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Abstract
Significant research has been conducted in recent years to extend Inductive Logic Programming
(ILP) methods to induce a more expressive class of logic programs such as answer set programs.
The methods proposed perform an exhaustive search for the correct hypothesis. Thus, they
are sound but not scalable to real-life datasets. Lack of scalability and inability to deal with
noisy data in real-life datasets restricts their applicability. In contrast, top-down ILP algorithms
such as FOIL, can easily guide the search using heuristics and tolerate noise. They also scale
up very well, due to the greedy nature of search for best hypothesis. However, in some cases
despite having ample positive and negative examples, heuristics fail to direct the search in the
correct direction. In this paper, we introduce the FOLD 2.0 algorithm – an enhanced version
of our recently developed algorithm called FOLD. Our original FOLD algorithm automates the
inductive learning of default theories. The enhancements presented here preserve the greedy
nature of hypothesis search during clause specialization. These enhancements also avoid being
stuck in local optima – a major pitfall of FOIL-like algorithms. Experiments that we report
in this paper, suggest a significant improvement in terms of accuracy and expressiveness of the
class of induced hypotheses. To the best of our knowledge, our FOLD 2.0 algorithm is the first
heuristic based, scalable, and noise-resilient ILP system to induce answer set programs.
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1 Introduction

Statistical machine learning methods produce models that are not comprehensible for humans
because they are algebraic solutions to optimization problems such as risk minimization or
data likelihood maximization. These methods do not produce any intuitive description of
the learned model. Lack of intuitive descriptions makes it hard for users to understand and
verify the underlying rules that govern the model. Also, these methods cannot produce a
justification for a prediction they compute for a new data sample. Additionally, extending
prior knowledge (background knowledge) in these methods, requires the entire model to
be relearned by adding new features to its feature vector. A feature vector is essentially
propositional representation of data in statistical machine learning. In case of missing features,
statistical methods such as Expectation Maximization (EM) algorithm are applied to fill the
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absent feature(s) with an average estimate that would maximize the likelihood of present
features. This is fundamentally different from the human thought process that relies on
common-sense reasoning. Humans generally do not directly perform probabilistic reasoning
in the absence of information. Instead, most of the time human reasoning relies on learning
default rules and exceptions.

Default Logic [15] is a non-monotonic logic to formalize reasoning with default assumptions.
Normal logic programs provide a simple and practical formalism for expressing default rules.
A default rule of the form α1∧...∧αm:¬βm+1,...,¬βn

γ can be formalized as the following normal
logic program:

γ ← α1, ..., αm, not βm+1, ..., not βn

where γ, αs and βs are positive predicates.
Inductive Logic Programming (ILP) [9] is a sub-field of machine learning that mines data

presented in the form of Horn clauses to learn hypotheses also as Horn clauses. However,
Horn clause ILP is not expressive enough to induce default theories. Therefore, in order to
learn default theories, an algorithm should be able to efficiently deal with negation-as-failure
and normal logic programs [16].

Many researchers have tried to extend Horn ILP into richer non-monotonic logic formal-
isms. A survey of extending Horn clause based ILP to non-monotonic logics can be found
in the work by Sakama [16]. He also proposes algorithms to learn from the answer set of
a categorical normal logic program. He extends his algorithms in a framework called brave
induction [17]. Law et. al. realized that this framework is not expressive enough to induce
programs that solve practical problems such as combinatorial problems and proposed the
ILASP system [4]. ASPAL [1] system is also an effort in this direction. Both ILASP and
ASPAL encode the ILP instance as an ASP program and then they use an ASP solver to
perform the exhaustive search of the correct hypothesis. This approach suffers from lack of
scalability due to this exhaustive search. More discussion of advantages of our work presented
in this paper vis a vis these earlier efforts is reported in Section 6.

The previous ILP systems are characterized as either bottom-up or top-down depending
on the direction they guide the search. A bottom-up ILP system, such as Progol [10], builds
most-specific clauses from the training examples. It is best suited for incremental learning
from a few examples. In contrast, a top-down approach, such as the well-known FOIL
algorithm [13], starts with the most-general clauses and then specializes them. It is better
suited for large-scale datasets with noise, since the search is guided by heuristics [23].

