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Abstract
The work in the paper presents an animation extension (CHRvis) to Constraint Handling Rules
(CHR). Visualizations have always helped programmers understand data and debug programs.
A picture is worth a thousand words. It can help identify where a problem is or show how
something works. It can even illustrate a relation that was not clear otherwise. CHRvis aims
at embedding animation and visualization features into CHR programs. It thus enables users,
while executing programs, to have such executions animated. The paper aims at providing the
operational semantics for CHRvis. The correctness of CHRvis programs is also discussed.
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1 Introduction

Animation tools are considered as a basic construct of programming languages. They are
used to visualize the execution of a program. They provide users with a simple and intuitive
method to debug and trace programs. This paper presents an extension to Constraint
Handling Rules (CHR). The extension adds new visual features to CHR. It enables users to
animate executions of CHR programs.

CHR [9, 8] has evolved over the years into a general purpose language. Originally, it
was proposed for writing constraint solvers. Due to its declarativity, it has, however, been
used with different algorithms such as sorting algorithms, graph algorithms, ... etc. CHR
lacked tracing and debugging tools. Users were only able to use the textual trace facility of
SWI-Prolog as shown in Figure 1 which is hard to follow especially with big programs.

Two types of visual facilities are important for a CHR programmer/beginner. Firstly, the
programmer would like to get a visual trace showing which CHR rule gets applied at every
step and its effect. Secondly, since CHR has developed into a general purpose language, it has
been used with different types of algorithms such as sorting and graph algorithms. It is thus
important to have a visual facility to animate the execution of the algorithms rather than
just seeing the rules being executed. CHR lacked such a tool. The tool should be able to
adapt with the execution nature of CHR programs where constraints are added and removed
continuously from the constraint store.
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(a) Using the normal trace option. (b) Using the chr_trace option.

Figure 1 Current Tracing Facilities in SWI-Prolog.

Several approaches have been devised for visualizing CHR programs and their executions.
In [2], a tool called VisualCHR was proposed. VisualCHR allows its users to visually debug
constraint solving. The compiler of JCHR [13] (on which VisualCHR is based) was modified.
The visualization feature was thus not available for Prolog versions, the more prominent
implementation of CHR. [3] introduced a tool for visualizing the execution of CHR programs.
It was able to show at every step the constraint store and the effect of applying each CHR
rule in a step-by-step manner. The tool was based on the SWI-Prolog implementation of
CHR. Source-to-source transformation was used in order to eliminate the need of doing any
changes to the compiler. The tool could thus be deployed directly by any user.

Despite of the availability of such visualization tools, CHR was still missing a system
for animating algorithms. The available tools were able to show at each point in time
the executed rule and the status of the constraint store [3, 1]. However, the algorithm
implemented had no effect on the produced visualization. Existing algorithm animation tools
could not be adopted with CHR. For example, one of the available tools is XTANGO [16]
which is a general purpose animating system. However, the algorithm should be implemented
in C or another language such that it produces a trace file to be read by a C program
driver making it difficult to use with CHR. Due to the wide range of algorithms implemented
through CHR, an algorithm-based animation was needed. Such animation should show at
each step in time the changes to the data structure affected by the algorithm.

The paper presents a different direction for animating CHR programs. It allows users to
animate any kind of algorithm implemented in CHR. This direction thus augments CHR with
an animation extension. As a result, it allows a CHR programmer to trace the program from
an algorithmic point of view independent of the details of the execution of its rules. The
formal analysis of the new extension is presented in the paper. The paper thus presents a new
operational semantics of CHR that embeds visualization into its execution. The formalism
is able to capture not only the behavior of the CHR rules, it is also able to represent the
graphical objects associated with the animation. It is used to prove the correctness of the
programs extended with animation features. To eliminate the need of users learning the new
syntax for using the extension, a transformation approach is also provided.

The paper is organized as follows: Section 2 introduces CHR. Section 3 introduces the new
extension. In Section 3.2, the formalization is given by introducing ωvis, a new operational
semantics for CHR that accounts for annotation rules. Conclusions and directions for future
work are presented at the end of the paper.
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2 Constraint Handling Rules

CHR was initially developed for writing constraint solvers [9, 8, 10]. The rules of a CHR
program keeps on rewriting the constraints in the constraint store until a fixed point is
reached. At that point no CHR rules could be applied. The constraint store is initialized by
the constraints in the query of ths user. CHR has implementations in different languages
such as Java, C and Haskell. The most prominent implementation is the Prolog one. A CHR
program has two types of constraints: user-defined/CHR constraints and built-in constraints.
CHR constraints are defined by the user at the beginning of a program. Built-in constraints,
on the other hand, are handled by the constraint theory (CT ) of the host language. A CHR
program consists of a set of “simpagation rules”. A simpagation rule has the following format:

optional_rule_name @ Hk \ Hr ⇔ G | B.

Hk and Hr represent the head of the rule. The body of the rule is B. The guard G represents
a precondition for applying the rule. A rule is only applied if the constraint store contains
constraints that match the head of the rule and if the guard is satisfied. As seen from the
previous rule, the head has two parts: Hk and Hr. The head of a rule could only contain
CHR constraints. The guard should consist of built-in constraints. The body, on the other
hand, can contain CHR and built-in constraints. On applying the rule, the constraints in
Hk are kept in the constraint store. The constraints in Hr are removed from the constraint
store. The body constraints are added to the constraint store.

There are two special kinds of CHR rules: propagation rules and simplification rules. A
propagation rule has an empty Hr. A propagation rule does not remove any constraint from
the constraint store. It has the following format:

optional_rule_name @ Hk ⇒ G | B.

A simplification rule on the other hand has an empty Hk. A simplification rule removes all
the head constraints from the constraint store. A simplification rule has the following format:

optional_rule_name @ Hr ⇔ G | B.

The following program aims at sorting numbers in an array/list. Each number is
represented by the constraint cell(I,V). I represents the index and V represents the value
of the element. The program contains one rule: sort_rule. It is applied whenever the
constraint store contains two cell constraints representing two unsorted elements. The
guard makes sure that the two elements are not sorted with respect to each other. The
element at index I1 has a value (V1) that is greater than the value (V2) of the element at
index I2. I1 is less than I2. Thus, V1 precedes V2 in the array despite of the fact that it is
greater than it. Since sort_rule is a simplification rule, the two constraints representing
the unsorted elements are removed from the constraint store. Two cell constraints are
added through the body of the rule to represent the performed swap to sort the two elements.
Successive applications of the rule makes sure that any two elements that are not sorted with
respect to each other are swapped. The fixed point is reached whenever sort_rule is no
longer applicable. At this point, the array is sorted. The program is shown below:

:-chr_constraint cell/2.
sort_rule @ cell(I1,V1), cell(I2,V2) <=> I1<I2,V1>V2 |

cell(I2,V1), cell(I1,V2).

