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Abstract
Given a text, several questions can be asked. For some of these questions, the answer can be
directly looked up from the text. However for several other questions, one might need to use
additional knowledge and sophisticated reasoning to find the answer. Developing AI agents that
can answer these kinds of questions and can also justify their answer is the focus of this research.
Towards this goal, we use the language of Answer Set Programming as the knowledge repres-
entation and reasoning language for the agent. The question then arises, is how to obtain the
additional knowledge? In this work we show that using existing Natural Language Processing
parsers and a scalable Inductive Logic Programming algorithm it is possible to learn this addi-
tional knowledge (containing mostly commonsense knowledge) from question-answering datasets
which then can be used for inference.
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1 Introduction

Developing agents that can understand text is one of the long term goals of Artificial
Intelligence. To track the progress towards this goal, several question-answering challenges
have been proposed, such as, the science question answering challenge aristo [1], project
euclid’s math word problem solving [3, 4] and facebook research’s bAbI question answering
challenge [9]. In all these challenges, a small text is provided describing a scenario and one or
more questions based on that scenario. Table 1 shows an example from each of these three
tasks.

It should be noted that answering these questions (Table 1) requires knowledge that goes
beyond the text. For example, to answer the questions from the bAbI task (Table 1) one
needs to know the effect of certain actions. Similarly, answering the math question requires
the knowledge that the games one has won or lost is a subset of the games one has played
and also that the value of a whole is equal to the sum of its parts. The later is popularly
known as the part-whole formula. The science question on the other hand requires one to
know the dynamics of predator-prey population. Some of this knowledge such as the math
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Table 1 shows an example problem from the datasets of bAbI, word math problems and Aristo.

Mary grabbed the football.
Mary traveled to the office.
Mary took the apple there.
What is Mary carrying? A:football,apple
Mary left the football.
Daniel went back to the bedroom.
What is Mary carrying? A:apple

(a) An example from a bAbI challenge.

Sara’s high school played 12
basketball games this year.
The team won most of their
games. They were defeated
during 4 games. How many
games did they win ?

(b) An example of a word arith-
metic problem.

In one area, a large source of prey for eagles is rabbits. If the number of
rabbits suddenly decreases, what effect will it most likely have on the eagles?
(A) Their numbers will increase. (B) Their numbers will decrease. (C) They
will adapt new behaviors. (D) They will migrate to new locations.

(c) An example of a science question.

formula or the prey-predator population dynamics, can be easily collected from books and
can be provided to the agent as a background knowledge. However, some types of knowledge
such as the affect of the actions or the commonsense knowledge about part whole relations
between verbs might be difficult to write down manually as there exists a vast amount of such
knowledge. In this research, thus we aim to learn such knowledge from question-answering
dataset.

The proposed QA-architecture namely the Learning-Knowledge-Reasoning paradigm,
has three components: 1) A semantic parser, T that converts the text into the required
logical form, 2) An Inductive Logic Programming module, L that learns missing knowledge
from the training data and 3) A reasoning engine, R which computes the answer given the
query. In the training phase, given some background knowledge B and a training dataset D

the Inductive Logic Programming module uses the semantic parser T and a rule learning
algorithm to learn the necessary knowledge H from D. In the test phase, both B and H are
used to answer a given question. We have used the language of Answer Set Programming for
the purpose of knowledge representation and reasoning.

2 Background

2.1 Answer Set Programming

An answer set program is a collection of rules of the form,

L0 ← L1, ..., Lm, not Lm+1, ..., not Ln

where each of the Li’s is a literal in the sense of a classical logic. Intuitively, the above rule
means that if L1, ..., Lm are true and if Lm+1, ..., Ln can be safely assumed to be false then
L0 must be true. The left-hand side of an ASP rule is called the head and the right-hand
side is called the body. Predicates and ground terms in a rule start with a lower case letter,
while variable terms start with a capital letter. We will follow this convention throughout the
paper. A rule with no head is called a constraint. A rule with empty body is referred to as a
fact. The semantics of ASP is based on the stable model semantics of logic programming [2].