In [20] we introduced an algorithm called FOLD that learns default theories in the form
of stratified normal logic programs1. The default theories induced by FOLD, as well as the
background knowledge used, is assumed to follow the stable model semantics [3]. FOLD
extends the FOIL algorithm. FOLD can tolerate noise but it is not sound (i.e., there is
no guarantee that the heuristic would always direct the search in the right direction). The
information gain heuristic used in FOLD (that has been inherited from FOIL), has been
extensively compared to other search heuristics in decision-tree induction [7]. There seems to
be a general consensus that it is hard to improve the heuristic such that it would always select
the correct literal to expand the current clause in specialization. The blame rests mainly on
getting stuck in local optima, i.e, choosing a literal producing maximum information gain at
a particular step that does not lead to a global optimum.

1 Note that FOLD has been recently extended by us to learn arbitrary answer set programs, i.e., non-
stratified ones too [19]; discussion of this extension is beyond the scope of this paper.
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Similarly, in multi-relational datasets, a common case is that of a literal that has zero
information gain but needs to be included in the learned theory. Heuristics-based algorithms
will reject such a literal. Quinlan in [12] introduces determinate literals and suggests to add
them all at once to the current clause to create a potential path towards a correct hypothesis.
FOIL then requires a post pruning phase to remove the unnecessary literals. This approach
cannot trivially be extended to the case of default theories where determinate literals may
appear in composite abnormality predicates and FOIL’s language bias simply does not allow
negated composite literals.

In this paper we present an algorithm called FOLD 2.0 which avoids being trapped in
local optima and adds determinate literals while inducing default theories. We make the
following novel contributions:

We propose a new “cumulative” scoring function which replaces the original scoring
function (called information gain). Our experiments show a significant improvement in
terms of our algorithm’s accuracy.
We also extend FOLD with determinate literals. This extension enables FOLD to learn a
broader class of hypotheses that, to the best of our knowledge, no other ILP system is
able to induce. Finally, we apply our algorithm in variety of different domains including
kinship and legal as well as UCI benchmark datasets to show how FOLD 2.0, significantly
improves our algorithm’s predictive power.

Rest of the paper is organized as follows: Section 2 presents background material. Section
3 introduces the FOLD algorithm. Section 4 presents the “cumulative” scoring function and
determinate literals in FOLD 2.0. Section 5 presents our experiments and results. Section
6 discusses related research and Section 7 presents conclusions along with future research
directions.

2 Background

Our original learning algorithm for inducing answer set programs, called FOLD (First Order
Learning of Default rules) [20], is itself an extension of the well known FOIL algorithm.
FOIL is a top-down ILP algorithm which follows a sequential covering approach to induce a
hypothesis. The FOIL algorithm is summarized in Algorithm 1. This algorithm repeatedly
searches for clauses that score best with respect to a subset of positive and negative examples,
a current hypothesis and a heuristic called information gain (IG). The FOIL algorithm learns
a target predicate that has to be specified. Essentially, the target predicate appears as the
head of the learned goal clause that FOIL aims to learn. A typical stopping criterion for the
outer loop is determined as the coverage of all positive examples. Similarly, it can be specified
as exclusion of all negative examples in the inner loop. The function covers(ĉ, E+, B) returns
a set of examples in E+ implied by the hypothesis ĉ ∪B.

The inner loop searches for a clause with the highest information gain using a general-to-
specific hill-climbing search. To specialize a given clause c, a refinement operator ρ under
θ-subsumption [11] is employed. The most general clause is {p(X1, ..., Xn) :- true.},
where the predicate p/n is the target and each Xi is a variable. The refinement operator
specializes the current clause {h :- b1,...,bn.}. This is realized by adding a new literal l
to the clause, which yields the following: {h :- b1,...,bn,l}. The heuristic based search
uses information gain. In FOIL, information gain for a given clause is calculated as follows [8]:

IG(L,R) = t

(
log2

p1

p1 + n1
− log2

p0

p0 + n0

)
(1)
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Algorithm 1 Overview of the FOIL algorithm.
Input: goal, B,E+, E−

Output: Hypothesis H
1: Initialize H ← ∅
2: while not(stopping criterion) do
3: c← {goal :- true.}
4: while not(stopping criterion) do
5: for all c′ ∈ ρ(c) do
6: compute score(E+, E−, H ∪ {c′}, B)
7: end for
8: let ĉ be the c′ ∈ ρ(c) with the best score
9: c← ĉ

10: end while
11: add ĉ to H
12: E+ ← E+ \ covers(ĉ, E+, B)
13: end while

where L is the candidate literal to add to rule R, p0 is the number of positive bindings of R,
n0 is the number of negative bindings of R, p1 is the number of positive bindings of R+ L,
n1 is the number of negative bindings of R + L, t is the number of positive bindings of R
also covered by R+ L.

