
Controlling Concurrent Change – A Multiview
Approach Toward Updatable Vehicle Automation
Systems
Mischa Möstl
Technische Universität Braunschweig, Institute of Computer and Network Engineering
Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
moestl@ida.ing.tu-bs.de

Marcus Nolte
Technische Universität Braunschweig, Institute of Computer and Network Engineering
Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
nolte@ifr.ing.tu-bs.de

Johannes Schlatow
Technische Universität Braunschweig, Institute of Computer and Network Engineering
Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
schlatow@ida.ing.tu-bs.de

Rolf Ernst
Technische Universität Braunschweig, Institute of Computer and Network Engineering
Hans-Sommer-Str. 66, 38106 Braunschweig, Germany
ernst@ida.ing.tu-bs.de

Abstract
The development of SAE Level 3+ vehicles [24] poses new challenges not only for the functional
development, but also for design and development processes. Such systems consist of a growing
number of interconnected functional, as well as hardware and software components, making safety
design increasingly difficult. In order to cope with emergent behavior at the vehicle level, thorough
systems engineering becomes a key requirement, which enables traceability between different design
viewpoints. Ensuring traceability is a key factor towards an efficient validation and verification of
such systems. Formal models can in turn assist in keeping track of how the different viewpoints
relate to each other and how the interplay of components affects the overall system behavior. Based
on experience from the project Controlling Concurrent Change, this paper presents an approach
towards model-based integration and verification of a cause effect chain for a component-based
vehicle automation system. It reasons on a cross-layer model of the resulting system, which covers
necessary aspects of a design in individual architectural views, e.g. safety and timing. In the
synthesis stage of integration, our approach is capable of inserting enforcement mechanisms into
the design to ensure adherence to the model. We present a use case description for an environment
perception system, starting with a functional architecture, which is the basis for componentization
of the cause effect chain. By tying the vehicle architecture to the cross-layer integration model, we
are able to map the reasoning done during verification to vehicle behavior.

2012 ACM Subject Classification Hardware → Safety critical systems

Keywords and phrases safety, behavior, functional, architecture, multi-view, automated driving

Digital Object Identifier 10.4230/OASIcs.ASD.2019.4

Funding This work was funded by the Deutsche Forschungsgemeinschaft (DFG) under the grant
FOR1800 Controlling Concurrent Change (CCC).

Acknowledgements The authors thank the other members of the CCC research group for many
fruitful discussions and their support.

© Mischa Möstl, Marcus Nolte, Johannes Schlatow, and Rolf Ernst;
licensed under Creative Commons License CC-BY

Workshop on Autonomous Systems Design (ASD 2019).
Editors: Selma Saidi, Rolf Ernst, and Dirk Ziegenbein; Article No. 4; pp. 4:1–4:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5486-4870
mailto:moestl@ida.ing.tu-bs.de
mailto:nolte@ifr.ing.tu-bs.de
https://orcid.org/0000-0003-0654-4618
mailto:schlatow@ida.ing.tu-bs.de
mailto:ernst@ida.ing.tu-bs.de
https://doi.org/10.4230/OASIcs.ASD.2019.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


4:2 CCC – A Multiview Approach Toward Updatable Vehicle Automation Systems

1 Introduction

In recent years, huge progress has been generated toward the commercialization of automated
vehicles systems. The focus of the industry has shifted from advanced driver assistance
systems (ADAS), corresponding to SAE level 1 and 2 [24] to automated vehicle systems of SAE
Levels 3+. However, while impressive results are achieved regarding environment perception
algorithms, also due to the introduction of machine learning technology, verification and
validation of Level 3+ systems becomes increasingly difficult. This is especially true, if it must
be considered that software intense systems will most likely require frequent after-market
updates for deploying bugfixes, and/or updates of the vehicle’s functionality.

Challenges for safety verification are on the other hand caused by increased complexity
of the perception systems required to generate a representation of the vehicle’s environment
which is sufficiently detailed to make decisions in complex traffic scenes (cf. [13]). On the
other hand, replacing the driver is equivalent to replacing vast parts of the safety system of
SAE Level 1 and 2 systems. Established safety design processes must thus be rethought and
extended in order to suit the newly arising challenges when removing the driver from the
control loop. Safety strategies which only assure that the driver can control system failures
by being able to physically overrule system commands to the drive train or steering system
do not apply anymore.

