
A New Proof-Theoretical Linear Semantics for
CHR
Igor Stéphan
LERIA, Université d’Angers, France
igor.stephan@univ-angers.fr

Abstract
Constraint handling rules are a committed-choice language consisting of multiple-heads guarded
rules that rewrite constraints into simpler ones until they are solved. We propose a new proof-
theoretical declarative linear semantics for Constraint Handling Rules. We demonstrate com-
pleteness and soundness of our semantics w.r.t. operational ωt semantics. We propose also a
translation from this semantics to linear logic.

2012 ACM Subject Classification Theory of computation→ Constraint and logic programming

Keywords and phrases Constraint Handling Rules, Linear Logic

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.4

1 Introduction

CHR (for constraint handling rules) [9, 10, 11, 12, 13, 14] are a committed-choice language
consisting of multiple-heads guarded rules that rewrite constraints into simpler ones until
they are solved. CHR are a special-purpose language concerned with defining declarative
constraints in the sense of Constraint logic programming [16, 17, 18]. CHR are a language
extension that allows to introduce user-defined constraints, i.e. first-order predicates, as for
example less-than-or-equal (≤), into a given host language as Prolog, Lisp, Java or C/C++.
CHR define simplification of user-defined constraints, which replaces constraints by simpler
ones while preserving logical equivalence. For example the antisymmetry of less-than-or-equal
constraint: ((X ≤ Y), (Y ≤ X)⇔ (X = Y)) where “(X ≤ Y), (Y ≤ X)” is the multiple head
of the rule, X, Y are variables and “,” denotes conjunction. This rule means “if constraints
(X ≤ Y) and (Y ≤ X) are present then equality (X = Y) is enforced and constraints
are solved”. CHR define also propagation over user-defined constraints that adds new
constraints, which are logically redundant but may cause further simplifications. For example
the transitivity of less-than-or-equal constraint: ((X ≤ Y), (Y ≤ Z)⇒ (X ≤ Z)). This rule
means “if constraints (X ≤ Y) and (Y ≤ Z) are present then constraint (X ≤ Z) is logically
equivalent”. CHR allow to use guards, which are sequences of host language statements.
For example the reflexivity of less-than-or-equal constraint: ((X ≤ Y)⇔ (X = Y) | true)
where (X = Y) is a test and true is a reserved symbol that has for operational semantics
“add nothing”. This rule means “if constraint (X ≤ Y) is present and (X = Y) is true
then constraint (X ≤ Y) is solved”. CHR finally define simpagation over user-defined
constraints that mixes and subsumes simplification and propagation. The general schema
of CHR (simpagation) rules is then (K1, . . . , Kn\D1, . . . , Dm ⇒ guard | G) with n + m 6= 0
and G = B1, . . . , Bp or G = true. Constraints K1, . . . , Kn are kept like in propagation and
constraints D1, . . . , Dm are deleted like in simplification. If n = 0, a simpagation rule is a
simplification rule, and if m = 0, a simpagation rule is a propagation rule. For example,
the idempotency of less-than-or-equal constraint: ((X ≤ Y)\(X ≤ Y)⇔ true). This rule
means “if constraint (X ≤ Y) is present twice, only one occurrence is kept”. This last

© Igor Stéphan;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 4; pp. 4:1–4:17

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:igor.stephan@univ-angers.fr
https://doi.org/10.4230/OASIcs.ICLP.2018.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

4:2 A New Proof-Theoretical Linear Semantics for CHR

example suggests that CHR is more about consumption than truth. CHR rules are applied
on multi-sets of constraints. Repeated application of those rules on a multi-set of initial
constraints incrementally solves these constraints. The committed-choice principle expresses
a don’t care nondeterminism, which leads to efficient implementations.

From the very beginning, [9, 10] gives a declarative semantics in terms of first-order
classical logic: simplification rules are considered as logical equivalences and propagation
rules as implications (with an equivalence-based semantics ωe [19]). But [10] gives also a first
abstract (or high-order or theoretical) operational semantics ωt based on a transition system
over sets (with some extensions to avoid the trivial nontermination of propagation rules [1]).
The refined operational semantics ωr [8] is finer than the previous one w.r.t. the classical
implementations of CHR. Those operational semantics are in fact ad-hoc linear semantics
[6]. In [5, 6, 4] two different proof-theoretical intuitionistic linear semantics for CHR are
proposed based on (intuitionist) Linear Logic [15]. Those linear semantics for CHR have
been extended to CHR∨[2] which introduces the don’t know nondeterminism1 in CHR [7].

As emphasized in [6], “Many implemented algorithms do not have a first-order classical
logical reading, especially when these algorithms are deliberately non-confluent”, i.e. the
committed-choice matters. Moreover “Considering arbitrary derivation from a given goal,
termination (and confluence) under the abstract semantics ωt are preserved under the refined
semantics ωr, but not the other way around. While it fixes the constraint and rule order for
execution, the refined operational semantics is still nondeterministic” [14]. But if anyone
wants, for example, to compile another high level language to CHR paradigm there must
be only two sources of nondeterminism: the don’t care nondeterminism of the committed-
choice and the don’t know nondeterminism of the disjunction of CHR∨ and no other hidden
nondeterminism not controllable by the programmer. But in the already defined semantics
of the literature and the current implementations, there is a third source of nondeterminism
due to the management of the constraints as an unordered multi-set: the order in which
the constraints are reactivated by the wake-up-policy function2 is left unspecified (page
68 of [14]). And there is even a forth source of nondeterminism due to the management
of the multiple heads of the simpagation rules. The matching order in the application of
a simpagation rule is not deterministic and we do not know which constraints from the
multi-set may be chosen and kept or deleted, if more than one possibility exists (page 69
of [14]). Consider the following first-order CHR program with only one rule, which illustrates
the first hidden nondeterminism:

(a(X), a(Y), s⇔ true)

and {a(1), a(2), a(3), s} as the store (an unordered multi-set) of constraints. The final state
may be {a(1)}, {a(2)} or {a(3)}. Even with the refined ωr semantics, the semantics of the
CHR program rests unknown. We propose in this article a new proof-theoretical linear
semantics for CHR by means of a sequent calculus system in which the store is managed as
a multi-set as in the ωt semantics. This system is proved to be sound and complete w.r.t.
the ωt semantics. We propose also a second new proof-theoretical linear semantics for CHR
by means of a sequent calculus system in which the store is managed as a sequence. This
system is proved to be sound. But, more important, this system is completely deterministic
and overcomes the two sources of hidden nondeterminism defined above. Finally, we propose
for those two systems a translation into the Linear Logic and we prove the soundness of this
translation.

1 freely offered when the host language is Prolog
2 With first-order constraints, instantiation of some variables of the constraints makes them eligible to

the application of CHR rules.

