
Towards Incremental and Modular
Context-Sensitive Analysis
Isabel Garcia-Contreras
IMDEA Software Institute, Pozuelo de Alarcón, Madrid, Spain and
Universidad Politécnica de Madrid (UPM)
isabel.garcia@imdea.org

https://orcid.org/0000-0001-6098-3895

José F. Morales
IMDEA Software Institute, Pozuelo de Alarcón, Madrid, Spain
josef.morales@imdea.org

https://orcid.org/0000-0001-9782-8135

Manuel V. Hermenegildo
IMDEA Software Institute, Pozuelo de Alarcón, Madrid, Spain and
Universidad Politécnica de Madrid (UPM)
manuel.hermenegildo@imdea.org

https://orcid.org/0000-0002-7583-323X

Abstract
This is an extended abstract of [1].

2012 ACM Subject Classification Theory of computation → Invariants, Theory of computation
→ Pre- and post-conditions, Theory of computation → Program analysis, Theory of computation
→ Program semantics, Theory of computation → Abstraction

Keywords and phrases Program Analysis, (Constraint) Logic Programming, Abstract Interpre-
tation, Fixpoint Algorithms, Incremental Analysis, Modular Analysis

Digital Object Identifier 10.4230/OASIcs.ICLP.2018.7

Related Version https://arxiv.org/abs/1804.01839

Funding Research partially funded by Spanish MINECO grant TIN2015-67522-C3-1-R TRACES,
FPU grant 16/04811, and the Madrid M141047003 N-GREENS program.

Static program analysis (generally based on computing fixpoints using the technique
of abstract interpretation) is widely used for automatically inferring program properties
such as correctness, robustness, safety, cost, etc. Performing such analysis interactively
during software development allows early detection and reporting of bugs, such as, e.g.,
assertion violations, back to the programmer. This can be done as the program is being
edited by (re-)running the analysis in the background each time a set of changes is made,
e.g., when a file is saved, or a commit made in the version control system. However, real-life
programs are large, and, typically, have a complex structure combining a good number of
modules with other modules in system libraries. Global analysis of such large code bases
can be very expensive, and more so if context-sensitivity is supported for precision. This
renders triggering a complete reanalysis for each set of changes too costly. A key observation,
however, is that in practice each development or transformation iteration is normally formed
by relatively small modifications, which in turn are isolated inside a small number of modules.
This property can be taken advantage of in order to reduce the cost of re-analysis by reusing

© Isabel Garcia-Contreras, Jose F. Morales, and Manuel V. Hermenegildo;
licensed under Creative Commons License CC-BY

Technical Communications of the 34th International Conference on Logic Programming (ICLP 2018).
Editors: Alessandro Dal Palu’, Paul Tarau, Neda Saeedloei, and Paul Fodor; Article No. 7; pp. 7:1–7:2

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:isabel.garcia@imdea.org
https://orcid.org/0000-0001-6098-3895
mailto:josef.morales@imdea.org
https://orcid.org/0000-0001-9782-8135
mailto:manuel.hermenegildo@imdea.org
https://orcid.org/0000-0002-7583-323X
https://doi.org/10.4230/OASIcs.ICLP.2018.7
https://arxiv.org/abs/1804.01839
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


7:2 Towards Incremental and Modular Context-Sensitive Analysis

as much information as possible from previous analyses. Such cost reductions have been
achieved to date at two different levels, using relatively different techniques:

Modular context-sensitive analyses obtain global information on the whole program by
performing local analyses one module at a time. They are typically aimed at reducing
memory consumption (working set size) but can also localize the (re)computation of the
analysis to the modules affected by changes, achieving some coarse-grained incrementality.
Context-sensitive (non-modular) incremental analyses identify, invalidate, and recompute
only those parts of the analysis results that are affected by fine-grain program changes.
These analyses have been shown to achieve very high levels of incrementality, at fine
levels of granularity (e.g., program line level).

The problem that we address is that while, as mentioned before, large programs are typically
highly modular, the context-sensitive, fine-grained incremental analysis techniques presented
to date are not easily applicable to the modular setting: The flow of analysis information
through the module interfaces requires iterations, since the analysis of a module depends on
the analysis of other modules in complex ways, through several paths to different versions of
the procedures.

In order to bridge the gap we propose a framework that analyzes separately the modules
of a modular program, using context-sensitive fixpoint analysis while achieving both inter-
modular (coarse-grain) and intra-modular (fine-grain) incrementality. The proposed analysis
algorithm assumes a setting in which we analyze successive “snapshots” of modular programs,
i.e., at each analysis iteration, a snapshot of the sources is taken and used to perform the
next analysis. Each time an analysis is started, the modules will be analyzed independently
and incrementally (possibly several times) until a global fixpoint is reached. The algorithm
is designed to work with any partition of the sources. The essential point of the algorithm is
that analysis results are represented in a way that allows to partially invalidate the results
that are no longer valid, correct, or accurate, while keeping the information that does not
need recomputation. The information of source changes is used to invalidate (if necessary),
and then decide which parts of the program (modules or predicates) need to be reanalyzed.
We solve the problems related to the propagation of the fine-grain change information across
module boundaries. We also work out the actions that need to be performed in order to
recompute the analysis fixpoint incrementally after multiple additions and deletions across
modules in the program. Finally, we prove that the analysis result is always correct and it is
the best (most accurate) over-approximation of the actual behavior of the program.

We have implemented the proposed approach within the Ciao/CiaoPP system [2]. Our
preliminary results show promising speedups for medium and large programs. The added
finer granularity (which allows reusing analysis information both at the intra- and inter-
modular levels) reduces significantly the cost with respect to modular analysis alone. The
advantages of fine-grain incremental analysis –making the cost ideally proportional to the
size of the changes– thus seem to carry over with our algorithm to the modular analysis case.
Furthermore, the fine-grained propagation of analysis information of our algorithm improves
performance with respect to traditional modular analysis even when analyzing from scratch.

References
1 I. Garcia-Contreras, J. F. Morales, and M. V. Hermenegildo. An Approach to Incremen-

tal and Modular Context-sensitive Analysis of Logic Programs. Technical Report CLIP-
2/2018.0, The CLIP Lab, April 2018. URL: https://arxiv.org/abs/1804.01839.

2 M.V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J.F. Morales, and G. Puebla.
An Overview of Ciao and its Design Philosophy. TPLP, 12(1–2):219–252, 2012.

https://arxiv.org/abs/1804.01839