ICLP 2018
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2.1 Refined Operational Semantics ωr

In the theoretical semantics of CHR (ωt), a state is represented by the tuple 〈G, S, B, T 〉Vn
[9, 4]. G represents the goal store. It initially contains the query of the user. S is the
CHR constraint store containing the currently available CHR constraints. B, on the other
hand, is the built-in store with the built-ins handled by the host language (Prolog in this
case). The propagation history, T , holds the names of the applied CHR rules along with the
identifiers of the CHR constraints that activated the rules. T is used to eliminate the trivial
nontermination problem. Each CHR constraint is associated with an identifier. n represents
the next available identifier. V represents the set of global variables. Such variables are the
ones that exist in the initial query of the user. V does not change during execution, it is thus
omitted throughout the rest of the paper. A variable v /∈ V is called a local variable [12].

I Definition 1. The function chr is defined such that chr(c#n) = c. It is extended into
sequences and sets of CHR constraints. Likewise, the function id is defined such that id(c#n)
= n. It is also extended into sequences and sets of CHR constraints.

The refined operational semantics [7, 9] is adapted in most implementations of CHR. It
removes some of the sources of the non-determinism that exists in the theoretical operational
semantics (wt). In wt the order in which constraints are processed and the order of rule
application is non-deterministic. However, in wr, rules are executed in a top-down manner.
Thus, in the case where there are two matching rules, wr ensures that the rule that appears
on top is executed. Each atomic head constraint is associated with a number (occurrence).
Numbering starts from 1. It follows a top-down approach as well. For example, a CHR
program to find the minimum value is numbered as follows:

remove_dup @ min(X)_2 \ min(X)_1 <=> true.
remove_min @ min(X)_4 \ min(Y)_3 <=> X<Y | true.

I Definition 2. The active/occurrenced constraint c#i : j refers to a numbered constraint
that should only match with occurrence j of the constraint c inside the program. i is the
identifier of the constraint [7].

A state in wr is the tuple < A, S, B, T >n. Unlike wt, the goal A is a stack instead
of a multi-set. S, B, T and n have the same interpretation as an wt state. In the refined
operational semantics, constraints are executed similar to procedure calls. Each constraint
added to the store is activated. An active constraint searches for an applicable rule. The rule
search is done in a top-down approach. If a rule matches, the newly added constraints (from
the body of the applied rule) could in turn fire new rules. Once all rules are fired, execution
resumes from the same point. Constraints in the constraint store are reconsidered/woken if
a newly added built-in constraint could affect them (according to the wakeup policy). An
active constraint thus tries to match with all the rules in the program. Table 1 shows the
transitions of wr.

Solve+Wake: This transition introduces a built-in constraint c to the built-in store. In
addition, all constraints that could be affected by c (S1 in this case) are woken up by adding
them on top of the stack. These constraints are thus re-activated. A constraint where all
its terms have become ground will not be thus woken up by the implemented wake-up
policy since it is never affected by a new built-in constraint. vars (S0) ⊆ fixed (B) where
fixed (B) represents the variables fixed by B.
Activate: This transition introduces a CHR constraint into the constraint store and
activates it. The introduced constraint has the occurrence value 1 as a start.
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Table 1 Transitions of ωr.

1. Solve+wakeup : 〈[c|A] , S0 ∪ S1, B, T 〉n 7→solve+wake 〈S1 + A, S0 ∪ S1, B′, T 〉n

given that c is a built-in constraint and CT |= ∀((c ∧ B ↔ B′))
and wakeup (S0 ∪ S1, c, B) = S1

2. Activate 〈[c|A] , S, B, T 〉n 7→activate 〈[c#n : 1|A] , c#n ∪ S, B, T 〉n+1 given that c is a CHR con-
straint.

3. Reactivate 〈[c#i|A] , S, B, T 〉n 7→reactivate 〈[c#i : 1|A] , S, B, T 〉n given that c is a CHR constraint.
4. Apply 〈[c#i : j|A] , H1 ∪ H2 ∪ S, B, T 〉n 7→apply r

〈C + H + A, H1 ∪ S, chr (H1) = (H ′
1) ∧ chr (H2) = (H ′

2) ∧ g ∧ B , T ∪ {(r, id (H1) + id (H2))}〉n

given that the jth occurrence of c is part of the head of the re-named apart rule with variables x′:
r @ H ′

1 \ H ′
2 ⇔ g | C.

where CT |= ∃(B) ∧ ∀(B =⇒ ∃x′
((

chr (H1) = (H ′
1) ∧ chr (H2) = (H ′

2) ∧ g
))

and (r, id (H1) + id (H2)) /∈ T .
If c occurs in H ′

1 then H = [c#i : j] otherwise H = [].
5. Drop 〈[c#i : j|A] , S, B, T 〉n 7→drop 〈A, S, B, T 〉n

given that c#i : j is an occurrenced active constraint and c has no occurrence j in the program.
That could thus imply that all existing occurrences were tried before.

6. Default 〈[c#i : j|A] , S, B, T 〉n 7→default 〈[c#i : j + 1|A] , S, B, T 〉n

in case there is no other applicable transition.

Reactivate: The reactivate transition considers a constraint that was already added to
the store before. It became re-activated and was added to the stack. The transition
activates the constraint by associating it with an occurrence value starting with 1.
Apply: This transition applies a CHR rule r if an active constraint matched a constraint
in the head of r with the same occurrence number. If the matched constraint is part of
the constraints to be removed, it is also removed from the stack. Otherwise, it is kept in
the constraint store and the stack.
Drop: This transition removes the active constraint c#i : j from the stack when there
no more occurrences to check. This occurs when the occurrence number of the active
constraint does not appear in the program. In other words, the existing ones were tried.
Default: This transition proceeds to the next occurrence of the constraint if the currently
active one could not be matched with the associated rule. This transition ensures that
all occurrences are tried.

3 CHRvis: An Animation Extension for CHR

The proposed extension aims at embedding visualization and animation features into CHR
programs. The basic idea is that some constraints, the interesting ones, are annotated by
visual objects. Thus on adding/removing such constraints to/from the constraint store,
the corresponding graphical object is added/removed to/from the graphical store. These
constraints are thus treated as interesting events. Interesting constraints are those constraints
that directly represent/affect the basic data structure used along the program. Visualizing
such constraints thus leads to a visualization of the execution of the corresponding program.
In addition, changes in the constraint store affects the data structure and its visualization.
This results in an animation of the execution. For example, in a program to encode the
“Sudoku” game, the interesting constraints would be those representing the different cells in
the board and their values [15, 14].

The approach aims at introducing a generic animation platform independent of the
implemented algorithm. This is achieved through two features. First, annotation rules are

ICLP 2018
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Figure 2 Annotating the cell/2 constraint.

used. The idea of using interesting events for animating programs was introduced before
in Balsa [6] and Zeus [5]. Both systems use the notion of interesting events. However,
users need to know many details to be able to use them. CHRvis eliminated the need for
the user to know any details about the animation. The second feature is outsourcing the
animation into an existing visual tool. For proof of concept, Jawaa [11], was used. Jawaa
provides its users with a wide range of basic structures such as circle, rectangle, line, textual
node , ... etc. Users can also apply actions on Jawaa objects such as movement, changing
a color , ... etc. In order to define interesting events and their annotations, users are
able to write their own CHRvis programs with the syntax discussed later in this section.
However, users are also provided with an interface (as shown in Figure 2) that allows them
to specify every interesting event/constraint. In that case, the programs are automatically
generated. They are then able to choose the visual object/action (from the list of Jawaa
objects/actions) to link the constraint to. Once they make a choice, the panel is populated
with the corresponding parameters. Parameters represent the visual properties of the object
such as: color, x-coordinate, ... etc. Users have to specify a value for each parameter. A
value could be one of/combinations of:
1. a constant value e.g. 100, blue, ... etc.
2. the function valueOf/1. valueOf(X) outputs the value of the argument X such that X is

one of the arguments of the interesting constraint.
3. the function prologValue/1. prologValue(Exp) outputs the value of the argument “X”

computed through the mathematical expression Exp.
4. The keyword random that generates a random number.