FOIL handles negated literals in a naive way by adding the literal not L to the set of
specialization candidate literals for any existing candidate L. This approach leads to learning
predicates that do not capture the concept accurately as shown in the following example:

I Example 1. B,E+ are background knowledge and positive examples respectively under
Closed World Assumption, and the target predicate is fly.

B : bird(X) :- penguin(X). bird(tweety). bird(et).
cat(kitty). penguin(polly).

E+ : fly(tweety). fly(et).

The FOIL algorithm would learn the following rule:

fly(X) :- not cat(X), not penguin(X).

which does not yield a constructive definition. The best theory in this example is as follows:

fly(X):- bird(X), not penguin(X).

which FOIL fails to discover.

3 FOLD Algorithm

The intuition behind FOLD algorithm is to learn a concept in terms of a default and possibly
multiple exceptions (and exceptions to exceptions, and so on). Thus, in the bird example
given above, we would like to learn the rule that X flies if it is a bird and not a penguin, rather
than that all non-cats and non-penguins can fly. FOLD tries first to learn the default by
specializing a general rule of the form {goal(V1, ..., Vn) :- true.} with positive literals. As
in FOIL, each specialization must rule out some already covered negative examples without
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significantly decreasing the number of positive examples covered. Unlike FOIL, no negative
literal is used at this stage. Once the IG becomes zero, this process stops. At this point,
if any negative example is still covered, they must be either noisy data or exceptions to
the current hypothesis. Exceptions are separated from noise via distinguishable patterns in
negative examples [21]. In other words, exceptions can be learned by swapping of positive
and negative examples and calling the same algorithm recursively. This swapping of positive
and negative examples and then recursively calling the algorithm again can continue, so
that we can learn exceptions to exceptions, and so on. Each time a rule is discovered for
exceptions, a new predicate ab(V1, ..., Vn) is introduced. To avoid name collisions, FOLD
appends a unique number at the end of the string “ab” to guarantee the uniqueness of
invented predicates. It turns out that the outlier data samples are covered neither as default
nor as exceptions. If outliers are present, FOLD identifies and enumerates them to make
sure that the algorithm converges. This ability to separate exceptions from noise allows
FOLD (and FOLD 2.0, introduced later) pinpoint noise more accurately. This is in contrast
to FOIL, where exceptions and noisy data are clubbed together. Details can be found in [20].

Algorithm 2 shows a high level implementation of the FOLD algorithm. In lines 1-8,
function FOLD, serves like the FOIL outer loop. In line 3, FOLD starts with the most
general clause (e.g. fly(X) :- true). In line 4, this clause is refined by calling the function
SPECIALIZE. In lines 5-6, set of positive examples and set of discovered clauses are
updated to reflect the newly discovered clause.

In lines 9-29, the function SPECIALIZE is shown. It serves like the FOIL inner loop. In
line 12, by calling the function ADD_BEST_LITERAL the “best” positive literal is chosen
and the best IG as well as the corresponding clause is returned. In lines 13-24, depending on
the IG value, either the positive literal is accepted or the EXCEPTION function is called. If,
at the very first iteration, IG becomes zero, then a clause that just enumerates the positive
examples is produced. A flag called first_iteration is used to differentiate the first iteration.
In lines 26-27, the sets of positive and negative examples are updated to reflect the changes
of the current clause. In line 19, the EXCEPTION function is called while swapping E+

and E−.
In line 31, the “best” positive literal that covers more positive examples and fewer

negative examples is selected. Again, note the current positive examples are really the
negative examples and in the EXCEPTION function, we try to find the rule(s) governing the
exception. In line 33, FOLD is recursively called to extract this rule(s). In line 34, a new ab
predicate is introduced and at lines 35-36 it is associated with the body of the rule(s) found
by the recurring FOLD function call at line 33. Finally, at line 38, default and exception are
combined together to form a single clause.