A. Mitra 19:3

Table 2 The basic predicates and axioms of Simple Discrete Event Calculus (SDEC).

Predicate Meaning
happensAt(F, T ) Event E occurs at time T

initiatedAt(F, T ) At time T a period of time
for which fluent F holds is
initiated

terminatedAt(F, T ) At time T a period of time
for which fluent F holds is
terminated

holdsAt(F, T ) Fluent F holds at time T
Axioms

holdsAt(F, T + 1)
← initiatedAt(F, T ).

holdsAt(F, T + 1)←
holdsAt(F, T ),
not terminatedAt(F, T ).

In this work, both the background knowledge B and the learned knowledge H are a collection
of such ASP rules.

2.2 Event Calculus

Event calculus is a temporal logic for reasoning about the events and their effects. The
ontology of the Event calculus comprises of time points, fluents (i.e. properties which have
certain values at a time point) and events (i.e. occurrences in time that may affect fluents
and alter their value). The formalism also contains two domain-independent axioms to
incorporate the commonsense law of inertia, according to which fluents persist over time
unless they are affected by an event. The building blocks of Event calculus and its domain
independent axioms are presented in Table 2.

3 Inductive Logic Programming for Mutually Distinct Examples

Inductive Logic Programming (ILP) [7] is a subfield of Machine learning that is focused
on learning logic programs. Given a set of positive examples E+, negative examples E−

and some background knowledge B, an ILP algorithm finds an Hypothesis H (answer set
program) such that B ∪ H |= E+ and B ∪ H 6|= E−. The possible hypothesis space is often
restricted with a language bias that is specified by a series of mode declarationsM [8].

This definition however does not consider the fact that a statistical machine learning
dataset contains several context dependent examples. We recently proposed a variation of the
standard ILP task namely, Inductive Logic Programming for “mutually Distinct Examples”
[6] which is more suitable for working with this machine learning datasets. An ILP task for
“mutually Distinct Examples” [6] (denoted as ILP DE) is defined as follows:

I Definition 1 (Inductive Logic Programming for Mutually Distinct Examples). An ILP
task for Distinct Examples (denoted as ILP DE) is a tuple 〈B, M, D〉, where B is an Answer Set
Program, called the background knowledge, M defines the set of rules allowed in hypotheses
(the hypothesis space) and D is the dataset containing a series of mutually distinct examples
〈E1, E2, ..., En〉. Here each Ei is a tuple 〈Oi, E+

i , E−
i 〉 where, Oi is a logic program, called

observation, E+ is a set of positive ground literals and E− is a set of negative ground literals.

ICLP 2018
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Figure 1 AMR representation of “Mary
grabbed the football.”

Figure 2 AMR representation of “What
is Mary carrying?”

A hypothesis H is an inductive solution of T (written as H ∈ ILP DE(B, M, D)) iff,

H ∪B ∪Oi ` E+
i , ∀i = 1...n

H ∪B ∪Oi 0 E−
i , ∀i = 1...n

An iterative and incremental algorithm, has also been developed [6] to compute the
solution of an ILP DE task.

4 Learning Knowledge from dataset

To learn the missing knowledge H from the training dataset D, first an instance of the
ILP DE task is created. The iterative and incremental algorithm for ILP DE in [6] is then
used which outputs the desired H. In this section we describe this procedure with the
example of the bAbI question answering challenge.

Background Knowledge B

The background knowledge contains the two commonsense laws of inertia from Event calculus,
according to which fluents persist over time unless they are affected by an event.

Mapping an bABI Example to an ILP DE Example

The bAbI challenge contains 20 different question answering tasks. One of such task is about
reasoning with sets. An example of that which is shown in table 1. The training dataset
for each tasks contains 1000 of such examples. Each of such example is translated into an
ILP DE example Ei =< Oi, E+

i , E−
i > in the following manner.