3.1 Extended Programs
This section introduces the syntax of the CHR programs that are able to produce animations
on execution. In addition to the basic constructs of a CHR program, the extended version
needs to specify the graphical objects to be used throughout the programs. In addition, the
interesting constraints and their associations with graphical objects should be described.

3.1.1 Syntax of CHRvis

The annotation rules that associate CHR constraint(s) with visual objects have the following
format:
g opt_rule_name @ Hvis ⇒ Condition | graphical_obj_name (par1, par2, . . . , parn) .

Hvis contains either one interesting constraint or a group of interesting constraints that are
associated with a graphical object. Similar to normal CHR rules, graphical annotation rules
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could have a pre-condition that has to be satisfied for the rule to be applied. The literal
g is added at the beginning of the rule to differentiate between CHR rules and annotation
rules. A CHRvis program thus has two types of rules. There are the normal CHR rules and
the annotation rules responsible for associating CHR constraint(s) with graphical object(s).
Moreover, there are meta-annotation rules that associate CHR rules with graphical object(s).
In this case, instead of associating CHR constraint(s) with visual object(s), the association
is for a CHR rule. In other words, once such rule is executed the associated visual objects
are produced. The association is thus done with the execution of the rule rather than the
generation of a new CHR constraint. The rule annotation is done through associating a rule
with an auxiliary constraint. The auxiliary constraint has a normal constraint annotation
rule with the required visual object. Such meta-annotation rule has the following format:

g opt_rule_name @ chr_rule_name ⇒ Condition | aux_constraint (par1aux
, . . . , parmaux

) .

g aux_constraint (par1aux
, . . . , parmaux

) ⇒ graphical_obj_name (par1, par2, . . . , parn) .

The CHRvis program has to determine whether head constraints affect the visualization.
If this is the case, the removed head constraints would result in removing the associated
objects. In this case, head constraints should be comminicated to the tracer, Thus, a rule for
comm_head/1 has to be added to the CHRvis program.
The rule (comm_head(T) ==> T=true.) means that head constraints are to be communicated
to the tracer. On the other hand, the rule (comm_head(T) ==> T=false.) means that the
removed head constraints should not affect the visualization.

The program provided in Section 2 aims at sorting a list of numbers. In order to animate the
execution, the elements of the list should be visualized. Changes of the elements lead to a
change in the visualization and thus animating the algorithm. The interesting constraint in
this case is the cell constraint. As shown in Figure 2, every cell(Index, Value) constraint
was associated with a rectangular node whose height is a factor of the value of the element.
The x-coordinate is a factor of the index. That way, the location and size of a node represent
an element of the array. The new CHRvis program is:

:-chr_constraint cell/2.
:-chr_constraint comm_head/1.
comm_head(T) ==> T=true.
sort_rule @ cell(I1,V1), cell(I2,V2) <=> I1<I2,V1>V2 |

cell(I2,V1), cell(I1,V2).
g ann_rule_cell @ cell(Index,Value) ==> node(valueOf(Value),

valueOf(Index)*12+2,
50,10,valueOf(Value)*5 ,1,valueOf(Value),
black, green, black, RECT).

Figure 3 shows the result of running the query cell(0,7),cell(1,6),cell(2,4). As shown
from the taken steps, each number added to the list and thus to the constraint store adds a
corresponding rectangular node. Once cell(0,7) and cell(1,6) are added to the constraint
store, the rule sort_rule is applicable. Thus, the two constraints are removed from the
store. The rule adds cell(1,7) and cell(0,6) to the constraint store.1

1 More examples are available through met.guc.edu.eg/chrvis/index.aspx.

ICLP 2018

met.guc.edu.eg/chrvis/index.aspx


5:8 CHRvis: Syntax and Semantics

(a) adding cell(0,7),
cell(1,6) to the store.

(b) removing cell(0,7),
cell(1,6) from the store.

(c) adding cell(1,7),
cell(0,6) to the store.

(d) adding cell(2,4) to
the store.

(e) removing cell(0,6)
and cell(2,4) to the store.

(f) adding cell(2,6). (g) removing cell(1,7),
cell(2,6).

(h) adding cell(2,7),
cell(1,6) and cell(0,4).

Figure 3 Sorting an array of numbers.

Afterwards, cell(2,4) is added to the store. At this point cell(0,6) and cell(2,4)
activate sort_rule and are removed from the constraint store. The rule first adds cell(2,6)
to the store. At this point cell(1,7) and cell(2,6) activate sort_rule again. Thus
they are both removed from the store. The constraints cell(2,7), cell(1,6) are added.
Afterwards, the last constraint cell(0,4) is added to the store. As seen from Figure 3,
using annotations for constraints has helped animate the execution of the sorting algorithm.
However, in some of the steps, it might not have been clear which two numbers are being
swapped. In that case it would be useful to use an annotation for the rule sort_rule instead
of only annotating the constraint cell. The resulting program looks as follows:

:-chr_constraint cell/2.
:-chr_constraint comm_head/1.

comm_head(T) ==> T=false.
sort_rule @ cell(I1,V1), cell(I2,V2) <=> I1<I2,V1>V2 |

cell(I2,V1), cell(I1,V2).
g ann_rule_cell @ cell(Index,Value) ==> node(nodevalueOf(Value),

valueOf(Index)*12+2,50,10,
valueOf(Value)*5 , 1, valueOf(Value), black,
green, black, RECT).

g swap(I1,V1,I2,V2) ==> changeParam(nodevalueOf(V1),bkgrd,pink)
g swap(I1,V1,I2,V2) ==> changeParam(nodevalueOf(V2),bkgrd,pink)
g swap(I1,V1,I2,V2) ==> moveRelative(nodevalueOf(V1),

(valueOf(I2)-valueOf(I1))*12,0)
g swap(I1,V1,I2,V2) ==> moveRelative(nodevalueOf(V2),

(valueOf(I2)-valueOf(I1))*(-12),0)
g swap(I1,V1,I2,V2) ==> changeParam(nodevalueOf(V1),bkgrd,green)
g swap(I1,V1,I2,V2) ==> changeParam(nodevalueOf(V2),bkgrd,green)

g sort_rule ==> swap(I1,V1,I2,V2).

The annotations make sure that once two numbers are swapped, they are first marked with a
different color (pink in this case). The two rectangular bars are then moved. The bar on the
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(a) after adding cell(0,7),
cell(1,6) to the store,
they are marked to be
swapped. (b) swapping 7 and 6. (c) 7 and 6 are swapped. (d) cell(2,4) is added.

(e) 6 and 4 are marked
to be swapped.

(f) swapping 4 and 6. (g) 7 and 6 are marked
to be swapped.

(h) swapping 7 and 6.

(i) final sorted list.

