ∈ {t, f}):

0.6 :: 0 :Init_P | 0.4 :: 0 :∼Init_P
⊥ ← ¬(0 :P =x) ∧ 0 : Init_P=x.

and PSDm is the following multi-valued probabilistic program (i is a schematic variable that
ranges over {1, . . . ,m− 1}):

0.8 :: i : Pf | 0.2 :: i :∼Pf
i+1 : P ← i :∼P ∧ i : A ∧ i : Pf
i+1 :∼P ← i : P ∧ i : A ∧ i : Pf

{i+1 : P}ch ← i : P
{i+1 :∼P}ch ← i :∼P
{i : A}ch {i :∼A}ch
{0:P}ch {0:∼P}ch

5.3 pBC+ Action Descriptions and Probabilistic Reasoning
In this section, we illustrate how the probabilistic extension of the reasoning tasks discussed in
[11], i.e., prediction, postdiction and planning, can be represented in pBC+ and automatically
computed using lpmln2asp [16]. Consider the following probabilistic variation of the well-
known Yale Shooting Problem: There are two (deaf) turkeys: a fat turkey and a slim turkey.
Shooting at a turkey may fail to kill the turkey. Normally, shooting at the slim turkey has
0.6 chance to kill it, and shooting at the fat turkey has 0.9 chance. However, when a turkey
is dead, the other turkey becomes alert, which decreases the success probability of shooting.
For the slim turkey, the probability drops to 0.3, whereas for the fat turkey, the probability
drops to 0.7.

The example can be modeled in pBC+ as follows:

Notation: t range over {SlimTurkey,FatTurkey}.
Regular fluent constants: Domains:

Alive(t), Loaded Boolean
Statically determined fluent constants: Domains:

Alert(t) Boolean
Action constants: Domains:

Load , Fire(t) Boolean
Pf constants: Domains:

Pf_Killed(t), Pf_Killed_Allert(t) Boolean
InitPf constants:

Init_Alive(t), Init_Loaded Boolean

caused Loaded if > after Load
caused Pf_Killed(SlimTurkey) = {t : 0.6, f : 0.4}
caused Pf_Killed_Alert(SlimTurkey) = {t : 0.3, f : 0.7}
caused Pf_Killed(FatTurkey) = {t : 0.9, f : 0.1}

Y. Wang 15:9

caused Pf_Killed_Alert(FatTurkey) = {t : 0.7, f : 0.3}
caused ∼Alive(t) if > after Loaded ∧ Fire(t)∧ ∼Alert(t) ∧ Pf_Killed(t)
caused ∼Alive(t) if > after Loaded ∧ Fire(t) ∧Alert(t) ∧ Pf_Killed_Alert(t)
caused ∼Loaded if > after Fire(t)
default ∼Alert(t)
caused Alert(t1) if ∼Alive(t2) ∧Alive(t1) ∧ t1 6= t2
caused {Alive(t)}ch if > after Alive(t),
caused {Loaded}ch if > after Loaded
caused {∼Alive(t)}ch if > after ∼Alive(t)
caused {∼Loaded}ch if > after ∼Loaded
caused ⊥ after a1 ∧ a2
caused Init_Alive(t) = {t : 0.5, f : 0.5} initially Alive(t) = b if Init_Alive(t) = b

caused Init_Loaded = {t : 0.5, f : 0.5} initially Loaded = b if Init_Loaded = b

We translate the action description into an LPMLN program and use lpmln2asp to
answer various queries about transition systems, such as prediction, postdiction and planning
queries.

Prediction. For a prediction query, we are given a sequence of actions and observations
that occurred in the past, and we are interested in the probability of a certain proposition
describing the result of the history, or the most probable result of the history. Formally,
we are interested in the conditional probability PrTr(D,m)(Result | Act,Obs) or the MAP
inference argmax

Result
PrTr(D,m)(Result | Act,Obs), where Result is a proposition describing a

possible outcome, Act is a set of facts of the form i : a or i :∼a for a ∈ σact, and Obs is a set
of facts of the form i : c = v for c ∈ σfl and v ∈ Dom(c).