I. Stéphan 4:3

Section 2 presents the needed background on Linear Logic (Subsection 2.1) and CHR
syntax and semantics (Subsection 2.2). Section 3 presents our two new linear sequent calculi
for CHR, the ωl sequent calculus system in which the store is managed as a multi-set and
the ω⊗l sequent calculus system in which the store is managed as a sequence (Subsection 3.1).
Those systems are then translated into the Linear Logic and we prove the soundness of this
translation (Subsection 3.2). We conclude by a discussion about the possible links to focusing
proofs of [3] and on some remarks about our two new proof-theoretical semantics for CHR.

2 Background

2.1 Linear logic
Linear Logic is a substructural logical formalism introduced in [15]. It is based on tokens
which are built on predicate symbols and terms in the usual first-order manner. These
tokens (w.r.t. atoms of classical first order logic) represent resources (w.r.t. truth). Linear
Logic consumes and produces resources and is aware of their multiplicities. The linear-logic
sequent calculus is based on the sequent, which is a pair of multi-sets of linear-logic formulas.
Linear formulas are built on tokens and the following operators (we only present the useful
ones for us): The symbol ⊗ stands for the multiplicative conjunction and is similar to
conjunction of classical logic. The 1 symbol stands for the neutral of ⊗ and represents empty
resource and corresponds to the true of classical logic. The symbol & stands for the additive
conjunction. a&b represents an internal choice between a and b, it means that one can freely
choose between a and b but not have a and b at the same time. The symbol (stands
for the linear implication and apply modus ponens but by consuming the preconditions.
The symbol 0 corresponds to the false of classical logic. The modality symbol ! marks the
unlimited resources. The symbol ∃ (resp. ∀) stands for existential (resp. universal) first-order
quantifications.

In what follows we only use the fragment of the linear-logic sequent calculus that is
relevant for us in its two-sided version (F , F1, F2 and L some linear formulas, Γ, Γ1, Γ2, ∆,
∆1, ∆2 some multi-sets of formulas).

Identity rules
I

F ` F
Γ1 ` L L, Γ2 ` ∆

Cut
Γ1, Γ2 ` ∆

Multiplicative rules
Γ, F1, F2 ` ∆

⊗L
Γ, F1 ⊗ F2 ` ∆

Γ1 ` ∆1, F1 Γ2 ` ∆2, F2 ⊗R
Γ1, Γ2 ` ∆1, ∆2, F1 ⊗ F2

Γ ` ∆ 1L
1, Γ ` ∆

Γ1 ` F1, ∆1 Γ2, F2 ` ∆2
(L

Γ1, Γ2, F1 (F2 ` ∆1, ∆2

Additive rules
Γ, F1 ` ∆

&L1Γ, F1&F2 ` ∆
Γ, F2 ` ∆

&L2Γ, F1&F2 ` ∆
Quantifier rules (t is a term)

Γ, [x← t](F) ` ∆
∀L

Γ, (∀x F) ` ∆
Γ, [x← y](F) ` ∆

∃L
Γ, (∃x F) ` ∆

ICLP 2018

4:4 A New Proof-Theoretical Linear Semantics for CHR

The usual proviso for the ∃L rule is assumed: the variable y must not be free in the
formulas of the sequent conclusion of the inference rule.
Exponential rules

Γ, !F, !F ` ∆
!C

Γ, !F ` ∆
Γ, F ` ∆

!D
Γ, !F ` ∆

Γ ` ∆ !W
Γ, !F ` ∆

A proof tree is a finite labeled tree whose nodes are labeled with sequents such that every
sequent node is the consequence of its direct children according to one of the inference
rules of the calculus. A proof tree is a linear proof if all its leaves are axioms (i.e. instances
of the Identity rule I).

2.2 CHR language and its semantics
In this article, we consider a first-order CHR program as an intensional version of the
grounded corresponding propositional program with respect to its Herbrand universe based
on the function and constant symbols of the program. A constraint is a predicate symbol
with elements of the Herbrand universe as arguments. With this point of view, we omit the
guard and there is no need of equivalence relation between variables. Moreover, there is
no need for a wake up rule since there is no more variable to be woken up in the store of
constraints.

2.2.1 The syntax
The CHR formalism is defined as follows : a CHR rule is a rule of the form (K1, . . . , Km,

D1, . . . , Dn, B1, . . . , Bp some constraints):
[Simpagation rule] (K1, . . . , Km\D1, . . . , Dn ⇔ B) with n > 0, m > 0 or
[Propagation rule] (K1, . . . , Km ⇒ B) with m > 0 or
[Simplification rule] (D1, . . . , Dn ⇔ B) with n > 0

and B = B1, . . . , Bp with p > 0 or true or false (two reserved symbols).

2.2.2 The operational ωt semantics
An identified constraint A#i is a constraint A with some unique integer i, its identity.
Function const, resp. id, gets from an identified constraint its constraint, resp. identity:
const(A#i) = A, resp. id(A#i) = i. The id function and const are extended to sequences,
sets and multi-sets of identified constraints in the obvious manner. An execution state is
a tuple 〈Ω, S, H〉c where Ω (the current goal) stands for a multi-set of constraints to be
executed, S (the current store) stands for a multi-set of identified constraints, H (the current
propagation history) stands for a set of words, each recording the name of a rule and identities
of identified constraints, c stands for a counter that represents the next free integer which
can be used to number an identified constraint. For an initial goal Ω, the initial state is
〈Ω, ∅, ∅〉1. The operational semantics ωt is based on the following two transitions, which map
a state to an other state (symbol] stands for union of multi-sets):

[Introduce] 〈{A}] Ω, S, H〉c t 〈Ω, {A#c}] S, H〉c+1

[Apply] 〈Ω, K#]D#] S, H〉c t 〈B] Ω, K#] S, H] {r.i1 . . . im}〉c where there exists
a simpagation rule r@(K\D ⇔ B) such that K# = {K1#i1, . . . , Km#im} and D# =
{D1#im+1, . . . , Dn#im+n} and K1, . . . , Km = K and D1, . . . , Dn = D and r.i1 . . . im 6∈
H (r.i1 . . . im is the identity of the instantiated rule and r is a name for the rule).

I. Stéphan 4:5

The [Introduce] transition transports a constraint from the goal to the store and associates
an identity to this constraint. A CHR rule (K\D ⇔ B) is applicable if the head of the rule
(considered as a multi-set) K]D is a subset of the multi-set const(S) of the constraints of
the store S. If a CHR rule (K\D ⇔ B) is applicable then the CHR rule is applied: [Apply]
transition removes identified constraints D1#im+1, . . . , Dn#im+n from the store and adds
the constraints of B to the goal. If B = true nothing is added to the goal. This can only
be done if the CHR rules has not already been fired with the same identity in order to
forbid trivial loops. In the [Apply] transition, if B = false there is no transition at all. The
transitions are non-deterministically applied until either no more transition is applicable (a
successful derivation), or B = false (a failed derivation). In both cases a final state has been
reached.