Now, we illustrate how FOLD discovers the above set of clauses given E+ = {tweety, et}
and E− = {polly, kitty} and the goal fly(X). By calling FOLD, at line 2 while loop, the
clause {fly(X) :- true.} is specialized. Inside the SPECIALIZE function, at line 12,
the literal bird(X) is selected to add to the current clause, to get the clause ĉ = fly(X)
:- bird(X), which happens to have the greatest IG among {bird,penguin,cat}. Then,
at lines 26-27 the following updates are performed: E+ = {}, E− = {polly}. A negative
example polly, a penguin is still covered. In the next iteration, SPECIALIZE fails to
introduce a positive literal to rule it out since the best IG in this case is zero. Therefore,
the EXCEPTION function is called by swapping the E+, E−. Now, FOLD is recursively
called to learn a rule for E+ = {polly}, E− = {}. The recursive call (line 33), returns
{fly(X) :- penguin(X)} as the exception. In line 34, a new predicate ab0 is introduced
and at lines 35-37 the clause {ab0(X) :- penguin(X)} is created and added to the set of

ICLP 2018



2:6 Cumulative Scoring-Based Induction of Default Theories

Algorithm 2 FOLD Algorithm
Input: target, B,E+, E−

Output: D = {c1, ..., cn} . defaults’ clauses
AB = {ab1, ..., abm} . exceptions/abnormal clauses

1: function FOLD(E+, E−)
2: while (|E+| > 0) do
3: c← (target :- true.)
4: ĉ← specialize(c,E+,E−)
5: E+ ← E+ \ covers(ĉ, E+, B)
6: D ← D ∪ {ĉ}
7: end while
8: end function
9: function SPECIALIZE(c, E+, E−)

10: while |E−| > 0 ∧ c.length < max_rule_length do
11: (cdef , ˆIG)← add_best_literal(c,E+,E−)
12: if ˆIG > 0 then
13: ĉ← cdef
14: else
15: ĉ← exception(c, E−, E+)
16: if ĉ == null then
17: ĉ← enumerate(c, E+)
18: end if
19: end if
20: E+ ← E+ \ covers(ĉ, E+, B)
21: E− ← covers(ĉ, E−, B)
22: end while
23: end function
24: function EXCEPTION(cdef , E+, E−)
25: ˆIG← add_best_literal(c, E+, E−)
26: if ˆIG > 0 then
27: c_set← FOLD(E+, E−)
28: c_ab← generate_next_ab_predicate()
29: for each c ∈ c_set do
30: AB ← AB ∪ {c_ab:- bodyof(c)}
31: end for
32: ĉ← (headof(cdef ):- bodyof(c),not(c_ab))
33: else
34: ĉ← null

35: end if
36: end function

invented abnormalities, namely, AB. In line 38, the negated exception (i.e not ab0(X)) and
the default rule’s body (i.e bird(X)) are compiled together to form the following theory:

fly(X) :- bird(X), not ab0(X).
ab0(X) :- penguin(X).

More detailed examples can be found in [20].
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Table 1 FOLD Execution to Discover Rule (1).

Literal / Clause uncle(V1,V2) :- true uncle(V1,V2) :- male(V1)
parent(V1,V3) 1.44 1.01
parent(V2,V3) 1.06 1.16
parent(V3,V1) 1.44 1.01
sibling(V1,V3) 2.27 1.01
sibling(V3,V1) 2.27 1.01
male(V1) 3.18 -
female(V2) 0.34 0.50
married(V1,V3) 0.69 0
married(V2,V3) 0.34 0.50
married(V3,V1) 0.69 0
married(V3,V2) 0.34 0.5

4 The FOLD 2.0 Algorithm

4.1 Cumulative Scoring Function
The kinship domain is one of the initial successful applications of the FOIL algorithm [13],
where the algorithm learns general rules governing social interactions and relations (particu-
larly kinship) from a series of examples. For example, it can learn the “Uncle” relationship,
given the background knowledge of “Brother”, “Sister”, “Father”, “Mother”, “Husband”,
“Wife” and some positive and negative examples of the concept. However, if the background
knowledge only contains the primitive relationships including “Sibling”, “Parent”, “Married”
and gender descriptors, it fails to discover the correct rule for “Uncle”. As an experiment,
we used an arbitrarily produced kinship dataset only containing the primitive relationships.
The FOIL algorithm produced the following rules:

Rule (1) uncle(A,B) :- male(A), parent(A,_), female(B).
Rule (2) uncle(A,_) :- male(A), parent(A,B), female(B), sibling(B,_).

Similarly, the FOLD algorithm found incorrect rules as follows:

Rule (1) uncle(V1,V2) :- male(V1), parent(V2,V3).
Rule (2) uncle(V1,V2) :- male(V1), parent(V2,V3), female(V2).