Figure 4 Sorting an array of numbers through a rule annotation.

left is moved to the right. The bar on the right is moved to the left (negative displacement).
The space between the start of one node and the start of the next node is 12 pixels.

Thus the displacement is calculated as the difference between the two indeces multiplied
by 12. After the swap is done, the two bars are colored back into green. The result of
executing the query: cell(0,7),cell(1,6),cell(2,4) is shown in Figure 4.

3.2 Animation Formalization
The rest of the section offers a formalization of the animation to be able to run CHRvis

programs and reason about their correctness. The basic idea is introducing a new “graphical”
store. CHRvis adds, besides the classical constraint store of CHR, a new store called the
graphical store. As implied by the name, the graphical store contains graphical/visual objects.
Such objects are the visual mappings of the interesting constraints. Over the course of the
program execution, and as a result of applying the different rules, the constraint store and
the graphical store would change. As introduced before, the change of the visual objects leads
to an animation of the program. The rest of the section introduces some needed definitions.
It then proceeds to show the transitions of the new operational semantics.

I Definition 3. In CHRvis, a state is represented by a tuple 〈G, S, Gr, B, T, H_ann〉n.
G, S, B, T , and n have the same meanings as in a normal CHR state (goal store, CHR
constraint store, built-in store, propagation history and the next available identification
number) introduced in Section 2.1. Gr is a store of graphical objects. H_ann is the history
of the applications of the visual annotation rules. Each element in H_ann has the following
format: 〈rule_name, Head_ids, Object_ids〉 where

rule_name represents the name of the fired annotation rule.

ICLP 2018
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Head_ids contain the ids of the head constraints that fired the annotation rule.
Object_ids are the ids of the graphical objects added to the graphical store through
firing rule_name using Head_ids.

I Definition 4. For a sequence Sq = (c1#id1, . . . , cn#idn), the function
get_constraints (Sq) = (c1 . . . , cn).

I Definition 5. Two sequences A and B are equivalent: A
.= B if

1. For every X, if X exists N times in A such that N > 0, then X exists N times in B.
2. For every Y , if Y exists N times in B such that N > 0, then Y exists N times in A.

I Definition 6.

The function output_graphical_object(c(Arg0, . . . , Argn), {Arg′0, . . . , Arg′n},
output(Object, OArg0, . . . , OArgk)) = graphical_object(Actual0, . . . , Actualk) such that:

graphical_object = Object.
Each parameter Actualn = get_actual (OArgn) such that

if OArgn is a constant value then get_actual (OArgn) = OArgn.
if OArgn = valueOf (Argm) then get_actual (OArgn) = (Arg′n).
if OArgn = prologV alue (Expr) then get_actual (OArgn) = X where Expr is
evaluated in SWI-Prolog and binds the variable X to a value.
if OArgn = random , then get_actual (OArgn) is a randomly computed number.

I Definition 7.

The function
generate_new_ann_history (Graph_obj, Obj_id, rule_name, Head_id, H_ann) =
H ′_ann such that: in the case where 〈rule_name, Head_id, Objects_ids〉 ∈ H_ann,
H ′_ann = H_ann− 〈rule_name, Head_id, Objects_ids〉
∪〈rule_name, Head_id, Objects_ids ∪{Obj_id}〉,

I Definition 8.

The function remove_gr_obj (G_store, Rem_head_id, H_ann) = G′_store such that: in
the case where there is some Tuple T : 〈rule_name, Head_ids, Objects_ids〉 such that
T ∈ H_ann ∧Rem_head_id ⊆ Head_ids.
In this case, G′_store = G_store− ∪i (Obji where Obji ∈ Objects_ids).

I Definition 9.

The function contains (H_ann, 〈rule, Headids〉) is:
true in the case where H_ann contains a tuple of the form 〈rule, Headids, Objects〉.
false in the case where H_ann does not contain a tuple of the form
〈rule, Headids, Objects〉.

Table 2 shows the basic transitions of ωvis. To make the transitions easier to follow,
table 2 shows the transitions needed to run CHR programs with constraint annotation
rules. Annotations of CHR rules are thus discarded from the set of transitions. ωvis

allows for running programs that contain constraint annotations. The three transitions
apply_annotation, draw and updatestore are responsible for dealing with the graphical
store and its constituents. The transition, apply_annotation, applies a constraint annotation
rule. The rest of the transitions, such as solve, introduce and apply, have the same behavior
as in ωr. These transitions do not affect the graphical store or the application history of the
annotation rules. The transitions affecting the graphical store are:
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Table 2 Transitions of ωvis.

1. Solve+wakeup:
〈[c|A] , S0 ∪ S1, Gr, B, T, H_ann〉n 7→solve+wake 〈S1 + A, S0 ∪ S1, Gr, B′, T, H_ann〉n

given that c is a built-in constraint and CT |= ∀
((

c ∧ B ↔ B′
))

and wakeup (S0 ∪ S1, c, B) = S1

2. Activate:
〈[c|A] , S, Gr, B, T, H_ann〉n 7→activate 〈[c#n : 1|A] , {c#n} ∪ S, Gr, B, T, H_ann〉n+1
given that c is a CHR constraint.

3. Reactivate:
〈[c#i|A] , S, Gr, B, T, H_ann〉n 7→reactivate 〈[c#i : 1|A] , S, Gr, B, T, H_ann〉n

given that c is a CHR constraint.
4. Draw:

〈[〈Obj#〈r, id (H)〉|A] , S, Gr, B, T, H_ann〉n 7→draw

〈A, S, Gr ∪ {Obj#n}, B, T, H_ann′〉n+1
given that Obj is a graphical object: graphical_object (Actual0, . . . , Actualk).
and H_ann′ = generate_new_ann_history (Obj, n, r, id (H) , H_ann)
The actual parameters of graphical_object are used to visually render the object.

5. Update Store:
〈[〈Obj#〈r, id (H)〉|A] , S, Gr, B, T, H_ann〉n 7→updatestore 〈A, S, Gr′, B, T, H_ann〉n

given that Obj is a graphical action: graphical_action (Actual0, . . . , Actualk).
Gr′ = update_graphical_store (Gr, graphical_action (Actual0, . . . , Actualk))
The function update_graphical_store uses the actual parameters of graphical_action to update
the attributes of the graphical objects available in the graphical store tht are affected by the action.