I Example 1. Consider the following first-order CHR program of the introduction with only
one rule

(a(X), a(Y), s⇔ true)

and {a(1), a(2), a(3), s} as the store of constraints.
We give an ωt derivation:

〈{a(1), a(2), a(3), s}, ∅, ∅〉1
[Introduce] t 〈{a(2), a(3), s}, {a(1)#1}, ∅〉2
[Introduce] t 〈{a(2), s}, {a(1)#1, a(3)#2}, ∅〉3
[Introduce] t 〈{a(2)}, {a(1)#1, a(3)#2, s#3}, ∅〉4

[Apply] t 〈{a(2)}, ∅, {r.1.2.3}〉4
[Introduce] t 〈∅, {a(2)#4}, {r.1.2.3}〉5

The store in the final state is {a(2)} but may be {a(1)} or {a(3)} since the order of
[Introduce] derivation steps is arbitrary.

The semantics of this program is only clear if we consider its extensional version with the
grounded rules in this (arbitrary) order:

(a(1), a(2), s⇔ true) (a(1), a(3), s⇔ true) (a(2), a(3), s⇔ true)

and the initial store (a sequence) of constraints as, for example, a(1), a(2), a(3), s. When
the constraint s is considered the constraints a(1), a(2) and a(3) are already in the store of
constraints. The first rule is tried and the matching of its multiple head with the store of
constraints is a success. Since it is a simplification rule, the constraints a(1) and a(2) are
deleted from the store of constraints. The final store of constraints is then {a(3)}.

The operational ωr semantics. There exists a refined operational semantics ωr [8] which
considers the goal as a sequence instead of a multi-set. This semantics is very closed to the
way it is usually implemented. It also uses a transition system with identified constraints,
identities and propagation history. The operational semantics ωt is based on six transitions
which map a state to another state.

Linear-logic semantics of [6, 5]. This linear-logic semantics is directly inspired by the
classical first-order logic semantics: goals (and stores of constraints) are translated to
multiplicative conjunctions, simpagation rules (K\D ⇔ B) to the linear-logic formulas:
!(K ⊗D)((K ⊗ B) and a CHR program to a large conjunction of linear-logic formulas.
We denote by (.)L the above translation. A CHR program P has a computation with initial
store S0 and final store Sn if and only if (P)L ` ((S0)L ((Sn)L).

ICLP 2018

4:6 A New Proof-Theoretical Linear Semantics for CHR

Axiomatic linear semantics of [5, 7]. The axiomatic linear semantics is based on the
cut-rule of the linear logic and proper axioms: each CHR rule of the program is interpreted
as an axiom. A goal is solved if there exists a linear proof of true in a linear-logic sequent
calculus augmented by the proper axioms.

None of the previous semantics offers a semantics for the example of the introduction
since they all manage the store of constraints as an unordered multi-set.

3 ωl and ω⊗
l sequent calculus

In this section, we first define two sequent calculi: the ωl and the ω⊗l sequent calculi. The
first one keeps the multi-sets of the ωt and ωr semantics while the second uses a sequence.
Then we prove that the ωl system is sound and complete w.r.t. the ωt semantics while the
ω⊗l system is sound (but not complete) w.r.t. the ωt semantics. Finally we give a translation
from the ωl (and ω⊗l) system to the linear-logic sequent calculus and prove the soundness of
this translation.

3.1 ωl and ω⊗
l systems

We first define the notion of store for the ωl and ω⊗l systems.

I Definition 2 (ωl and ω⊗l stores). An ωl store is a multi-set of identified constrains. An
ω⊗l store is a sequence of identified constraints.

The ωl and ω⊗l systems are based on two kinds of sequents: the focused sequent is focused
on a particular identified constraint, the current identified constraint, while the non focused
sequent works on a sequence of identified constraints, the current goal.

We first define our sequents for the ωl and ω⊗l systems.

I Definition 3 (non focused and focused ωl and ω⊗l sequents).
A non focused sequent is a quadruple (Γ I Ω# J S↑ ` S↓) where S↓, the down store,
and S↑, the up store, are two stores of identified constraints, Γ is a sequence of CHR rules
and Ω#, the goal, is a sequence of identified constraints3.
A focused sequent is a quintuple (Γ ! ∆ . a / S↑ ` S↓) where S↓, S↑ and Γ are defined as
for the non focused sequent, ∆ is an ending sequence of Γ and a is an identified constraint.

The intuitive meaning of a non focused sequent (Γ I Ω# J S↑ ` S↓) is to try and
consume the identified constraints Ω#

4 with the sequence of CHR rules Γ thanks to the store
S↑. The elements of the store S↓ are the unconsumed identified constraints: the identified
constraints of S↑ that have not been consumed and those produced by Ω# and not consumed
during this production.

The intuitive meaning of a focused sequent (Γ ! ∆ . A#i / S↑ ` S↓) is the same as for
a non focused sequent but restricted to a unique identified constraint A#i which may be
consumed only by the sequence of CHR rules ∆ 5.

In our sequent calculi, the final store of identified constraints is what we have to prove.
Solve the problem represented by a CHR program and an initial goal is to prove true.

Now we define the ω⊗l sequent calculus:

3 Note that in the ωt semantics the goal is a set of constraints.
4 i.e. to solve the constraints of const(Ω#)
5 the identified constraints produced by A#i may be consumed by the CHR rules of Γ

I. Stéphan 4:7

I Definition 4 (ω⊗l sequent calculus system). The ω⊗l system is based on four types of
ω⊗l inference rules (S↓, Sa

↓ , S↑, Sa
↑ , SB

↑ , SB
↓ , SΩ

↓ , SΩ
↑ , S, SK , SD, S⊆K , S⊆K

↑ some stores;
K1, . . . , Km, D1, . . . , Dn, B1, . . . , Bp some constraints, B a sequence of constraints; a an
identified constraint; Ω#, the goal, a sequence of identified constraints; i, i′ some integers).

The non focused subsystem:
The true axiom:

trueΓ I true J S ` S

The Left-elimination-of-conjunction inference rule:
Γ I a J Sa

↑ ` Sa
↓ Γ I Ω# J Sa

↓ , SΩ
↑ ` SΩ

↓
⊗L

Γ I a, Ω# J Sa
↑ , SΩ

↑ ` SΩ
↓

The Exchange inference rule:
Γ I Ω# J A′#i′, A#i, S↑ ` S↓

X
Γ I Ω# J A#i, A′#i′, S↑ ` S↓

with the proviso that A 6= A′.
The focused subsystem:

The Inactivate axiom:
↑

Γ ! . a / S ` a, S

The Weakening inference rule:

Γ ! ∆ . a / S↑ ` S↓
W

Γ ! (K1, . . . , Km\D1, . . . , Dn ⇔ G), ∆ . a / S↑ ` S↓

with no j, (1 ≤ j ≤ n such that Dj = const(a) or 1 ≤ j ≤ m such that Kj = const(a)),
SD ⊆ S↑, SK ⊆ S↑, SD]SK]{a} = {K1#i1, . . . , Km#im, D1#im+1, . . . , Dn#im+n}6.