For example, in the Yale shooting example, such a query could be “Given that only the
fat turkey is alive and the gun is loaded at the beginning, what is the probability that the
fat turkey died after shooting is executed?”. To answer this query, we manually translate the
action description above into the input language of lpmln2asp and add the following action
and observation as constraints:

:- not alive("slimTurkey", "f", 0). :- not alive("fatTurkey", "t", 0).
:- not loaded("t", 0). :- not fire("fatTurkey", "t", 0).

Executing the command
lpmln2asp -i yale-shooting.lpmln -q alive

yields
alive(’fatTurkey’, ’f’, 1) 0.700000449318

Postdiction. In the case of postdiction, we infer a condition about the initial state given the
history. Formally, we are interested in the conditional probability PrTr(D,m)(Initial_State |
Act,Obs) or the MAP inference argmax

Initial_State
PrTr(D,m)(Initial_State | Act,Obs), where

Initial_State is a proposition about the initial state; Act and Obs are defined as above.
For example, in the Yale shooting example, such a query could be “Given that the slim

turkey was alive and the gun was loaded at the beginning, the person shot at the slim turkey
and it died, what is the probability that the fat turkey was alive at the beginning?”

Formalizing the query and executing the command

ICLP 2018

15:10 Probabilistic Action Language pBC+

lpmln2asp -i yale-shooting.lpmln -q alive

yields
alive(’fatTurkey’, ’t’, 1) 0.666661211973

Planning. In this case, we are interested in a sequence of actions that would result in the
highest probability of a certain goal. Formally, we are interested in

argmax
Act

PrTr(D,m)(Goal | Initial_State,Act)

where Goal is a condition for a goal state, and Act is a sequence of actions a ∈ σact specifying
actions executed at each timestep.

For example, in the Yale shooting example, such query can be “given that both the
turkeys are alive and the gun is not loaded at the beginning, generate a plan that gives best
chance to kill both the turkeys with 4 actions”.

Formalizing the query and executing the command

lpmln2asp -i yale-shooting.lpmln

finds the most probable stable model, which yields
load("t",0) fire("slimTurkey","t",1) load("t",2) fire("fatTurkey","t",3)

which suggests to first kill the slim turkey and then the fat turkey.

5.4 Extending pBC+ to Allow Diagnosis
We define the following new constructs to allow probabilistic diagnosis in action domains.
Note that these constructs are simply syntactic sugar that does not change the actual
expressivity of the language.

We introduce a subclass of regular fluent constants called abnormal fluents.
When the action domain contains at least one abnormal fluent, we introduce a special
statically determined fluent constant ab with Boolean domain, and we add
default ∼ab.
We introduce the expression

caused_ab F if G after H

where F and G are fluent formulas and H is a formula, provided that F does not contain
statically determined constants and H does not contain initpf constants. This expression
is treated as an abbreviation of

caused F if ab ∧G after H.

Once we have defined abnormalities and how they affect the system, we can use

caused ab

to enable taking abnormalities into account in reasoning.
We can answer the query in Example 1 by modeling the action domain with this extension.

Due to lack of space, we skip the details.

Y. Wang 15:11

6 Open Issues and Expected Achievements

The main open issue is that we do not have a compiler that automates the translation
from pBC+ to LPMLN. As illustrated in Section 5.3, the action language pBC+ can be
executable through translation to LPMLN. It is desirable to have a compiler that automates
this translation, so that the user can directly write pBC+ descriptions and does not need
to worry about the translation detail. We plan to develop a compiler that translates action
descriptions in pBC+ into LPMLN programs automatically.

The interface and usage of the compiler will be similar to the system cplus2asp [1],
which translates the action language C+ to ASP.

Other future works include extending pBC+ for hypothetical/counterfactual reasoning,
exploring parameter learning in the setting of probabilistic action language, and empirically
studying the performance of pBC+ with weal-world applications.

References

1 Joseph Babb and Joohyung Lee. Cplus 2ASP: Computing Action Language C+ in Answer
Set Programming. In LPNMR, 2013.

2 Joseph Babb and Joohyung Lee. Action language BC+. Journal of Logic and Computation,
page exv062, 2015. doi:10.1093/logcom/exv062.

3 Marcello Balduccini and Michael Gelfond. Diagnostic reasoning with A-Prolog. Theory
and Practice of Logic Programming, 3:425–461, 2003.