6. Apply_Annotation:
〈[c#i : j|A] , H ∪ S, Gr, B, T, H_ann〉n 7→apply_annotation

〈[Obj#〈r, id (H)〉, c#i : j|A] ,H ∪ S, Gr, B, T, H_ann ∪ {〈r, id (H) , {}〉}〉n

where there is: a renamed, constraint annotation rule with variables y′ of the form:
g r @ H ′ ==> Condition | Obj′

where c is part of H ′ and
(CT ) |= ∃(B)
∧ ∀(B ⇒ ∃y′(chr(H) = (H ′) ∧ Condition∧ output_graphical_object(H ′, y′, Obj′) = Obj))
and ¬(contains(H_ann, (r, id(H))))†

7. Apply:
〈[c#i : j|A] , Hk ∪ Hr ∪ S, Gr, B, T, H_ann〉n 7→apply

〈C + H + A, Hk ∪ S, Gr, chr (Hk) = (H ′
k) ∧ chr (Hr) = (H ′

r) ∧ G ∧ B
T ∪ {〈r, id (Hk) + id (Hr)〉}, H_ann〉n where:

there is no applicable constraint annotation rule for c (or part of it).
(i.e. every applicable rule has already been applied).
In other words, for renamed-apart every annotation rule with variables y′:
g r @ H ′ ==> Cond | Obj′ where,
c is part of H ′ ∧(CT ) |= ∃ (B) ∧ ∀

(
B =⇒ ∃y′(chr (H) = (H ′) ∧ Condition)

)
, it is already the case that: (contains (H_ann, (r, id (H)))) = true
There is a renamed rule in Pvis with the form r @ H ′

k \ H ′
r ⇔ G | C.

with variables x′ and the jth occurrence of c is part of the head of the renamed rule,
where CT |= ∃ (B) ∧ ∀(B =⇒ ∃x′

(
(chr (Hk) = (H ′

k) ∧ chr (Hr) = (H ′
r) ∧ G)

)
and 〈r, id (Hk) + id (Hr)〉 /∈ T .
If c occurs in H ′

k then H = [c#i : j] otherwise H = [].
If the program communicates the head constraints (i.e. contains comm_head(T) ==> T=true)
then Gr′ = remove_gr_obj (G, id (Hr) , H_ann)

8. Drop:
〈[c#i : j|A] , S, Gr, B, T, H_ann〉n 7→drop 〈A, S, Gr, B, T, H_ann〉n

given that c#i : j is an occurrenced active constraint
and c has no occurrence j in the program
and that there is no applicable constraint annotation rule for the constraint c.
That could thus imply that all existing ones were tried before.

9. Default:
〈[c#i : j|A] , S, Gr, B, T, H_ann〉n 7→default 〈[c#i : j + 1|A] , S, Gr, B, T, H_ann〉n

in case there is no other applicable transition.

† For simplicity, the annotation rule is considered to contain one graphical output object. In general,
the rule could associate constraint(s) with multiple objects.
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1. Draw: The new transition draw adds a graphical object (Obj) to the graphical store.
Since multiple copies of a graphical object are allowed, each object is associated with a
unique identifier.

2. Update Store: This transition applies a graphical action to the objects in the graphical
store. This could thus change some of the aspects of the drawn graphical object(s).

3. Apply_Annotation: The Apply_Annotation transition applies a constraint annotation
rule (ann_rule). An annotation rule is applicable if the CHR constraint store contains
matching constraints. The condition of the rule has to be implied by the built in store
under the matching. The built in constraint store B is also first checked for satisfiability.
For the rule to be applied, it should not have appeared in the history of applied annotation
rules with the same constraints i.e. it should be the first time the constraint(s) fire this
annotation rule. Executing the rule adds to the goal the graphical object in the body
of the executed annotation rule. The history of annotation rules is updated accordingly
with the name of the rule in addition to the id(s) of the CHR constraint(s) in the head. In
fact, this transition has a higher precedence than the transition apply. Thus in the case
where an annotation rule and a CHR rule are applicable, the annotation rule is triggered
first. The precedence makes sure that graphical objects are added in the intended order
to ensure producing correct animations.

I Definition 10 (Built-In Store Equivalence). Two built-in constraint stores B1 and B2 are
considered equivalent iff:
(CT ) |= ∀(∃y1(B1) ↔ ∃y2(B2)) where y1 and y2 are the local variables inside B1 and B2
respectively. The equivalence thus basically ensures that there are no contradictions in the
substitutions since local variables are renamed apart in every CHR program. The equivalence
check thus ensures the logical equivalence rather than the syntactical equivalence.

I Definition 11. A CHRvis state Stvis = 〈Gvis, Svis, Grvis, Bvis, Tvis, TvisAnn〉nvis is equi-
valent to a CHR state St = 〈G, S, B, T 〉n if and only if
1. get_constraints (Gvis) .= get_constraints (G) according to Definition 5.
2. get_constraints (Stvis) .= get_constraints (S) = C according to Definition 5.
3. Bvis and B are equivalent according to Definition 10.
4. Tvis = T

5. nvis ≥ n

The idea is that a CHRvis state basically has an extra graphical store. The correspondence
check is effectively done through the CHR constraints since they are the most distinguishing
constituents of a state. Thus, the constraint store and the stack should contain the same
constraints. The propagation history should be also the same indicating that the same CHR
rules have been applied. nvis could, however, have a value higher than n. This is due to the
fact that graphical objects have identifiers. The definition of state equivalence described here
follows the properties introduced in [12]. However, it is stricter.

I Theorem 12 (Soundness). Given a CHR program P (running under ωr) along with its
user defined annotations and its corresponding PCHRvis program (running under ωvis), for
the same query Q, every derived state Schrvis

: Q 7→∗ωvis
Schrvis

has en equivalent state Schr:
Q 7→∗ωr

Schr

Proof.
Base Case:
For the initial query the two states Q, Schrvis = 〈Q, {}, {}〉 and Schr = 〈Q, {}〉 are equivalent
according to Definition 11.
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Induction Hypothesis: Suppose that there are two equivalent derived states
Schrvis

= 〈A, S, Gr, B, T, H_ann〉m and Schr = 〈A, S, B, T 〉n such that Q 7→i
ωvis

Schrvis
and

Q 7→j
ωr

Schr.
Induction Step:
The proof shows that any transition applicable to Schrvis

under ωvis produces a state S′chr

such that under ωr applying a transition to Schr (which is equivalent to Schrvis) produces a
state S′chr that is equivalent to Schr.
The different cases are enumerated below:
1. Applying solve+wakeup to Schrvis :

Under ωvis, solve+wakeup is applicable in the case where the stack has the form [c|A]
such that c is a built-in constraint and CT |= ∀((c ∧B ↔ B′))
and wakeup (S0 ∪ S1, c, B) = S1 such that
Schrvis

7→solve+wake S′chrvis
: 〈S1 +A, S0∪S1, Gr, B′, T, H_ann〉m. Since Schrvis

and Schr

are equivalent, Schr has an equivalent stack and built-in store according to Definition 11.
Thus the corresponding transition solve+wakeup is applicable to Schr under ωr producing
a state S′chr such that: S′chr = 〈S1 + A, S0 ∪ S1, B′, T 〉n. According to Definition 11, the
two states S′chrvis

and S′chr are equivalent.
2. Applying Activate:

Such a transition is applicable to Schrvis
under ωvis in the case where the top of the stack

of Schrvis contains a CHR constraint c. In this case:
Schrvis

: 〈[c|A] , S, Gr, B, T, H_ann〉m 7→activate

S′chrvis
: 〈[c#m : 1|A] , {c#m} ∪ S, Gr, B, T, H_ann〉m+1

given that c is a CHR constraint.
The equivalent state Schr has the same stack triggering the transition Activate under
ωr producing a state S′chr : 〈[c#n : 1|A] , {c#n} ∪ S, Gr, B, T, H_ann〉n+1 which is also
equivalent to S′chrvis

3. Applying Reactivate:
In this case, Schrvis

7→reactivate S′chrvis
〈[c#i : 1|A] , S, Gr, B, T, H_ann〉m

such that Schrvis
= 〈[c#i|A] , S, Gr, B, T, H_ann〉m and c is a CHR constraint.