The Focusing inference rule:
Γ ! Γ . a / S↑ ` S↓

FΓ I a J S↑ ` S↓

The Apply inference rule:

Γ I B1#i′, . . . , Bp#(i′ + p) J SK , SB
↑ ` S⊆K , SB

↓ Γ I S⊆K J SB
↓ , S⊆K

↑ ` S↓
\ ⇔

Γ ! (K1, . . . , Km\D1, . . . , Dn ⇔ B1, . . . , Bp), ∆ . a / SD, SK , SB
↑ , S⊆K

↑ ` S↓

with either there exists j, 1 ≤ j ≤ n such that Dj = const(a), SK = K1#i1, . . . , Km#im,
a inserted in SD at place j is equal to D1#im+1, . . . , Dn#im+n, or there exists j, 1 ≤ j ≤
m such that Kj = const(a), a inserted in SK at place j is equal to K1#i1, . . . , Km#im,
SD = D1#im+1, . . . , Dn#im+n; i′ a new integer, S⊆K is a subsequence of K1#i1, . . . ,

Km#im.

The ωl sequent calculus system is less structurally constrained than the ω⊗l system:

I Definition 5 (ωl sequent calculus system). The ωl sequent calculus system is the ω⊗l sequent
calculus system where the store of identified constraints and the multiple heads of rules are
multi-sets instead of sequences and the Exchange inference rule is omitted.

6 When used with multi-set operations, sequences are considered as multi-sets

ICLP 2018

4:8 A New Proof-Theoretical Linear Semantics for CHR

The non focused system splits the current goal and allocates the resources. If the current
goal is the true goal then no identified constraint is consumed and the true axiom is applied.
If the current goal is a sequence of identified constraints, the Left-elimination-of-conjunction
inference rule is applied: The first identified constraint a of the sequence is isolated and
a part of the resources Sa

↑ are allocated to solve the constraint const(a), the rest of the
identified constraints, SΩ

↑ , and those produced by a but unconsumed, Sa
↓ , are allocated to

the sequence of identified constraints S⊆K7. This inference rule realizes in fact a hidden
use of the cut-rule of the linear-logic sequent calculus: the Sa

↓ is a lemma computed by the
left subproof and used in the right subproof. Both operational semantics eliminate those
instances of the cut-rule in order to linearize the derivation.

The focused system chooses, if any, a CHR rule to be applied on the focused identified
constraint a. If no such CHR rule exists, the Inactivate axiom stores the identified constraint
into the store. The Weakening inference eliminates, in the order of the sequence ∆, the first
CHR rule (K1, . . . , Km\D1, . . . , Dn ⇔ B) that cannot be applied since there are no subset SK

and SD of S↑ such that SK] SD] {a} = {K1#i1, . . . , Km#im, D1#im+1, . . . , Dn#im+n}.
The Focusing inference rule flips from the non focused ω⊗l system to the focused ω⊗l

system by focusing on an identified constraint.
The Apply inference rule flips from focused ω⊗l system to non focused ω⊗l system by apply-

ing a CHR rule (K1, . . . , Km\D1, . . . , Dn ⇔ B) on the focused identified constraint a since
there are two subsequences SK and SD of S↑ such that SK]SD]{a} = {K1#i1, . . . , Km#im,

D1#im+1, . . . , Dn#im+n}. The solving of the constraint underlying the identified constraint
a is reduced to the solving of the goal of the CHR rule B = B1, . . . , Bp and eventually the solv-
ing of the constraints underlying S⊆K in the case that identified constraints from S⊆K ⊆ SK

were not consumed during the process of consumption/production of B1#i′, . . . , Bp#i′ + p.
As for the Left-elimination-of-conjunction inference rule a part of the resources SK] SB

↑
is allocated to solve the goal B1#i′, . . . , Bp#(i′ + p), the rest of the identified constraints
S⊆K and those produced by B1#i′, . . . , Bp#(i′ + p) but unconsumed SB

↓ are allocated to
a sequence S⊆K . Since the ω⊗l system only applies a CHR rule if one of the identified
constraints of its head is focused on, the calculus of (Γ I S⊆K J SB

↓ , S⊆K
↑ ` S↓) is necessary

to the completeness. But S⊆K is not necessarily equal to K1#i1, . . . , Km#im since some
identified constraints may have been consumed during the process of consumption/production
of B1#i′, . . . , Bp#(i′ + p). Moreover, S⊆K may be empty if all the resources have been
consumed.

In a classical implementation of CHR, S⊆K
↑ is captured by the flow SB

↑ /SB
↓ . In this

configuration SB
↑ is not anymore the necessary resources to prove B and SB

↓ the resources
produced but unconsumed by B but respectively the input store and the output store of the
derivation of B.

Once again, this Apply inference rule realizes in fact a hidden use of the cut-rule of the
linear-logic sequent calculus: a lemma is computed by the left subproof and used in the right
subproof. Both operational semantics eliminate those instances of the cut-rule in order to
linearize the derivation.

When the applied CHR rule is such that S⊆K = ∅ the Apply inference rule is simplified to

Γ I B1#i′, . . . , Bp#(i′ + p) J SK , S↑ ` S↓
\ ⇔

Γ ! (K1, . . . , Km\D1, . . . , Dn ⇔ B1, . . . , Bp), ∆ . a / SD, SK , S↑ ` S↓

7 In the case of the ωl system, the elements of the multi-set S⊆K must be ordered in a sequence Ω⊆K
.

I. Stéphan 4:9

Moreover, when the applied CHR rule is a simplification rule (SK = ∅ and S⊆K = ∅)
then the Apply inference rule is simplified to

Γ I B1#i′, . . . , Bp#(i′ + p) J S↑ ` S↓
⇔

Γ ! (D1, . . . , Dn ⇔ B1, . . . , Bp), ∆ . a / SD, S↑ ` S↓

I Example 6. What follows is a proof 8 in the ωl system for the ωl sequent

(Γ I d#1, a#2 J ` S↓) = (r1, r2, r3 I d#1, a#2 J ` c#6, f#5, g#4, d#1).

with S↓ = {c#6, f#5, g#4, d#1}, Γ = r1@(d⇒ e), r2@(a\e⇔ g), r3@(a⇔ f, c)

∇1

F ↑
Γ I g#4 J a#2, d#1 ` g#4, a#2, d#1

∇2
FΓ I a#2 J g#4, d#1 ` S↓
\ ⇔

Γ ! r2, r3 . a#2 / d#1, e#3 ` S↓
WΓ ! r1, r2, r3 . a#2 / d#1, e#3 ` S↓
FΓ I a#2 J d#1, e#3 ` S↓

⊗LΓ I d#1, a#2 J ` S↓

with ∇1:

F ↑
Γ I e#3 J d#1 ` e#3, d#1

F ↑
Γ I d#1 J e#3 ` d#1, e#3

\ ⇔
Γ ! r1, r2, r3 . d#1 / ` d#1, e#3

FΓ I d#1 J ` d#1, e#3

and ∇2:

F ↑
Γ I f#5 J g#4, d#1 ` f#5, g#4, d#1

F ↑
Γ I c#6 J f#5, g#4, d#1 ` S↓

⊗LΓ I f#5, c#6 J g#4, d#1 ` S↓ ⇔
Γ ! r3 . a#2 / g#4, d#1 ` S↓

WΓ ! r2, r3 . a#2 / g#4, d#1 ` S↓
WΓ ! r1, r2, r3 . a#2 / g#4, d#1 ` S↓

What follows is a proof in the ω⊗l system:

∇1

F ↑
Γ I g#4 J a#2, d#1 ` g#4, a#2, d#1

∇2
FΓ I a#2 J g#4, d#1 ` S↓
\ ⇔

Γ ! r2, r3 . a#2 / e#3, d#1 ` S↓
WΓ ! r1, r2, r3 . a#2 / e#3, d#1 ` S↓
FΓ I a#2 J e#3, d#1 ` S↓

XΓ I a#2 J d#1, e#3 ` S↓
⊗LΓ I d#1, a#2 J ` S↓

Notice the use of the Exchange inference rule (X) in order to permute the identified
constraints d#1 and e#3.

We give the first contribution of this article: the soundness and completeness theorem of
the ωl system w.r.t. the ωt semantics:

8 In this example, we define the F ↑ axiom: r1,r2,...,rn I a J S` a,S as a shorthand for an instance of
a Focusing inference rule followed by many instances, as needed, of the Weakening inference rule and
followed by an instance of the Inactivate axiom.

ICLP 2018

4:10 A New Proof-Theoretical Linear Semantics for CHR

I Theorem 7 (Soundness and completeness of the ωl system w.r.t. the ωt semantics). Let Γ
be a CHR program and B1, . . . , Bp some constraints. The initial goal B1, . . . , Bp is solved in
the ωt semantics by Γ with a final store (a multi-set) of identified constraints Σ if and only
if there exists an ωl proof of (Γ I B1#1, . . . , Bp#p J ` Σ).

And as a corollary, we obtain the soundness of the ω⊗l system w.r.t. the ωt semantics:

I Theorem 8 (Soundness of the ω⊗l system w.r.t. the ωt semantics). Let Γ be a CHR program
and B1, . . . , Bp some constraints and Σ a store (a multi-set) of identified constraints. If there
exists an ω⊗l proof of (Γ I B1#1, . . . , Bp#p J ` S), where S is a sequence of Σ then the
initial goal B1, . . . , Bp is solved in the ωt semantics by Γ with a final store Σ.

The ω⊗l system is not complete w.r.t. the ωt semantics since the Exchange inference rule
is limited to identified constraints that are based on different constraints.

I Example 9 (Example of the introduction continued). We can prove with the ω⊗l system the
sequent (r I a(1)#1, a(2)#2, a(3)#3, s#4 J ` a(1)#1):

F ↑
r I a(1)#1 J ` a(1)#1

F ↑
r I a(2)#2 J a(1)#1 ` a(2)#2, a(1)#1 ∇

⊗L

r I a(2)#2, a(3)#3, s#4 J a(1)#1 ` a(1)#1
⊗L

r I a(1)#1, a(2)#2, a(3)#3, s#4 J ` a(1)#1

with ∇ (S = a(3)#3, a(2)#2, a(1)#1):

F ↑
r I a(3)#3 J a(2)#2, a(1)#1 ` S

true
r I true J a(1)#1 ` a(1)#1

⇔
r ! r . s#4 / S ` a(1)#1

F
r I s#4 J S ` a(1)#1

⊗L

r I a(3)#3, s#4 J a(2)#2, a(1)#1 ` a(1)#1

But not the sequent (r I a(3)#3, a(2)#2, a(1)#1, s#4 J ` a(2)#2) of Example 1 nor the
sequent (r I a(3)#3, a(2)#2, a(1)#1, s#4 J ` a(3)#3) since the store S is a sequence
(and not a multi-set) and the Exchange inference rule cannot be applied since the identified
constraints a(1)#1, a(2)#2 and a(3)#3 are based on the same constraint a.

3.2 Translation from ωl and ω⊗
l systems into Linear Logic

We define a translation from the ωl system into the linear-logic sequent calculus and prove
that the result of the translation of a ωl proof is a linear-logic proof in the sense of the
definition of Section 2.1. We first give the translation of the CHR rules, then the translation
for the ωl sequents and finally the translation for the ωl system. The translation from the ω⊗l
system into the linear-logic sequent calculus is directly obtained from previous translation by
omitting the Exchange inference rule (and by considering sequences as multi-sets).

I Definition 10 (Translation of the CHR rules and CHR programs into linear-logic formulas).
The CHR rules are translated into linear-logic formulas as follows thanks to the function (.)Γ:

(K1, . . . , Km\D1, . . . , Dn ⇔ true)Γ =
∀x1 . . . ∀xm+n

((K1(x1)⊗ . . .⊗Km(xm)⊗Dm+1(xm+1)⊗ . . .⊗Dm+n(xm+n))
((K1(x1)⊗ . . .⊗Km(xm)⊗ 1))

I. Stéphan 4:11

(K1, . . . , Km\D1, . . . , Dn ⇔ false)Γ =
∀x1 . . . ∀xm+n

((K1(x1)⊗ . . .⊗Km(xm)⊗Dm+1(xm+1)⊗ . . .⊗Dm+n(xm+n))
((K1(x1)⊗ . . .⊗Km(xm)⊗ 0))

(K1, . . . , Km\D1, . . . , Dn ⇔ B1, . . . , Bp)Γ =
∀x1 . . . ∀xm+n∃y1 . . . ∃yp

((K1(x1)⊗ . . .⊗Km(xm)⊗Dm+1(xm+1)⊗ . . .⊗Dm+n(xm+n))
((K1(x1)⊗ . . .⊗Km(xm)⊗B1(y1)⊗ . . .⊗Bp(yp)))

(r, ∆)Γ = (r)Γ & (∆)Γ with r a CHR rule and ∆ a non empty sequence of CHR rules.

CHR constant true is interpreted to 1, the neutral of ⊗ the multiplicative conjunction.
CHR constant false is interpreted to 0 which has no elimination rule. Introduction of new
identities are interpreted to existential quantifications in order to generate a brand new one
each time while transmission of identities of identified constraints are interpreted by universal
quantifications. In a CHR rule, symbol “⇔” is interpreted to linear implication and symbol
“,” is interpreted to the multiplicative conjunction ⊗. Finally, in CHR program, symbol “,”
is interpreted to the additive conjunction &, an (ordered) committed choice.

I Example 11 (Example continued).

(r1)Γ = (d⇒ e)Γ = (∀x (∃y (d(x)(d(x)⊗ e(y))))
(r2)Γ = (a\e⇔ g)Γ = (∀x, x′ (∃y (a(x)⊗ e(x′)(a(x)⊗ g(y))))
(r3)Γ = (a⇔ f, c)Γ = (∀x (∃y, y′ (a(x)(f(y)⊗ c(y′))))

I Definition 12 (Translation of the ωl sequents into linear sequent). The ωl system language
is translated into Linear Logic as follows thanks to three functions (.)Ω, (.)↑ and (.)↓ for
translating respectively the goal, the up store and the down store of an ωl sequent.