For the automotive industry, the safety standard ISO 26262 [10] provides guidelines
for designing functionally safe systems. This subsumes hazards caused by malfunctioning
behavior of E/E components and ensures the correct implementation of functional (safety)
requirements. One frequently formulated drawback of the ISO regarding the applicability to
Level3+ systems is that it does not consider nominal behavior of the overall E/E system
(cf. [19, 4, 13, 8]) and thus does not provide guidelines on how to define the functional
requirements for the system. However, this formulation of safe nominal behavior (or external
behavior as defined in [20], according to [3]) and the boundaries of safe nominal behavior is
crucial when it comes to ensuring safety of driverless vehicles, as the system must not pose a
threat to its passengers and/or other traffic participants. For this publication, we adopt the
terminology as defined by Waymo in their 2017 safety report [32], referring to the process of
defining safe nominal behavior as behavioral safety (cf. [4]). The upcoming ISO PAS 21448
“Road Vehicles – Safety of the Intended Functionality” is partially addressing this problem,
however the scope of the current draft standard is intentionally limited to SAE Level 1 and
2 systems [12], while the defined concepts might also apply to levels of higher automation.

While there is a number of recent publications on how to extend the concept phase
of ISO 26262 toward the definition of safe behavior [19, 4, 8], e.g. based on a scenario-
driven concept phase, we would like to elaborate on the consequences of behavioral safety
considerations from a systems engineering point of view. As we have argued in [4], the design
of safe automated vehicle should follow a safety by design paradigm as a cross-domain effort
over different disciplines. For this purpose we have proposed an architecture framework in
accordance with ISO 42010 [11], featuring safety as a cross-cutting viewpoint and formulating
a functional, a capability, software and hardware viewpoint and attributing behavioral safety
to the former two and functional safety to the latter two viewpoints. Correspondences and
correspondence rules, as defined in ISO 42010, are represented in example mappings between
components in the respective viewpoints. While we formulate the need for formal methods to
represent and instantiate the different viewpoints in the architecture framework, the actual
instantiation was not part of the initial contribution.



M. Möstl, M. Nolte, J. Schlatow, and R. Ernst 4:3

Behavioral and functional safety of vehicle automation systems is one of the grand
challenges for future automotive systems. Reducing the necessary testing efforts to ship
updates for vehicular systems, especially of models that are already in production and in
the field is the second grand challenge. The later is particularly interesting to reduce costs.
In this paper, we want to show that concepts for safety related systems engineering ([4])
can be combined with automated integration mechanims and tools as investigated in the
project Controlling Concurrent Change (CCC)1. As a result of such a design and integration
flow, we envision systems where software updates and upgrades can be easily deployed at a
minimum of cost for integration testing and safety validation through testing.

We illustrate this idea based on an update scenario for the automation system of a
research vehicle. Therefore, we first introduce the architecture framework we use to asses
behavioral safety in section 2. We maintain traceability from the functional viewpoint up
until integration in this architecture (cf. Figure 2), by using Traceability in this architecture
is maintained in two ways: For behavioral safety the process is still manual, first ideas to
further automate this are also presented in section 2. The example showcase is then presented
in section 3, while section 4 then presents the key ideas how we automate the integration
and verification based on the presented architecture framework. This section also includes a
description of the resulting cross-layer system model. Finally, section 5 concludes the paper.

2 Behavioral Safety in Systems Engineering

As stated in Section 1, the concept of behavioral safety is a potential missing link to extend
the concept phase of established ISO-26262-compliant processes toward the application for
SAE Level 3+ vehicle automation systems. In this section, we summarize the architecture
framework described in [4] and discuss the implications of behavioral safety on traceability
requirements for system properties in the design phase and at runtime.

Considering behavioral safety as an integral part of the safety concept creates the problem
of defining appropriate behavior in different scenarios [4]. An example scenario is displayed
in Figure 1 with the vehicle approaching a pedestrian crosswalk.

Ego

Car 1

Pedestrian 1 Pedestrian 2
Van

Figure 1 Example scenario: Automated vehicle approaching a pedestrian crosswalk occluded by
a parked vehicle with oncoming traffic and pedestrians who are likely to cross.