Given a question-answer text such as the one shown in Table 1(a), the translation module
first converts the natural language sentences to the syntax of Event calculus. While doing so,
it first obtains the Abstract Meaning Representation (AMR) of the sentence from the AMR
parser in the statistical NLP layer and then applies a rule-based procedure to convert the
AMR graph to the syntax of Event calculus. Figure 1 & 2 show two AMR representations
for the sentence “Mary grabbed the football.” and the question “What is Mary carrying?”.
The representation of the question-answer text in < Oi, E+

i , E−
i > form is shown in Table 3.

The narratives in Oi (Table 3) describe that the event of grabbing a football by Mary has
happened at time point 1, then another event named travel has happened at time point 2
and so on. The first two annotations in E+

i state that both the fluents specifying Mary is
carrying an apple and Mary is carrying a football holds at time point 4. The not holdsAt

annotation in E−
i states that at time point 7 Mary is not carrying a football.
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Table 3 Representation of the Example in Table 1(a) in ILP DE format.

happensAt(grab(mary, football), 1).
happensAt(travel(mary, office), 2).

Oi happensAt(take(mary, apple), 3).
happensAt(leave(mary, footbal; ), 5).
happensAt(go_back(daniel, bedroom), 6).
holdsAt(carry(mary,football),4).

E+
i holdsAt(carry(mary,apple),4).

holdsAt(carry(mary,apple),7).
E−

i not holdsAt(carry(mary,football),7).

Table 4 Rules learned from the task 8 of bABI dataset.

initiatedAt(carry(P, O), T )← happensAt(get(P, O), T ).
initiatedAt(carry(P, O), T )← happensAt(take(P, O), T ).
terminatedAt(carry(P, O), T )← happensAt(drop(P, O), T ).
initiatedAt(carry(P, O), T )← happensAt(pick_up(P, O), T ).
initiatedAt(carry(P, O), T )← happensAt(grab(P, O), T ).
terminatedAt(carry(P, O), T )← happensAt(discard(P, O), T ).
terminatedAt(carry(P, O), T )← happensAt(put_down(P, O), T ).
terminatedAt(carry(P, O), T )← happensAt(leave(P, O), T ).

Computing the Inductive Solution

The algorithm [6] that computes the solution roughly works as follows: Given an instance of
the ILP DE task, it first finds a solution H1 of E1. Then it expands H1 minimally to solve
only E2 and obtains H2 . In the next iteration it again expands H2 minimally to solve E1
and it continues expanding until it finds a hypothesis that solves both E1 and E2. Next it
starts with a solution of 〈E1, E2〉 and tries to expand it iteratively until it solves all of E1, E2
and E3. The process continues until a hypothesis is found that explains all the examples.
The algorithm is shown to be sound and complete when H ∪ B ∪ Oi is stratified for all
i = 1, ..., n, [6]. Table 4 shows the 8 rules that are learned for this task. Our system following
this learning-knowledge-reasoning method outperforms all the deep learning systems for the
bAbI challenge. [5].

5 Current State of Research

Currently we are trying to apply this framework of learning-knowledge-reasoning to the task
of word arithmetic problem solving, where the goal is to learn human readable knowledge
which can help the question answering agent to decide which arithmetic formulas to apply
for a particular problem and in which order.

6 Conclusion

Earlier days of Artificial Intelligence have seen many handwritten rule based systems. Later
those were replaced by better performing machine learning based systems. With the advance-
ments of knowledge representation and reasoning languages, a natural question arises, “if
machines can learn logic programs, can they achieve better accuracy than existing statistical

ICLP 2018
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machine learning methods such neural networks?” It should be noted that the system of [5]
achieved better results than the existing deep learning models on the bAbI dataset. To
further explore this possibility we need to focus on the task of learning of logic programs
and need to develop systems that can learn from large datasets. In this research, we have
made an attempt towards that.
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