(true)Ω = 1, (false)Ω = 0,

(A#i)Ω = A(i) a token, with A a constraint and i an identity,
((a, Ω#))Ω = ((a)Ω ⊗ (Ω#)Ω)
with a an identified constraint and Ω# a sequence of identified constraints

(A#i)↑ = A(i) a token, with A a constraint and i an identity,
(S)↑ = {(a)↑ | a ∈ S}
with a an identified constraint and S a store.

(A#i)↓ = A(i) a token, with A a constraint and i an identity,
(S)↓ =

⊗
a∈S (a)↓

with a an identified constraint and S a store.

For any ωl sequent is translated into a linear sequent as follows thanks to the function
L(.) :

L(Γ I Ω# J S↑ ` S↓) = !(Γ)Γ, (Ω#)Ω, (S↑)↑ ` (S↓)↓
L(Γ ! ∆ . Ω# / S↑ ` S↓) = !(Γ)Γ, (∆)Γ&1, (Ω#)Ω, (S↑)↑ ` (S↓)↓
L(Γ ! . Ω# / S↑ ` S↓) = !(Γ)Γ, (Ω#)Ω, (S↑)↑ ` (S↓)↓

The goal and the down store of identified constraints of the ωl sequent are interpreted to
multiplicative conjunctions of tokens while the up store of identified constraints is interpreted
to a sequence of tokens. The multiplicative conjunction of the goal induces a sequence on
the identified constraints of the goal. The multiplicative conjunction of the goal allows
the introduction of the cut-rule of the Left-elimination-of-conjunction inference and Apply
inference rules.

ICLP 2018

4:12 A New Proof-Theoretical Linear Semantics for CHR

The CHR program is interpreted as a large additive conjunction of linear implications
ended with the 1 constant in order to allow the move in the Inactivate inference rule of
the identified constraint from the goal to the down store when no CHR rule is found to be
applied.

I Definition 13 (Translation of the ωl system into the linear-logic sequent calculus).
The non focused ωl system:

true axiom
trueΓ I true J S ` S

is translated into 9

I⊗
(S)↑ ` (S)↓

1L
1, (S)↑ ` (S)↓

!W
L(Γ I 1 J S ` S)

Left-elimination-of-conjunction inference rule:
Γ I a J Sa

↑ ` Sa
↓ Γ I Ω# J Sa

↓ , SΩ
↑ ` SΩ

↓
⊗L

Γ I a, Ω# J Sa
↑ , SΩ

↑ ` SΩ
↓

is translated into

L(Γ I a J Sa
↑ ` Sa

↓)

L(Γ I Ω# J Sa
↓ , SΩ

↑ ` SΩ
↓)

⊗L∗
!(Γ)Γ, (Ω#)Ω, (Sa

↓)↓, (SΩ
↑)↑ ` (SΩ

↓)↓
Cut

!(Γ)Γ, !(Γ)Γ, (a)Ω, (Ω#)Ω, (Sa
↑)↑, (SΩ

↑)↑ ` (SΩ
↓)↓

!C
!(Γ)Γ, (a)Ω, (Ω#)Ω, (Sa

↑)↑, (SΩ
↑)↑ ` (SΩ

↓)↓
⊗L

L(Γ I (a, Ω#) J Sa
↑ , SΩ

↑ ` SΩ
↓)

The focused ωl system:
Weakening rule:

Γ ! ∆ . a / S↑ ` S↓
W

Γ ! (K\D ⇔ B), ∆ . a / S↑ ` S↓

is translated into
L(Γ ! ∆ . a / S↑ ` S↓)

&L2
L(Γ ! (K\D ⇔ B), ∆ . a / S↑ ` S↓)

Inactivate rule:
↑

Γ ! . A#i / S ` A#i, S

is translated into

9 The following axiom I⊗: B1,B2,...,Bn ` B1⊗B2⊗...⊗Bn
is a shorthand for the following linear proof

I
B1 ` B1

I
Bn−1 ` Bn−1

I
Bn ` Bn

⊗R
Bn−1, Bn ` Bn−1 ⊗Bn

...
B2, . . . , Bn ` B2 ⊗ . . .⊗Bn

⊗R
B1, B2, . . . , Bn ` B1 ⊗B2 ⊗ . . .⊗Bn

I. Stéphan 4:13

I⊗
A(i), (S)↑ ` (A(i)⊗ (S)↓)

!W
L(Γ ! . A#i / S ` A#i, S)

The Focusing rule:
Γ ! Γ . a / S↑ ` S↓

FΓ I a J S↑ ` S↓

is translated into

L(Γ ! Γ . a / S↑ ` S↓)
!D

!(Γ)Γ, !(Γ)Γ, (a)Ω, (S↑)↑ ` (S↓)↓
!C

L(Γ I a J S↑ ` S↓)

The Apply rule with

(K1, . . . , Km\D1, . . . , Dn ⇔ B)Γ =
∀x1 . . . ∀xm+n∃y1 . . . ∃yp((K1(x1)⊗ . . .⊗Km(xm)⊗Dm+1(xm+1)⊗ . . .⊗Dm+n(xm+n))
((K1(x1)⊗ . . .⊗Km(xm)⊗B1(y1)⊗ . . .⊗Bp(yp)))

such that K⊗ = K1(i)⊗ . . .⊗Km(i + m), D⊗ = D1(i + m + 1)⊗ . . .⊗Dn(i + m + n),
B = B1, . . . , Bp, B# = B1#i′, . . . , Bp#(i′ + p), i′ = i + m + n + 1 and p > 0, and
B⊗ = B1(i′)⊗ . . .⊗Bp(i′ + p) = (B1#i′, . . . , Bp#(i′ + p))Ω.
The Apply rule

Γ I B# J SK , SB
↑ ` S⊆K , SB

↓ Γ I Ω⊆K
J SB

↓ , S⊆K
↑ ` S↓

\ ⇔
Γ ! (K1, . . . , Km\D1, . . . , Dn ⇔ B), ∆ . a / SD, SK , SB

↑ , S⊆K
↑ ` S↓

is translated into

I⊗
(a)Ω, (SD)↑, (SK)↑ ` K⊗ ⊗D⊗ ∇

(L

!(Γ)Γ, (K⊗ ⊗D⊗(K⊗ ⊗B⊗), (a)Ω, (SD)↑, (SK)↑, (SB
↑)↑, (S⊆K

↑)↑ ` (S↓)↓
∃L*∀L*

!(Γ)Γ, (K1, . . . , Km\D1, . . . , Dn ⇔ B)Γ, (a)Ω, (SD)↑, (SK)↑, (SB
↑)↑, (S⊆K

↑)↑ ` (S↓)↓
&L1

L(Γ ! (K1, . . . , Km\D1, . . . , Dn ⇔ B), ∆ . a / SD, SK , SB
↑ , S⊆K

↑ ` S↓)

with ∇ =

L(Γ I B# J SK , SB
↑ ` S⊆K , SB

↓)