At the scenario level, abstract safety goals can be formulated, e.g. by stating that
the automated vehicle must not enter oncoming traffic. A process of how these abstract
safety goals can be decomposed into (functional) safety requirements and actual technical
requirements has been formulated in [4]. A short summary of the described process following
an (iterative) Item Definition can be stated as follows:

1 https://ccc-project.org

ASD 2019

https://ccc-project.org


4:4 CCC – A Multiview Approach Toward Updatable Vehicle Automation Systems

1. Conduct Hazard Analysis and Risk Assessment by possible accidents in the defined
scenarios.

2. Define safety goals.
3. Define a risk minimal state for the scenario at hand.
4. Define functional safety concept (safety requirements and hazard mitigation strategies)

for fulfilling the safety goals.
5. Combine with functional architecture and required system capabilities derived during the

item definition to derive technical requirements.

However, the consequences of formulating behavioral safety requirements for systems
development reaches further than defining requirements at the beginning of the development
and validation and test before market release in a classic V-Model-like development process.
In addition, the adherence to safety requirements must be monitored at runtime. This is
required to initiate emergency strategies for reaching a risk minimal state in case safety
requirements are violated.

For monitoring system behavior at runtime, we have proposed the application of ability
and skill graphs [21] and their integration into a development process [20]. They represent
functional dependencies in the system, formulating the required capabilities to fulfill the
vehicle’s mission. They explicitly model external system behavior as well as dependencies for
performance assessment at a functional level, and provide guidance for the decomposition of
functional requirements into technical requirements.

A core question which needs to be addressed in this context is, how the technical
implementation, which is subject to functional safety requirements can cause hazards at
the behavioral level. This is where traceability aspects come into play: Assuming that
a functional system architecture and a capability representation are available after the
concept phase of the development process, technical architectures in terms of hardware
and software architectures are developed during system implementation. As defined in the
ISO 42010, a sound architecture framework requires the formulation of correspondences and
correspondence rules between different architectural views. In our formulated architecture
framework (cf. Figure 2), this means that we need mapping relations between functional,
capability, hardware and software components (depicted in Figure 2 as red arrows).

However, while informal formulations of those correspondences can assist during system
development, informal notations are not suitable to support system monitoring at runtime.
For this purpose a formal system model is required which can relate formalized requirements
to the current system configuration, e.g. including component mappings or interface and
task dependencies.

To demonstrate this, we performed a manual ability and skill graph based assesment for
an automated driving function of a research vehicle, and used its results as the input for
a model-based integration flow. The vehicle and the automation function is explained in
the following section. How this function is integrated into a vehicle system in a correct-by-
construction fashion is subsequently explained in section 4, which will explain our cross-layer
model instantiating the multi-view architecture.

3 Concurrent Change Use-Case

The CCC approach combines a conventional lab-based design of individual functions with an
automated integration process which ensures that updates are applied to an already deployed
system only if the system can still adhere to the required safety and security constraints.



M. Möstl, M. Nolte, J. Schlatow, and R. Ernst 4:5

VehicleSensor 1

VehicleSensor n
Vehicle

Actuator n

Vehicle
Actuator 1

VehicleECU 1
VehicleECU 2

VehicleECU n

VehicleControl
Localization

Env.Perception Lidar

V2X

Radar

Camera

GPS

NIC

LiDARpreprocessor

PointcloudSegmentation
LiDARObjectDetection

EgomotionEstimation

CamDriver

ImagePreprocessing

CamObjectDetection SensorFusion

srv nic

srv LiDARPrep

srv PCSeg

srv CamDrv

srv ImgPrep

srv ObjectsCam

srv ObjectsLiDAR

srv EgoMotion

Radar

Camera

Steering system

Powertrain

Brake system

Inertial sensors

Yaw

Accelerate

Decelarate

Estimate motion

Perceive
hard shoulder
marking

Perceive
movable objects

Estimate angle
& distance

to marking

Select
target object

Control lateral
dynamics

Control
longitudinal

dynamics
Follow hard

shoulder

Keepdistance to
leading vehicle

Follow mode

Context / Scene
Modeling

Road Level

Environment Modeling

Feature Extraction &

Model-Based FilteringEnviron.Sensors VehicleSensors

Road Level

Localization & MappingLane Level

Localization & MappingFeature Level

Localization & Mapping
Navigation

Guidance

Stabilization

Actuators

Global Localization

& Mapping

Environment & Self

Perception

Mission
Accomplishment

Lo
kal

isie
run

gss
ens

ore
n

Ko
mm

un
ika

tio
n (H

MI, V
2X

)

Functional
Viewpoint

Capability
Viewpoint

Software
Viewpoint

Hardware
Viewpoint

S
afety

V
iew

p
oint

B
ehavioral

S
afety

F
unctional

S
afety

Figure 2 Architecture framework presented in [4]: Showing safety as a cross-cutting viewpoint
orthogonal to the functional, capability, hardware and software viewpoint. Note that depicted
architectures are examples, such as a component architecture in the software viewpoint. Red arrows
depict example mapping relations (correspondences) between components in different viewpoints.