The equivalent state Schr has an equivalent stack triggering the transition reactivate
under ωr. The transition application produces S′chr : 〈[c#i : 1|A] , S, B, T 〉n which is also
equivalent to S′chrvis

.
4. According to Definition 11 and since Schrvis is equivalent to Schr, they both have the

same stack. The transition Draw is only applicable if the top of the stack contains a
graphical object. Since the stack of Schr never contains graphical objects and since it is
equivalent to Schrvis

, the stack of Schrvis
at this point does not contain graphical objects

as well. Thus, in this case, the transition draw would not be applicable to Schrvis
under

ωvis.
5. Similarly, according to Definition 11 and since Schrvis is equivalent to Schr, the stack of

Schrvis
at this point does not contain graphical actions since both states should have the

same stack. The transition update store is only applicable if the top of the stack contains
a graphical action. Thus, similarly, at this point, the transition update store could not be
applied to Schrvis

under ωvis.
6. Apply Annotation Rule Transition:

The transition Apply Annotation is triggered when the stack has on top a constraint
associated with an annotation rule. The constraint store should contain constraints
matching the head of the annotation rule such that this rule was not fired with those
constraint(s) before and the pre-condition of the annotation rule is satisfied. Thus, the
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rule could be associated with more than one constraint including the one on top of the
stack. The constraint store should however, contain matching constraints for the rest of
the constraints in the head of the annotation rule.
Schrvis

7→apply_annotation S′chrvis
:

〈[Obj#〈r, id (H)〉|A] , H ∪ S, Gr, B, T, H_ann ∪ {〈r, id (H) , { }〉}〉m
such that ¬contains (H_ann, 〈r, id (H)〉). The renamed annotation rule with variables
x′ is :
g r @ H ′ ==> Condition | Obj′

(CT ) |= ∃ (B) ∧ ∀(B =⇒ ∃x′((chr (H) =
H ′ ∧ Cond ∧ output_graphical_object (H ′, x′, Obj′) = Obj)))
Either the transition draw or update store is applicable to S′chrvis

. The output is
S′′chrvis

: 〈A, S, Gr′, T, H ′_ann〉m′ . In case, Obj is a graphical object, then H ′_ann =
generate_new_ann_history (Obj, m, r, id(H), H_ann ∪ {〈r, id (H) , {}〉})∧
Gr′ = Gr ∪ {Obj#m} ∧m′ = m + 1. In case, Obj is a graphical action, then
Gr′ = update_graphical_store (Gr, Obj) ∧Gr′ = Gr ∧m′ = m. Any transition
applicable to S′′chrvis

at this stage is covered through the rest of the cases. Thus the
application of the transition apply_annotation is considered as not to affect the
equivalence of the output state with Schr.

7. The Apply transition:
In the case where a CHR rule is applicable to Schrvis , the transition Apply is triggered
under ωvis. A CHR rule r is applicable when there is a renamed version of the rule
r with variables x′: (r @ H ′k \ H ′r ⇔ g | C.) where 〈r, id (Hk) + id (Hr)〉 /∈ T and
CT |= ∃(B) ∧ ∀(B =⇒ ∃x′( chr (Hk) = (H ′k) ∧ chr (Hr) = (H ′r) ∧ g)). In this case,
Schrvis

has the form: 〈[c#i : j|G], Hk ∪Hr ∪ S, Gr, B, T, H_ann〉m. The output state
S′chrvis

has the form
〈C + H + G, Hk ∪ S, Gr, B ∧ chr (Hk) = (H ′k) ∧ chr (Hr) = (H ′r) ∧ g, T ∪ {〈r, id (Hk) +
id (Hr)〉}, H_ann〉m. Due to the fact that Schr is equivalent to Schrvis , it has the following
form: 〈[c#i : j|G], Hk∪Hr∪S, B, T 〉n. For the same program, the CHR rule r is applicable
producing S′chr:
〈C + +H + +G, Hk ∪ S, chr (Hk) = (H ′k) ∧ chr (Hr) = (H ′r) ∧ g ∧ B, T ∪ {〈r, id (Hk) +
id (Hr)〉n}

H =
{

[c#i : j] if c occurs in H ′k

[ ] otherwise

We assume, without loss of generality, that the same renaming variables are used in both
cases. Due to the fact that the same CHR rule is applied for both states, the new built-in
stores are equivalent according to Definition 10. This is due to the fact that since the
original states have equivalent constraint stores, we assume without loss of generality
that the matchings in both cases are the same since the same rule was applied. Thus, the
rule in the two programs Pchr and Pchrvis

are renamed similarly. Since no annotation
rule could be applied to a non-occurrenced constraint and according to Definition 11, the
two states are equivalent.

8. Applying Drop:
In the case where Schrvis

= 〈[c#i : j|A] , S, Gr, B, T, H_ann〉m such that c has no occur-
rence j in the program and case 5 is not applicable, the transition Drop is triggered. Drop
produces the state S′chrvis

= 〈A, S, Gr, B, T, H_ann〉m
Since Schr is equivalent to Schrvis

, they both have the same stack [c#i : j|A]. Thus under
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ωvis, the same transition drop is triggered producing S′chr : 〈A, S, B, T 〉n. According to
Definition 11, S′chrvis

and S′chr are equivalent as well.
9. Applying Default:

In the case where none of the above cases hold, the transition Default transforms Schrvis

to
S′chrvis

: 〈[c#i : j + 1|A] , S, Gr, B, T, H_ann〉m. Similarly the equivalent state Schr trig-
gers the same transition Default in this case. The output state S′chr : [c#i : j + 1|A] , S, B,

T 〉n is still equivalent to S′chrvis

Thus in all cases an equivalent state is produced under ωr J

I Theorem 13 (Completeness). Given a CHR program P (running under ωr) along with
its user defined annotations and its corresponding PCHRvis (running under ωvis) program,
for the same query Q, every derived state Schr: Q 7→∗ωr

Schr has an equivalent state Schrvis
:

Q 7→∗ωvis
Schrvis

.

For space limitations, the proof is given in B.

4 Conclusions

In conclusion, the paper presented a formalization for embedding animation features into
CHR programs. The new extension, CHRvis is able to allow for dynamic associations of
constraints and rules with visual objects. The annotation rules are thus activated on the
execution of the program to produce algorithm animations. Although the idea of using
interesting events was introduced in earlier work, it was (to the best knowledge of the authors)
never formalized before. In fact, no operational semantics for animation was proposed before.
The paper offered operational semantics for CHRvis. It thus provides a foundation for
formalizing the animation process in general and for CHR programs in particular. In the
future, with the availability of formal foundations through ωvis, the possibility of using
CHRvis as the base of a pure a visual representation for CHR should be investigated. A
group of students in the German University in Cairo were exposed to the classic textual tracer
and the new visual racing facility in a focus group. Most of the students stated that for them
it was hard to use the textual trace to understand how a program works. They preferred to
see the visual tracer which according to a conducted survey helped them understand what
the presented CHR programs do.
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A CHRvis to CHRr Transformation Approach

The aim of the transformation is to eliminate the need of doing any compiler modifications
in order to animate CHR programs. A CHRvis program P vis is thus transformed to a
corresponding CHRr program P with the same behavior. P is thus able to produce the
same states in terms of CHR constraints and visual objects as well. A similar transformation
was introduced in [14].