L(Γ I Ω⊆K
J SB

↓ , S⊆K ` S↓)
⊗L∗

!(Γ)Γ, (Ω⊆K
)Ω ⊗ (SB

↓)↓, (S⊆K)↑ ` (S↓)↓
Cut

!(Γ)Γ, !(Γ)Γ, (SK)↑, B⊗, (SB
↑)↑, (S⊆K

↑)↑ ` (S↓)↓
!C

!(Γ)Γ, (SK)↑, B⊗, (SB
↑)↑, (S⊆K

↑)↑ ` (S↓)↓
⊗L∗

!(Γ)Γ, K⊗ ⊗B⊗, (SB
↑)↑, (S⊆K

↑)↑ ` (S↓)↓

Note that since Ω⊆K
is a sequence over S⊆K , it may be chosen such that (Ω⊆K

)Ω =
(S⊆K)↓. If S⊆K = ∅ or B = true or B = false the above translation is simplified in a
straightforward manner.

ICLP 2018

4:14 A New Proof-Theoretical Linear Semantics for CHR

The linear cut-rule is used in the translation of the Left-elimination-of-conjunction
inference rule in order to transmit the down store of the left subproof to the right subproof.
This down store which is a multiplicative conjunction is then split into a sequence of identified
constraints thanks to linear-logic ⊗ left elimination ⊗L-rule.

Weakening inference rule tries the CHR rules in the order of the CHR program thanks to
the linear-logic &L2 rule.

The linear cut-rule is also used in the translation of the Apply inference rule in order
to transmit the down store of the left subproof to the the right subproof if SK has not
been completely consumed by the subproof (ie. S⊆K 6= ∅). This down store which is a
multiplicative conjunction is then split into a sequence of identified constraints thanks to the
linear-logic ⊗ left elimination ⊗L-rule.

We now establish the second contribution of this article, the soundness of the translation
from the ωl system to the linear-logic sequent calculus:

I Theorem 14. The result of the translation by Definitions 10, 12 and 13 of an ωl proof is
a linear proof.

As a direct corollary, the soundness of the translation from the ω⊗l system to the linear-logic
sequent calculus with the same translation that for the ωl system (instances of the Exchange
inference rule are simply ignored):

I Theorem 15. The result of the translation by Definitions 10, 12 and 13 of an ω⊗l proof is
a linear proof.

4 Discussion

[3] proposes a normalization process of the Linear Logic proofs to a subclass of proofs,
called the “focusing” proofs, which is complete (any derivable formula in Linear Logic has
a focusing proof). Focusing proofs are expressed in a Triadic system, which respects the
symmetry of Linear Logic. This process of normalization informally interleaves a don’t care
nondeterministic phase on asynchronous formulae and a phase applied on a synchronous
focused formula. This last phase is a critical section and don’t know nondeterminism can only
appear during this phase. Since our ω⊗l system is completely deterministic, the two phases of
the ω⊗l system are not based on the same principles as the two phases of the Triadic system.
But, since the Triadic system is complete w.r.t. Linear Logic, it would be interesting to
translate the ωl and ω⊗l proofs in focusing proofs to understand the semantics of CHR in
terms of synchronous and asynchronous connectors.

5 Conclusion

We have proposed in this article two new proof-theoretical linear sequent systems for
the semantics of CHR. The ω⊗l system makes the semantics of the language completely
deterministic. This semantics overcomes the hidden nondeterminism due to the management
of the store of identified constraints and the multiple head of rules as multi-sets. But we can
reintroduce the don’t care nondeterminism of the committed choice principle if we allow the
weakening inference rule even if the CHR rule is applicable (and of course also the don’t
know nondeterminism). Due to the lack of space, we cannot present a restricted version of
the Apply inference rule (with S⊆K replaces only by K) which corresponds more faithfully
to the ωr semantics.

I. Stéphan 4:15

References
1 S. Abdennadher. Operational Semantics and Confluence of Constraint Propagation Rules.

In Proceedings of the 3rd International Conference on Principles and Practice of Constraint
Programming (CP’97), pages 252–266, 1997.

2 S. Abdennadher and H. Schütz. CHR∀: A Flexible Query Language. In Proceedings of the
3rd International Conference on Flexible Query Answering Systems, pages 1–14, 1998.

3 J.M. Andreoli. Logic Programming with Focusing Proofs in Linear Logic. Journal of logic
and computation, 2(3):297–347, 1992.

4 H. Betz. A linear-logic semantics for constraint handling rules With Disjunction. In Pro-
ceedings of the 4th Workshop on Constraint Handling Rules (CP’07), pages 17–31, 2007.

5 H. Betz. A Unified Analytical Foundation for Constraint Handling Rules, PhD thesis, Ulm
University, 2014.

6 H. Betz and T.W. Frühwirth. A Linear-Logic Semantics for Constraint Handling Rules. In
Proceedings of the 11th International Conference on Principles and Practice of Constraint
Programming (CP’05), pages 137–151, 2005.

7 H. Betz and T.W. Frühwirth. Linear-Logic Based Analysis of Constraint Handling Rules
with Disjunction. ACM Transactions on Computational Logic, 14(1), 2013.

8 G.J. Duck, P.J. Stuckey, M.G. de la Banda, and C. Holzbaur. The Refined Operational Se-
mantics of Constraint Handling Rules. In Proceedings of the 20th International Conference
on Logic Programming (ICLP’04), pages 90–104, 2004.

9 T.W. Frühwirth. Constraint Handling Rules. Technical report, ECRC, 1992.
10 T.W. Frühwirth. Constraint Handling Rules. In Constraint Programming: Basics and

Trends, pages 90–107, 1994.
11 T.W. Frühwirth. Theory and Practice of Constraint Handling Rules. Journal of Logic

Programming, 37(1-3):95–138, 1998.
12 T.W. Frühwirth. Constraint Handling Rules. Cambridge University Press, 2009.
13 T.W. Frühwirth and S. Abdennadher. Essentials of Constraint Programming. Springer-

Verlag, 2003.
14 T.W. Frühwirth and F. Raiser, editors. Constraint Handling Rules: Compilation, Execu-

tion, and Analysis. Books on Demand, March 2011.
15 Jean-Yves Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987.
16 P. Van Hentenryck. Constraint logic programming. Knowledge Engineering Review,

6(3):151–194, 1991.
17 J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proceedings of the 14th

Annual ACM Symposium on Principles of Programming Languages, pages 111–119, 1987.
18 J. Jaffar and M.J. Maher. Constraint Logic Programming: A Survey. Journal of Logic

Programming, 19/20:503–581, 1994.
19 F. Raiser, H. Betz, and Thom Frühwirth. Equivalence of CHR states revisited. In Pro-

ceedings of the 6th International Workshop on Constraint Handling Rules, pages 34–48,
2009.