4 Chitta Baral, Michael Gelfond, and Nelson Rushton. Probabilistic Reasoning With Answer
Sets. In Logic Programming and Nonmonotonic Reasoning, pages 21–33, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg.

5 Chitta Baral, Sheila Mcilraith, and Tran Son. Formulating Diagnostic Problem Solving
Using an Action Language With Narratives and Sensing. In KR 2000, Principles of Know-
ledge Representation and Reasoning Proceedings of the Seventh International Conference,
Breckenridge, Colorado, USA, April 11-15, 2000., pages 311–322, April 2000.

6 Chitta Baral, Nam Tran, and Le-Chi Tuan. Reasoning about actions in a probabilistic
setting. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages
507–512, 2002.

7 Fabio Aurelio D’Asaro, Antonis Bikakis, Luke Dickens, and Rob Miller. Foundations for a
Probabilistic Event Calculus. CoRR, abs/1703.06815, 2017. arXiv:1703.06815.

8 Thomas Eiter and Thomas Lukasiewicz. Probabilistic Reasoning about Actions in Non-
monotonic Causal Theories. In Proceedings Nineteenth Conference on Uncertainty in Arti-
ficial Intelligence (UAI-2003), pages 192–199. Morgan Kaufmann Publishers, 2003.

9 Michael Gelfond and Vladimir Lifschitz. Representing action and change by logic programs.
Journal of Logic Programming, 17:301–322, 1993.

10 Michael Gelfond and Vladimir Lifschitz. Action languages. Electronic Transactions on
Artificial Intelligence, 3:195–210, 1998. URL: http://www.ep.liu.se/ea/cis/1998/016/.

11 Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and Hudson
Turner. Nonmonotonic causal theories. Artificial Intelligence, 153(1–2):49–104, 2004.

12 Enrico Giunchiglia and Vladimir Lifschitz. An action language based on causal explanation:
Preliminary report. In Proceedings of National Conference on Artificial Intelligence (AAAI),
pages 623–630. AAAI Press, 1998.

13 Gero Iwan. History-based diagnosis templates in the framework of the situation calculus.
AI Communications, 15(1):31–45, 2002.

ICLP 2018

http://dx.doi.org/10.1093/logcom/exv062
http://arxiv.org/abs/1703.06815
http://www.ep.liu.se/ea/cis/1998/016/

15:12 Probabilistic Action Language pBC+

14 Joohyung Lee, Vladimir Lifschitz, and Fangkai Yang. Action Language BC: Preliminary
Report. In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI),
2013.

15 Joohyung Lee and Yunsong Meng. Answer Set Programming Modulo Theories and Reas-
oning about Continuous Changes. In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI), 2013.

16 Joohyung Lee, Samidh Talsania, and Yi Wang. Computing LPMLN using ASP
and MLN solvers. Theory and Practice of Logic Programming, 2017. doi:10.1017/
S1471068417000400.

17 Joohyung Lee and Yi Wang. Weighted Rules under the Stable Model Semantics. In
Proceedings of International Conference on Principles of Knowledge Representation and
Reasoning (KR), pages 145–154, 2016.

18 Anastasios Skarlatidis, Georgios Paliouras, George A Vouros, and Alexander Artikis. Prob-
abilistic event calculus based on markov logic networks. In Rule-Based Modeling and Com-
puting on the Semantic Web, pages 155–170. Springer, 2011.

19 Håkan LS Younes and Michael L Littman. PPDDL1. 0: An extension to PDDL for ex-
pressing planning domains with probabilistic effects, 2004.

20 Weijun Zhu. PLOG: Its Algorithms and Applications. PhD thesis, Texas Tech University,
2012.

http://dx.doi.org/10.1017/S1471068417000400
http://dx.doi.org/10.1017/S1471068417000400

	Introduction and Problem Description
	Background and Overview of Existing Literature
	Probabilistic Reasoning and Diagnosis in the Context of Action Languages
	Review: Language LP^{MLN}
	Review: Multi-Valued Probabilistic Programs

	Goal of the Research
	Current Status of the Research
	Preliminary Results Accomplished
	Syntax of pBC+
	Semantics of pBC+
	pBC+ Action Descriptions and Probabilistic Reasoning
	Extending pBC+ to Allow Diagnosis

	Open Issues and Expected Achievements