Table 1 shows the information gain for each candidate literal while discovering Rule (1).
At first iteration, the algorithm successfully finds the literal male(V1), because it has the
maximum gain (IG = 3.18). At second iteration, the literal parent(V2,V3) has the highest
gain (IG = 1.16) and hence is selected. At this point, since the rule does not cover any
negative example, the algorithm returns. This example characterizes a case in which the
highest score does not correspond to the correct literal. The correct literal at second iteration
is sibling(V1,V3), whose information gain is 1.01 and it is less than the maximum.

We observed that neither increasing the number of examples nor changing the scoring
function would solve this problem. As an experiment, we replaced the information gain with
other scoring functions reported in the literature including Matthews Correlation Coefficient
(MCC), Fβ-measure [23] and the FOSSIL [2] scoring measure based on statistical correlation.
They all suffer from the same problem.

ICLP 2018
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A key observation is the following: as more literals are introduced, the number of positive
and negative examples covered by the current clause shrinks. With fewer examples, the
accuracy of heuristic decreases too. In Table 1, sibling(V1,V3) should have had the
highest score at second iteration. At first iteration, sibling(V1,V3) ranks second after
male(V1). A simple comparison between the score of sibling(V1,V3) and parent(V2,V3)
shows the former provides better coverage (exclusion) of positive (negative) examples than
the latter. But the algorithm is oblivious of this information at the beginning of second
iteration as it goes only by magnitude of the scoring function for the current iteration. This
score becomes less and less accurate as more literals are introduced and fewer examples
remain to cover. If the algorithm could remember that at first iteration, sibling(V1,V3)
was able to cover/exclude the examples much better than parent(V2,V3), it would prefer
sibling(V1,V3) over parent(V2,V3).

To concretize this, we propose the idea of keeping a cumulative score, i.e., to transfer
a portion of past score (if one exists) to the value that the scoring function computes for
current iteration. Our experiments suggest that there is not a universal optimal value that
would always result in highest accuracy. In other words, the optimal value varies from a
dataset to another. Thus, in order to implement the “cumulative score”, we introduce a new
hyperparameter2, namely, α, whose value is decided via cross-validation of the dataset being
used. In order to compute the score of each literal during the search, the information gain is
replaced with “cumulative gain”.

Formally, let Ri denote the induced rule up until iteration i+ 1 of FOLD’s inner loop
execution. Thus, R0 is the rule {goal :- true.}. Also, let scorei(Ri−1, L) denote the score
of literal L in clause Ri−1 at iteration i of FOLD’s inner loop execution. The “cumulative”
score at iteration i+ 1 for literal l is computed as follows:

scorei+1(Ri, L) = IG(Ri, L) + α× scorei(Ri−1, L)

If scorei(Ri−1, L) does not exist, it is considered as zero. Also, if IG(Ri, L) = 0, the “cumulat-
ive” score from the past is not taken into account. Initially, the cumulative score is considered
zero for all candidate literals. Table 2 shows the FOLD 2.0 algorithm’s execution to learn
“uncle” predicate on the same dataset. With choice of α = 0.2, the algorithm is able to dis-
cover the following rule: uncle(V1,V2) :- male(V1), sibling(V1,V3), parent(V3,V2).
It should also be noted that only promising literals are shown in Table 1 and 2. Next, we
discuss how our FOLD 2.0 algorithm handles zero information-gain literals.

4.2 Extending FOLD with Determinate Literals
A literal in the body of a clause can serve two purposes: (i) it may contribute directly to
the inclusion/exclusion of positive/negative examples respectively; or, (ii) it may contribute
indirectly by introducing new variables that are used in the subsequent literals. This type of
literal may or may not yield a positive score. Therefore, it is quite likely that our hill-climbing
algorithm would miss them. Two main approaches have been used to take this issue into
account: determinate literals [12] and lookahead technique [6]. The latter technique is not of
interest to us because it does not preserve the greedy nature of search.

Determinate literals are of the form r(X,Y), where r/2 is a new literal introduced in the
hypothesis’ body and Y is a new variable. The literal r/2 is determinate if, for every value

2 In Machine Learning, a hyperparameter is a parameter whose value is set before the learning process
begins.
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Table 2 FOLD 2.0 Execution with Cumulative Score.