This becomes particularly challenging as the target platform is shared by multiple
functions with different criticality. All side effects must therefore be anticipated and either be
bounded or mitigated in order to ensure safe operation of critical functions at all times. For
this purpose, all requirements and constraints must be explicitly specified in the input models.
Another challenge consists in finding (and specifying) appropriate abstractions that guide
the decisions which must be made during such a model-based integration process, as these
are usually based on experience and expert knowledge, which is only implicitly available.

We demonstrate the applicability of the approach on an environment perception and
motion planing showcase that we will introduce in the following:

3.1 Research Vehicle MOBILE
For showing the applicability of the approaches developed in the CCC project in an automotive
context, the research vehicle MOBILE [5] built at the Institute of Control Engineering at
TU Braunschweig serves as a demonstrator platform.

MOBILE was originally built as a demonstrator for the development of vehicle dynamics
control algorithms and vehicle systems engineering applications. It features of four close-
to-wheel electric drives (4× 100 kW), as well as individually steerable wheels, and electro-
mechanic brakes [5]. The vehicle features a FlexRay backbone for inter-ECU-communication
and additional CAN bus interfaces, which are used for communication with sensors and
actuators for vehicle control. The ECUs for vehicle control are programmed in a customized
MATLAB/Simulink tool chain. Combined with detailed vehicle-dynamics models, the tool
chain serves as a means to establish a rapid-prototyping process for vehicle control algorithms.

The basic idea in the project scope is to demonstrate how the CCC architecture can
contribute to a state-of-the-art environment perception system in an automated vehicle. For
this purpose, the research vehicle MOBILE has been equipped with three roof-mounted
LiDAR sensors (cf. Figure 4a), as well as a highly accurate localization platform. Additional
hardware platforms were installed in the vehicle to run environment perception and motion
planning algorithms in the CCC middleware. The ECUs and sensors of the CCC subsystem

ASD 2019



4:6 CCC – A Multiview Approach Toward Updatable Vehicle Automation Systems

are interconnected by Ethernet and connected to the legacy vehicle control through a CAN
interface. In addition, the algorithms can be run on a legacy platform as it is used in the
Stadtpilot [33] project for comparison.

3.2 Environment Perception & Trajectory Planning System
The sensors provide a 360° representation of the vehicles’ environment and enable it to
navigate its path around obstacles in its vicinity. For the CCC project, we have ported
selected algorithms from the Stadtpilot project, focusing on the representation of the static
vehicle environment. For this purpose, incoming sensor raw data from the LiDAR sensors is
combined into a point cloud. Each measurement contains position and reflectivity information.
Thus, apart from the information about obstacle positions, reflectivity information can be
used to create a monochrome image, making it possible to e.g. detect lane markings in the
LiDAR data.

In several steps, measurements are annotated with measurement classes (e.g. ground
measurements, valid measurements on actual objects, clutter, etc.). The resulting annotated
point cloud is then fed into an occupancy grid [6] (cf. Figure 3a), which accumulates
measurements over time. The grid framework is based on a multi-layer approach to represent
environment features in distinct layers. Examples of three layers are depicted in Figure 3.
Figure 3a shows an example of occupancy information in terms of free (green), occupied
(red) and unkown (dark blue) space. In addition, the mentioned reflectance information
(Figure 3b) for ground-labeled points is represented in a separate layer. For a more detailed
description of the processing chain, please refer to [14], [23]. At the end of the sensor-data

(a) Occupancy grid: discretized
map displaying free (green) and
occupied areas (red) around the
vehicle.

(b) Reflectance grid: reflectance
values allow detecting lane mark-
ings (white) [23].

(c) Fused grid layer: each color
indicates a different represented
feature [23].

Figure 3 Three layers of the grid framework to represent environment features on an intersection.

processing chain for the static environment, the different layers are fused into a consistent
representation of the static vehicle environment.

The grid representation is always kept in a local coordinate frame, which moves with
the vehicle. The vehicle’s position is acquired from an accurate tightly-coupled GNSS/INS
platform (global position is obtained via GPS and fused with accelerations & angular rates).