As a first step, the transformation adds for every constraint constraint/n a rule of the
form:
comm_cons_constraint @ constraint (X1, X2, ..., Xn) ⇒ check (status, false) |

communicate_constraint (constraint (X1, X2, ..., Xn)) .

The extra rule ensures that every time a constraint is added to the store, the tracer
(external module) is notified. If constraint was annotated as an interesting constraint, its
corresponding annotation rule is activated producing the corresponding visual object(s). The
new rules communicate any constraint added to the constraint store.
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The user can also choose to communicate to the tracer the head constraints since they
could affect the animation. A removed head constraint could affect the visualization in case
it is an interesting constraint. In this case, if the user chose to communicate head constraints,
the associated visual object, produced before, should be removed from the visual trace.2.

As a second step, the transformer adds for every compound constraint-annotation of the
form:
cons1, . . . , consn ==> annotation_constraintcons1,...,consn

(Arg1, . . . , Argm), a new rule of
the form:
compoundcons1,...,consn

@ cons1
(
Argcons11

, . . . , Argcons11x

)
, . . . , consn

(
Argconsn1

, . . . , Argconsnny

)
⇒ check (status, false) | annotation_constraintcons1,...,consn

(Arg1, . . . , Argm).
By default, a propagation rule is produced to keep cons1, . . . , consn in the constraint store.

However, the transformer could be instructed to produce a simplification rule instead. The
annotation is triggered whenever cons1, . . . , consn exist in the constraint store. Whenever this
is the case, the rule compoundcons1,...,consn is triggered producing the annotation constraint.
Since the annotation constraint is a normal CHR constraint, it is automatically communicated
to the tracer using the previous step.

As a third step, the CHR rules annotated by the user as interesting rules should be
transformed. The idea is that the CHR constraints produced by such rules should be ignored.
In other words, even if the rule produces an interesting CHR constraint, it should not trigger
the corresponding constraint annotation. Instead, the rule annotation is triggered.

Hence, to avoid having problems with this case, a generic status is used throughout
the transformed program PT rans. Any rule annotated by the user as an interesting rule
changes the status to true at execution. However, the rules added in the previous
two steps check that the status is set to false. In other words, if the interesting rule
is triggered, no constraint is communicated to the tracer since the guard of the corres-
ponding communicate_constraint rule fails. Any rule rulei@HK \ HR ⇔ G | B with
the corresponding annotation rulei ==> annotation_constraintrulei

is transformed to:
rulei@HK \ HR ⇔ G | set (status, true) , B, annotation_constraintrulei ,

set (status, false) . In addition, the transformer adds the following rule to PT rans:
comm_consannotation_constraintrulei

@ annotation_constraintrulei ⇔
communicate_constraint (annotation_constraintrulei

).
The new rule thus ensures that the events associated with the rule annotation are considered
and that all annotations associated with the constraints in the body of the rule are ignored.

The aim of the transformation process is to produce a CHRr program (Ptrans) that is able
to perform the same behavior of the corresponding CHRvis program (Pvis) which basically
contains the original CHR program P along with the constraint(s) and rule annotations.
This section shows that the transformed program, using the steps shown previously, is a
correct one. In other words, for the same query Q, Ptrans produces an equivalent state to
the one produced by P . As seen from the previous section ωvis was proven to be sound and
complete. This implies that any state reachable by ωr is also reachable by ωvis. In addition,
any state reachable by ωvis is also reachable by ωr. The focus of this section is the initial
CHR program provided by the user. The aim is to make sure that Ptrans produces the same
CHR constraints that P produces to make sure that the transformation did not change the
behavior that was initially intended by the programmer. The focus is thus to compare how
P and Ptrans perform over ωr.

2 The tracer is able to handle the problem of having multiple Jawaa objects with the same name by
removing the old object having the same name before adding the new one. This is possible even if the
removed head constraint was not communicated.
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B Completeness Proof

Proof.
Base Case: For a given query Q, the initial state in ωr is Schr = 〈Q, {}, {}, {}〉1. The initial
state in ωvis is Schrvis

= 〈Q, {}, {}, {}, {}, {}〉1.3 According to Definition 11 Schr and Schrvis

are equivalent.

Induction Hypothesis:
Suppose that there are two equivalent derived states Schr = 〈A, S, B, T 〉n and Schrvis

=
〈A, S, Gr, B, T, H_ann〉m such that Q 7→i

ωr
Schr and Q 7→j

ωvis
Schrvis .

Induction Step:
According to the induction hypothesis, Schr and Schrvis

are equivalent. The rest of the proof
shows that any transition applicable to Schr in ωr produces a state that has an equivalent
state produced by applying a transition to Schrvis in ωvis. Thus, no matter how many times
the step is repeated, the output states are equivalent.

Applying solve+wakeup:
In this case, Schr 7→ S′chr such that:
Schr : 〈[c|A] , S0 ∪ S1, B, T 〉n 7→solve+wake 〈S1 + A, S0 ∪ S1, B′, T 〉n
Transition solve+wakeup is applicable if:
1. c is a built-in constraint
2. CT |= ∀((c ∧B ↔ B′))
3. wakeup (S0 ∪ S1, c, B) = S1
Schrvis(〈Stack, Schrvis , Gr, Bvis, Tvis, Tann〉m) is equivalent to Schr(〈[c|A] , S0∪S1, B, T 〉n).
Thus according to Definition 11, Stack = [c|A] ∧ Schrvis

= S0∪S1 ∧ Bvis = B ∧ Tvis = T

∧m ≥ n. Thus accordingly, the transition solve + wakeup is applicable to Schrvis under
ωvis producing S′chrvis

:〈S1 + A, S0 ∪ S1, Gr, B ∧ c, T, H_ann〉m. According to Definition
11, S′vis is equivalent to S′chr

Applying Activate:
In this case, Schr = 〈[c|A] , S, B, T 〉n where c is a CHR constraint. Thus Schr 7→activate

S′chr : 〈[c#n : 1|A] , c#n ∪ S, B, T 〉n+1.
Since Schrvis

(〈Stack, Schrvis
, Gr, Bvis, Tvis, Tann〉m) is equivalent to

Schr(〈[c|A] , S0∪S1, B, T 〉n). Thus according to Definition 11: Stack = [c|A] ∧ Schrvis
= S

∧ Bvis = B ∧ Tvis = T ∧ m ≥ n

Accordingly, Schrvis
7→activate S′chrvis

: 〈[c#m : 1|A] , {c#m} ∪ S, Gr, B, T, Tann〉m+1
which is equivalent to S′chr. (Since m ≥ n, then m + 1 ≥ n + 1).

Applying Reactivate:
The transition reactivate is applicable if the stack has on top of it an element of the form
c#i where c is a CHR constraint. In this case Schr = 〈[c#i|A] , S, B, T 〉n. Accordingly,
Schr 7→reactivate S′chr : 〈[c#i : 1|A] , S, B, T 〉n. Since Schrvis

and Schr are equivalent, then
Schrvis has the same stack. Schrvis = 〈[c#i|A] , S, Gr, B, T, Tann〉m triggers the transition
reactivate producing S′chrvis

: 〈[c#i : 1|A], S, Gr, B, T, Tann〉m which is also equivalent to
S′chr. Since c is not associated with an occurrence yet, no annotation rule is applicable at
this point.