Literal / Clause uncle(V1,V2). uncle(V1,V2):- male(V1) uncle(V1,V2):-male(V1), sibling(V1,V3)
parent(V1,V3) 1.44 1.30 0
parent(V2,V3) 1.06 1.38 0
parent(V3,V2) 0 0 2.49
parent(V3,V1) 1.44 1.30 0
parent(V2,V4) - - 0.83
sibling(V1,V3) 2.27 1.47 -
sibling(V3,V1) 2.27 1.47 1.15
male(V1) 3.18 - -
female(V2) 0.34 0.57 0
female(V3) - - 1.15
married(V1,V3) 0.69 0 0
married(V2,V3) 0.34 0.57 0
married(V3,V1) 0.69 0 0
married(V3,V2) 0.34 0.57 0
married(V2,V4) - - 1.24
married(V4,V2) - - 1.24

of X, there is at most one value for Y, when the hypothesis’ head is unified with positive
examples. Determinate literals are not contributing directly to the learning process, but they
are needed as they influence the literals chosen in the future. Since their inclusion in the
hypothesis is computationally inexpensive, the FOIL algorithm adds them to the hypothesis
simultaneously. In Section 2 we showed why the naive handling of negation in FOIL would
not work in case of non-monotonic logic programs. Another issue with FOIL’s handling of
negated literals arises when we deal with determinate literals. Whenever a combination of a
determinate and a gainful literal attempts to find a pattern in the negative examples, the
FOIL algorithm fails to discover it because FOIL prohibits conjunction of negations in its
language bias to prevent search space explosion. However, by introducing the abnormality
predicates and recursively swapping positive and negative examples, FOLD makes inductive
learning of such default theories possible.

The FOLD algorithm always selects literals with positive information gain first. Next,
if some negative examples are still covered and no gainful literal exists, it would swap the
current positive examples with current negative examples and recursively calls itself to learn
the exceptions. To accommodate determinate literals in FOLD 2.0, we make the following
modification to FOLD. In the SPECIALIZE function, right before swapping the examples
and making the recursive call to the FOLD function (see Algorithm 3), we try the current
rule for a second time. By adding determinate literals and iterating again, we hope that a
positive gainful literal will be discovered. Next, if that choice does not exclude the negative
examples, FOLD 2.0 swaps the examples and recursively calls itself. A nice property of
this recursive approach is that the determinate literals might be added inside the exception
finding routine to induce a composite abnormality predicate. Neither FOIL nor FOLD could
induce such hypotheses. The following example shows how this is handled in the FOLD 2.0
algorithm.

I Example 2. In United States immigration system, student visa holders are classified
as F1(student) and F2(student’s spouse). F1 and F2 status remains valid until a student
graduates. The spouse of such an individual maintains a valid status, as long as that
individual is a student. Table 3 shows a dataset for this domain. In this dataset, it turns out
that married(V 1, V 2) is a determinate literal and essential to the final hypothesis. If we

ICLP 2018
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Algorithm 3 Overview of FOLD 2.0 Algorithm + Determinate Literals
Input: goal, B,E+, E−

Output: D = {c1, ..., cn}, AB = {ab1, ..., abm}
1: function SPECIALIZE(c, E+, E−)
2: determinate_added← false

3: while (size(E−) > 0) do
4: (cdef , ˆIG)← add_best_literal(c,E+,E−)
5: if ˆIG ≤ 0 then
6: if determinate_added == false then
7: c← ADD_DETERMINATE_LITERAL(c, E+, E−)
8: determinate_added← true

9: else
10: ĉ← exception(c, E−, E+)
11: if ĉ == null then
12: ĉ← enumerate(c, E+)
13: end if
14: end if
15: else
16: E+ ← E+ \ covers(ĉ, E+, B)
17: E− ← covers(ĉ, E−, B)
18: end if
19: end while
20: end function

run the FOLD 2.0 algorithm, it would produce the following hypothesis:

Default rule(1): valid(V1) :- student(V1), not ab1(V1).
Default rule(2): valid(V1) :- class(V1,f2), not ab2(V1).
Exception(1) : ab1(V1) :- graduated(V1).
Exception(2) : ab2(V1) :- married(V1,V2), graduated(V2).