(A) fused local occupancy grid(s) provide the basis to perform trajectory planning for
automated driving. For this purpose, the system generates a target pose in a reachable
area of the vehicle’s environment and the trajectory is planned from the current position
to the target pose in the vehicle coordinate frame. Trajectory planning is performed in a
model-based fashion, using front- and rear-axle steering. The underlying trajectory control
algorithms use the available actuators (4× steering, 4× brakes & drives) to control the vehicle
to the planned trajectory. For details on and architectural considerations for trajectory
planning, refer to [19]. Aspects of the applied control algorithms are presented in [30].



M. Möstl, M. Nolte, J. Schlatow, and R. Ernst 4:7

By representing the available actuators, trajectory planning considers the vehicle’s current
abilities. By monitoring e.g. sensor quality, actuator performance and control quality, the
system will be able to react to failures in the system. A simple example here is the presence
of a steering actuator failure, which can be compensated at the control level, as well as by
adapting the trajectory planning algorithm. Monitoring of non-functional properties, such as
timing is performed directly in the middleware.

(a) Roof-mounted lidar sensors.

FlexRay

CAN

Ethernet

(Smart) Sensors

(Smart) Actuators

Control Units / PCs

Vehicle
Sensor 1

Vehicle
Sensor n

Vehicle
Actuator n

Vehicle
Actuator 1

Vehicle
ECU 1

Vehicle
ECU 2

Vehicle
ECU n

Vehicle
Control

Localization
Env.

Perception

Lidar

V2XGPS

(b) Hardware architecture used in MOBILE.

Figure 4 Research vehicle MOBILE.

The algorithms required to demonstrate the use case will run in a distributed system, as
shown in Figure 4b. The platform can be separated into two parts: While the lower part of
the displayed ECUs is responsible for controlling the individual actuators of the vehicle, the
upper part performs environment perception and trajectory planning tasks. As the CCC
middleware only runs in the context of the environment perception system, the system model
must support transitions between legacy-parts of the system, running without the project
middleware and those parts, which are fully controllable by the Multi Change Controller
(cf. section 4).

A coarse grained functional architecture of the use-case is depicted in Figure 5.

Sensor Data
Aquisition

Sensor Data
Preprocessing

Static
Environment
Modelling

Target
Pose

Generation

Trajectory
Generation

Vehicle
Control

Figure 5 Coarse functional system architecture.

4 CCC’s integration and verification system

For the model-based integration approach pursued here, the system is composed of two
segregated domains: the model domain and the execution domain.

Figure 6 shows the conceptual setup of the system. A Multi-Change Controller (MCC)
(red) hosts the model domain, consisting of the cross-layer model, as well as configuration
generation and verification. We aim for component-based models – including software as
well as hardware components – as they reduce dependencies in the architecture to the
explicitly modeled interfaces. The components are generic building blocks of the system
that is composed of these components such that they implement the desired functionality
and fit to the particular target platform. Each change to the system must be coherently
representable in this system-wide model for analyzing any potential cross-layer dependencies,
as well as for other analyses to ensure freedom from interference for the individual functions
that a set of (software) components create.

ASD 2019



4:8 CCC – A Multiview Approach Toward Updatable Vehicle Automation Systems

Run-Time Environment
(including OS)

Platform Shaper/Monitor

Hardware
Component

Hardware
Component

. . .

Network

Application Shaper/Monitor

Software
Component

Software
Component

. . .

Multi-Change
Controller

(MCC)

deployment

configuration

metrics

model domain execution domain
at down time at run time

Figure 6 CCC architecture comprising a model domain (red), an execution domain (green) as
well as changing software/hardware components (gray).

Similar to the conventional V-model development process, the MCC gradually refines
the model representation of the new system configuration during the integration process.
This is done based on a cross-layer model that captures relevant viewpoints of the system.
The process generates new configurations and subsequently checks them for requirements
satisfaction. If a new configuration satisfies all requirements and is rated as an improvement
to the current one, it can be deployed into the execution domain.

Verification is separated due to the fact that not all requirements can be systematically
considered during configuration generation. E.g. software response times are hard to optimize
if arbitrary activation patterns are assumed. Consequently, an autonomous configuration
and verification goes beyond a multi-dimensional optimization of requirement satisfaction.

Our execution domain, is based on the open-source Genode OS Framework [7]. This
framework follows the microkernel approach and employs a strict decomposition of the
system on the application level, resulting in a service-oriented architecture in which separate
components implement and provide services for other components. While decomposition can
already deal with liveliness issues [1] that arise in mixed-critical systems, dependencies on
the execution time or response time of other components remain. Note that, however, the
methods developed in the model domain are not restricted to these semantics but can be
adapted to different implementation models.