6 Appendix

In order to prove the soundness and completeness of the ωl system w.r.t. the ωt semantics,
we first introduce the ωt sequent calculus system that imitates faithfully the ωt semantics.
Hence we prove the soundness and completeness of this ωt system w.r.t. the ωt semantics
and then prove the soundness and completeness of ωl system w.r.t. ωt system.

We first define what is a ωt sequent.

ICLP 2018

4:16 A New Proof-Theoretical Linear Semantics for CHR

I Definition 16 (ωt sequent). An ωt sequent is a triplet (Γ I Ω J S `) where S, the store
of identified constraints, is a multi-set of identified constraints, Ω, the current goal, is a
multi-set of constraints and Γ, the program, is a sequence of CHR rules.

Notice that in a ωt sequent, compare to ωl or ω⊗l sequents, the final store is empty. It
will be only known at the (unique) leaf of the ωt proof.

Now we are able to define our ωt system.

I Definition 17 (ωt system). The symbol Γ denotes a program, Ω a multi-set of constraints,
S, SK , SD some sets of identified constraints, A, K1, . . . , Km, D1, . . . , Dn some constraints,
i, i1 . . . , im+n some distinct integers, B a sequence of constraints. The ωt system is the set
of the following ωt inference rules:

ωt axiom:
ωt

Γ I J S `
with no simpagation rule (K1, . . . , Km\D1, . . . , Dn ⇔ B) ∈ Γ such that SK =
{K1#i1, . . . , Km#im} and SD = {D1#im+1, . . . , Dn#im+n} and SK ∪ SD ⊆ S.
ωt-Tokenize inference rule:

Γ I Ω J A#i, S `
#

Γ I A, Ω J S `

A usual proviso for quantifier elimination is assumed: i must be a brand new integer.
ωt-Apply inference rule10:

Γ I B, Ω J SK , S `
\ ⇔

Γ I Ω J SK , SD, S `

with (K1, . . . , Km\D1, . . . , Dn ⇔ B) in Γ and SK = {K1#i1, . . . , Km#im} and SD =
{D1#im+1, . . . , Dn#im+n}.
ωt-true Apply inference rule:

Γ I Ω J SK , S `
\ ⇔

Γ I Ω J SK , SD, S `

with (K1, . . . , Km\D1, . . . , Dn ⇔ true) in Γ and SK = {K1#i1, . . . , Km#im} and SD =
{D1#im+1, . . . , Dn#im+n}.

We define also what are a ωt proof tree and an ωt proof.

I Definition 18 (ωt proof tree and ωt proof). The set of ωt proof trees is the least set of
trees containing all one-node trees labeled with an ωt sequent, and closed under the rules
of Definition 17 in the following sense: For any ωt proof tree ∇ whose root is labeled with
sequent ωt, s (and whose unique leaf is labeled with sequent s′′) and for any instance of an
inference rule s

s′ of Definition 17, the tree ∇s′ is an ωt proof tree whose root is labeled with s′

(and whose unique leaf is labeled with s′′).
An ωt proof of a sequent s is any ωt proof tree whose root is labeled with s and whose

unique leaf is labeled with an ωt axiom.

10 If B is the sequence B1, . . . , Bp, p > 0 then B, Ω means {B1, . . . , Bp}] Ω.

I. Stéphan 4:17

The following lemma expressing the completeness of the ωt system w.r.t. the ωt semantics
is straightforward.

I Lemma 19 (Completeness of the ωt system w.r.t. ωt semantics). Let Γ be a program, Ω
and Ω′ two goals, S and S′ two stores, c and c′ integers such that c ≤ c′, H and H ′ two
propagation histories such that H ⊆ H ′.

If 〈Ω, S, H〉c ∗t 〈Ω′, S′, H ′〉c′ is an ωt derivation then there exists an ωt proof tree whose
root is (Γ I Ω J S `) and such that there is only one sequent leaf (Γ I Ω′ J S′ `).

The following lemma expressing the soundness of the ωt system w.r.t. the ωt semantics is
a little more difficult since the policy applied to avoid trivial loops has to be maintained.

I Lemma 20 (Soundness of ωt system w.r.t. ωt semantics). Let Γ be a program, Ω and Ω′
two multi-sets of constraints, Ω# and Ω′# two multi-sets of identified constraints and H a
set of identities of instantiated rules.

If (Γ I Ω# J S `) admits an ωt proof tree such that there is only one sequent leaf
(Γ I Ω′# J S′ `) with no identity of an instantiated rule in the ωt proof tree appearing twice
nor in H, then there exists an ωt derivation 〈Ω, S, H〉i ∗t 〈Ω′, S′, H ′〉i′+1 with i (resp. i′)
the integer introduced by the first (last) instance of the ωt-Tokenize inference rule in the ωt

proof tree and H ′ is the union of H and all the identities of the instantiated rules of the ωt

proof tree.

The following theorem of completeness and soundness of the ωt system w.r.t. the ωt

semantics is a direct corollary of the two previous lemmas.

I Theorem 21 (Soundess and completeness of ωt system w.r.t. ωt semantics). Let Γ be a
program and Ω an initial goal.
〈Ω, ∅, ∅〉1 admits a successful ωt derivation if and only if (Γ I Ω J `) admits an ωt

proof with no identity of instantiated rule appearing twice.

I Lemma 22 (Completeness of ωl system w.r.t. ωt system). Let Γ be a CHR program and
B1, . . . , Bp some constraints.

If the ωt sequent (Γ I B1, . . . , Bp J `) admits an ωt proof with a last sequent
(Γ I J S `) then the ωl sequent (Γ I B1#1, . . . , Bp#p J ` S) admits an ωl proof.

I Lemma 23 (Soundness of ωl system w.r.t. ωt system). Let Γ be a CHR program and
B1, . . . , Bp some constraints.

If the ωl sequent (Γ I B1#1, . . . , Bp#p J ` S) admits an ωl proof then the ωt sequent
(Γ I B1, . . . , Bp J `) admits an ωt proof with a last sequent (Γ I J S `).

I Theorem 24 (Soundness and completeness of ωl system w.r.t. ωt system). Let Γ be a CHR
program and B1, . . . , Bp some constraints.

The ωt sequent (Γ I B1, . . . , Bp J `) admits an ωt proof with a last sequent (Γ I J S `)
if and only if the ωl sequent (Γ I B1#1, . . . , Bp#p J ` S) admits an ωl proof.

Proof of Theorem 24. Direct consequence of Lemmas 22 and 23. J

Proof of Theorem 7. Direct consequence of Theorems 21 and 24. J

Proof of Theorem 8. The soundness is a direct consequence of Theorem 7. J

ICLP 2018

	Introduction
	Background
	Linear logic
	CHR language and its semantics
	The syntax
	The operational omega_t semantics

	omega_l and omega^otimes_l sequent calculus
	omega_l and omega^otimes_l systems
	Translation from omega_l and omega^otimes_l systems into Linear Logic

	Discussion
	Conclusion
	Appendix