In this example default rule(1) as well as rules for its exception are discovered first. This
rule (rule(1)) takes care of students who have not graduated yet. Then, while discovering
rule(2), after choosing the only gainful literal, i.e., class(V1,f2), the algorithm is recursively
called on the exception part. It turns out that there is no gainful literal that covers the
now positive examples (previously negative examples). The only determinate literal in this
example is married(V1,V2), which is added at this point. This is followed by FOLD 2.0
finding a gainful literal, i.e., graduated(V2), and then returning the default rule(2). At this
point, all positive examples are covered and the algorithm terminates. Default rule(2) takes
care of the class of F2 visa holders whose spouse is a student unless they have graduated.
The Algorithm 3 shows the changes necessary to the FOLD algorithm in order to handle
determinate literals.

5 Experiments and results

In this section we present our experiments on UCI benchmark datasets [5]. Table 4 summarizes
an accuracy-based comparison between Aleph [21], FOLD [20] and FOLD 2.0. We report a
significant improvement just by picking up an optimal value for α via cross-validation. In
these experiments we picked α ∈ {0, 0.2, 0.5, 0.8, 1}.
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Table 3 Valid Student Visa Dataset.

B E+ E−

class(p1,f2). class(p7,f1). student(p3). married(p1,p2). valid(p1). valid(p4).
class(p2,f1). class(p8,f1). student(p4). married(p5,p6). valid(p2). valid(p5).
class(p3,f1). class(p9,f2). student(p6). married(p9,p10). valid(p3). valid(p6).
class(p4,f1). class(p10,f1). student(p7). graduated(p4). valid(p7). valid(p8).
class(p5,f2). student(p8). graduated(p6). valid(p9).
class(p6,f1). student(p10). graduated(p8). valid(p10).

ILP algorithms usually achieve lower accuracy compared to state-of-the-art statistical
methods such as SVM. But in case of “Post Operative” dataset, for instance, our FOLD 2.0
algorithm outperforms SVM, whose accuracy is only 67% [18]. Next, we show in detail how
FOLD 2.0 achieves higher accuracy in case of Moral Reasoner dataset. Moral Reasoner is a
rule-based model that qualitatively simulates moral reasoning. The model was intended to
simulate how an ordinary person, down to about age five, reasons about harm-doing. The
Horn-clause theory has been provided along with 202 instances that were used in [22]. The
top-level predicate to predict is guilty/1. We encourage the interested reader to refer to [5]
for more details. Our goal is to learn the moral reasoning behavior from examples and check
how close it is to the Horn-clause theory reported in [22].

First, we run FOLD 2.0 algorithm with α = 0. This literally turns off the “cumulative
score” feature. The algorithm would return the following set of rules:

Rule(1) guilty(V1) :- severity(V1,1), external_force(V1,n),
benefit_victim(V1,0),intervening_contribution(V1,n).

Rule(2) guilty(V1) :- severity(V1,1), external_force(V1,n),
benefit_victim(V1,0),foresee_intervention(V1,y).

Rule(3) guilty(V1) :- someone_else_cause_harm(V1,y),achieve_goal(V1,n),
control_perpetrator(V1,y), foresee_intervention(V1,n).

In the original Horn clause theory [22] there are two theories for being guilty: i) blame-
worthy, ii) vicarious_blame. The following rules for blame_worthy(X) are reproduced from
[22]:

blameworthy(X):- responsible(X), not justified(X), severity_harm(X,H),
benefit_victim(X,L), H > L.

responsible(X):- cause(X), not accident(X), external_force(X,n),
not intervening_cause(X).

intervening_cause(X) :- intervening_contribution(X,y),
forsee_intervention(X).

Rule(1) and Rule(2), that FOLD 2.0 learns, together build the blameworthy definition of the
original theory. The predicates severity_harm and benefit_victim occur in Rule(1) and
Rule(2). It should be noted that due to the nature of the provided examples, FOLD 2.0 comes
up with a more specific version compared to the original theory reported in [22]. In addition,
instead of learning the predicate responsible(X), our algorithm learns its body literals. The
predicate cause(X) does not appear in the hypothesis because it is implied by all positive
and negative examples, one way or another. The predicate not intervening_cause(X)
appears in our hypothesis due to application of De Morgan’s law and flipping yes and no in
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Table 4 Performance Results on UCI Benchmark Datasets.

Dataset Accuracy (%)
α

Aleph FOLD FOLD 2.0
Labor 85 94 100 0.5
Post-op 62 65 78 1
Bridges 89 90 93 1
Credit-g 70 78 84 0.5
Moral 96 96 100 0.2

the second arguments. The rest of the guilty cases fall into the category of vicarious_blame
below:

vicarious_blame(X):- vicarious(X), vicarious(X) :-
not justified(X), someone_else_cause_harm(X,y),
severity_harm(X,H), outrank_perpetrator(X,y),
benefit_victim(X,L), H > L. control_perpetrator(X,y).