3 Throughout the different proofs, identifiers are omitted for brevity.
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Applying the transition Apply
The transition Apply is triggered under ωr in the case where Schr = 〈[c#i : j|A] , H1 ∪
H2 ∪S, B, T 〉n such that the jth occurrence of c is part of the head of the re-named apart
rule with variables x′: r @ H ′1 \ H ′2 ⇔ g | C.

such that:
CT |= ∃(B) ∧ ∀(B =⇒ ∃x′(chr (H1) = (H ′1) ∧ chr (H2) = (H ′2) ∧ g))) and 〈r, id (H1) +
id (H2)〉 /∈ T .
Thus in such a case Schr 7→apply r S′chr : 〈C +H +A, H1∪S, chr (H1) = (H ′1)∧chr (H2) =
(H ′2) ∧ g∧ B, T ∪ {〈r, id (H1) + id (H2)〉}〉n

H =
{

[c#i : j] if c occurs in H ′1

[ ] otherwise

Due to the fact that Schr and Schrvis are equivalent, in the case where Schr triggers the
transition Apply under ωr, the same rule is also applicable under ωvis to Schrvis

. However
for Schrvis , one of two possibilities could happen:
1. There is no applicable constraint annotation rule:

This could be due to the fact that any applicable annotation rule was already executed
or that there are no applicable annotation rules at this point. In this case, the transition
apply is triggered right away under ωvis producing a state
(S′chrvis

: 〈C + H + A, H1 ∪ S, Gr, chr (H1) = H ′1 ∧ chr (H2) = H ′2 ∧ g ∧B,

T ∪ {〈r, id (H1) + id (H2)〉, H_ann}〉m) equivalent to (S′chr). The original states are
equivalent and the same rule is applied in both cases. We can assume that, without
loss of generality , in the chrvis program, the rule is renamed using the same variables
x′ resulting in the same matching. This is because the same matching should happen
to be able to apply the same rule using the given constraint stores.

2. There is an applicable annotation rule:
In this case an annotation rule (rann) for c is applicable such that:
Schrvis〈[c#i : j|A] , H1 ∪H2 ∪ S, Gr, B, T, H_ann〉m 7→apply_annotation

S′chrvis
: 〈[Obj#〈r, id (H)〉, c#i : j|A] , H1 ∪H2 ∪ S, Gr, B, T, H_ann ∪ {〈rann, id (H) , { }〉}〉m

according to the previously mentioned conditions.
At this point either the transition draw or update store is applicable such that:
S′chrvis

7→
draw

/
updatestore

S′′chrvis
: 〈[c#i : j|A] , H1 ∪H2 ∪ S, Gr′, B, T, H ′_ann〉m′

In case Obj is a graphical object, the transition draw is applied such that: Gr′ = Gr ∪
{Obj#m} ∧ m′ = m+1 ∧ H ′_ann = generate_new_ann_history(Obj, m, r, id (H) ,

H_ann ∪ {〈rann, id(H), { }〉}).
In case, Obj is a graphical action, the transition update store is applied such that:
Gr′ = update_graphical_store (Gr, Obj) ∧ m′ = m ∧ H ′_ann = H_ann ∪
{〈rann, id (H) , { }〉}
Since the two transitions, could only change the graphical stores, annotation history
and the next available identifier, the equivalence of the states is not affected.
At this point ωvis fires the transition Apply for the same CHR rule that triggered the
same transition under ωr earlier. The produced state S′′′chrvis

has the format:
〈C+H +A, H1∪S, Gr′, chr (H1) = H ′1∧chr (H2) = H ′2∧B, T ∪{〈r, id (H1)+id (H2)〉},
H ′_ann〉m′ . Similarly the same matching (local variable renaming x′) has to be
applied for the rule to fire.
Consequently, according to Definition 11, the state S′′′chrvis

is still equivalent to S′chr
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Applying the transition drop:
In the case where the top of the stack has an occurrenced active constraint c#i : j

such that c has no occurrence j in the program, the transition drop is applied. Thus,
Schr : 〈[c#i : j|A] , S, B, T 〉n 7→drop S′chr : 〈A, S, B, T 〉n
Since Schrvis

and Schr are equivalent, the stack of both states have to be equivalent.
Thus Schrvis = 〈[c#i : j|A] , S, Gr, B, T, H_ann〉m. For ωvis one of two possibilities is
applicable:
1. No annotation rule is applicable. This could be either because c is not associated with

any visual annotation rules or because all such rules have been already applied. In
this case
Schrvis : 〈[c#i : j|A] , S, Gr, B, T, H_ann〉m 7→drop S′CHRvis

: 〈A, S, Gr, B, T, H_ann〉m
which is equivalent to S′chr.

2. The second possibility is the existence of an applicable annotation rule: trans-
forming Schrvis

to S′chrvis
: 〈[Obj#〈r, id (H)〉, c#i : j|A] , S, Gr, B, T, H ′_ann〉m. At

that point either draw or update store are to be applied transforming S′chrvis
to

S′′chrvis
: 〈[c#i : j|A] , S, Gr′, B, T, H ′′_ann〉m′ . At that point, the transition drop

is applicable converting S′′chrvis
to S′′′chrvis

: 〈A, S, Gr′, B, T, H ′′_ann〉m′ . S′′′chrvis
is

equivalent to S′chr.

Applying the default transition
If none of the previous cases is applicable, Schr : 〈[c#i : j|A] , S, B, T 〉n 7→default

S′chr : 〈[c#i : j + 1|A] , S, B, T 〉n.

For the equivalent Schrvis
, one of two possible cases could happen:

1. Apply annotation is not applicable:
In that case, the Default transition is directly applied transforming Schrvis

toS′chrvis

such that
〈[c#i : j|A] , S, Gr, B, T, H_ann〉m 7→default 〈[c#i : j + 1|A] , S, Gr, B, T, H_ann〉m.
The produced state (S′chrvis

) is equivalent to S′chr as well.
2. Apply annotation is applicable:

In this case an annotation rule for one of the existing constraints is applicable such
that:
Schrvis

〈[c#i : j|A] , S, Gr, B, T, H_ann〉m 7→apply_annotation

S′chrvis
: 〈[Obj#〈r, id(H)〉, c#i : j|A] , S, Gr, B, T, H ′_ann〉m according to the previ-

ously mentioned conditions.
At this point, either the transition draw or the transition update store is applicable
such that:
S′chrvis

7→draw S′′chrvis
: 〈[c#i : j|A] , S, Gr′, B, T, H ′′_ann〉m′

S′′chrvis
is still equivalent to Schr.

At the point where the transition apply_annotation is no longer applicable, the only
applicable transition is Default transforming S′′chrvis

to S′′′chrvis
such that S′′′chrvis

=
〈[c#i : j + 1|A] , S, Gr′, B, T, H ′′_ann〉m′ . According to Definition 11, S′′′chrvis

is equi-
valent to S′chr

Thus in all cases an equivalent state is produced under ωvis. J

J
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