There is a discrepancy in Rule(3), compared to the corresponding vicarious_blame in the
original theory. However, by setting the cumulative score parameter α = 0.2, FOLD 2.0
would produce the following set of rules:

Rule(1): Rule(2):
guilty(V1) :- severity_harm(V1,1), guilty(V1) :-

external_force(V1,n), severity_harm(V1,1),
benefit_victim(V1,0), external_force(V1,n),
intervening_contribution(V1,n). benefit_victim(V1,0),

foresee_intervention(V1,y).
Rule(3):
guilty(V1) :- severity_harm(V1,1), benefit_victim(V1,0),

someone_else_cause_harm(V1,y),outrank_perpetrator(V1,y),
control_perpetrator(V1,y).

Rule(1) and Rule(2) are generated in FOLD 2.0 as before. However, Rule(3) perfectly
matches that of the original theory which our FOLD algorithm would have not been able
to discover without “cumulative score”. Note that the cumulative score heuristics is quite
general and can be used to enhance any machine learning algorithm that relies on the concept
of information gain. In particular, it can be used to improve the FOIL algorithm itself.

6 Related Work

A survey of non-monotonic ILP work can be found in [16]. Sakama also introduces an
algorithm to induce rules from answer sets. His approach may yield premature generalizations
that include redundant negative literals. We skip the illustrative example due to lack of
space, however, the reader can refer to [20]. ASPAL [1] is another ILP system capable
of producing non-monotonic logic programs. It encodes ILP problem as an ASP program.
XHAIL [14] is another ILP system that heavily uses abductive logic programming to search
for the best hypothesis. Both ASPAL and XHAIL systems can only learn hypotheses that
have a single stable model. ILASP [4] is the successor of ASPAL. It can learn hypotheses
that have multiple stable models by employing brave induction [17]. All of these systems
perform an exhaustive search to find the correct hypothesis. Therefore, they are not scalable
to real-life datasets. They also have a restricted language bias to avoid the explosion of
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search space of hypotheses. This overly restricted language bias does not allow them to
learn new predicates, thus keeping them from inducing sophisticated default theories with
nested or composite abnormalities that our FOLD 2.0 algorithm can induce. For instance
consider the following example, a default theory with abnormality predicate represented as
conjunction of two other predicates, namely s(X) and r(X).

p(X) :- q(X), not ab(X).
ab(X) :- s(X), r(X).

Our algorithm has advantages over the above mentioned systems: It follows a greedy top-
down approach and therefore it is better suited for larger datasets and noisy data. Also, it
can invent new predicates [19], distinguish noise from exceptions, and learn nested levels of
exceptions.

7 Conclusion and Future Work

In this paper we presented cumulative score-based heuristic to guide the search for best
hypothesis in a top-down non-monotonic ILP setting. The main feature of this heuristic
is that it avoids being trapped in local optima during clause specialization search. This
results in significant improvement in the accuracy of induced hypotheses. This heuristic is
quite general and can be used to enhance any machine learning algorithm that relies on the
concept of information gain. In particular, it can be used to improve the FOIL algorithm
itself. We used it in this paper to extend our FOLD algorithm to obtain the FOLD 2.0
algorithm for learning answer set programs. FOLD 2.0 performs significantly better than
our FOLD algorithm [20], where the FOLD algorithm itself produces better results than
previous systems such as FOIL and ALEPH. We also showed how determinate literals can
be adapted to identifying patterns in negative examples after the swapping of positive and
negative examples in FOLD. Note that while determinate literals were introduced in the
FOIL algorithm, their use in FOIL was limited to only positive literals. Generalizing the
use of determinate literals in FOLD 2.0, enables us to induce hypotheses that no other
non-monotonic ILP system is able to induce.

There are three main avenues for future work: (i) handling large datasets using methods
similar to QuickFoil [23]. In QuickFoil, all the operations of FOIL are performed in a database
engine. Such an implementation, along with pruning techniques and query optimization tricks,
can make the FOLD 2.0 training phase much faster. (ii) FOLD 2.0 learns function-free answer
set programs. We plan to investigate extending the language bias towards accommodating
functions. (iii) Combining statistical methods such as SVM with FOLD 2.0 to increase
accuracy as well as providing explanation for the behavior of models produced by SVM.
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