4.1 The MCC’s cross-layer model
The core concept of the MCC’s model domain is that a) the system is represented on different
layers of abstraction, and b) that models describing different viewpoints of the architecture
are connected through mappings. Consequently, the described mappings between model
artifacts are the implementation of corespondences from the abstract architecture framework.

To perform the integration task in the MCC we define three architecture layers, where
each layer is treated as a graph. The top layer is a function model, that captures functional
aspects implementation independent.

I Definition 1. A function model is a graph FG = (F, ↪→) where the nodes in F describe
the functions, and ↪→ is the set of edges that describe functional interactions.

For instance the function chain depicted in Figure 5 fulfills this definition.



M. Möstl, M. Nolte, J. Schlatow, and R. Ernst 4:9

A further necessity of such a layer lies in the fact that safety requirements are derived from
implementation independent functional descriptions of a system [10, Part1] (cf. section 2).
In order to implement functions, they are decomposed into components. Since during
implementation, mappings of software components to hardware components might already be
fixed, e.g. because code of one software component requires certain peripherals of a hardware
component, they are already part of the component model. In our employed Run Time
Environment (RTE), data exchange from one component to one or more others is performed
through read-only memory (ROM) components. ROMs implement synchronous bulk transfer
of data based on remote procedure calls (RPCs) [7]. If a reader on a remote resource requires
contents of a ROM, proxy ROM components on both ends of the communication are inserted
that provide the required data on the remote side via a network connection. Formally
we define:

I Definition 2. A component model is a graph CG = (C∪CRoms∪Rabs,
w−→ ∪ r−→ ∪ m−→) where

the nodes are the unified set consisting of C that describes the set of software components
implementing functions, CRoms the set of ROM components, and Rabs the set of abstract
resources of the system. The edges either describe a read ( r−→) or write ( w−→) operation
between software components and ROMs, or a mapping ( m−→) of a software component to a
resource (Rabs).

In the course of generating configuration candidates the MCC applies pattern based
transformations on FG to produce a component model instance CG. For the example use-case
the function chain from Figure 5 is mapped to components in Figure 7 (second layer from the
top). The transformation is based on selecting components that implement a function from
a component repository. The repository is populated through formal xml-based descriptions
of components. A more detailed account of this transformation is provided in [28].

In a subsequent step, the MCC’s configuration generation refines the component model
to an instance model, which only contains instantiated components. This process also
allows refining components c ∈ C into sub-components, which again can be linked by ROM
components. The semantics of the resulting instance model are similar to CG, however it
only contains the minimal number of component instantiations under cardinality constraints,
i.e. the maximum number of instantiations of a component on a particular CPU. This also
results in a mapping of components to particular hardware components, i.e. from abstract
resources to individual CPUs. The instance model of the use-case is depicted as the third
layer from the top in Figure 7. Yet note, that some components are shown as composites
(light blue) due to space limitations.

The knowledge of the concrete instance model together with the knowledge about the
communication mechanisms allows the MCC to derive and map additional layers that
model certain aspects of the system in order to represent particular viewpoints such as
safety, availability or security. The requirements for these viewpoints – e.g. a safety-level
requirement or a real-time constraint – are collected for each component in a so-called
contracting language, which serves as an input to the MCC. Viewpoint-specific analyses are
implemented as separate entities in the MCC, e.g. in order to resolve run-time dependencies
between software components as presented in [27].

4.2 Analysis and Verification by the MCC
For this paper we restrict the scope to outlining how timing and safety requirements are
verified by the MCC. W.r.t. safety we further limit ourselves to freedom from timing
interference. For the external behavior of the vehicle, timing properties are crucial when it

ASD 2019



4:10 CCC – A Multiview Approach Toward Updatable Vehicle Automation Systems

comes to vehicle control. As unaccounted delays can cause degraded control performance
or even instable controllers, the adherence to timing constraints in the timing domain must
be ensured.

In order to reason about end-to-end function timing, a model describing the timing
behaviour is necessary. The transformation of the component-based software structure of the
Genode OS Framework together with the RPC semantic used by the ROM components to a
timing model is described in detail in [26]. The transformation result explicitly expresses
effects such as blocking and priority inheritance, while preserving the event chains. [26] also
describes how response-time bounds can be computed over a chain of components. Possible
alternatives to compute response-time bounds is e.g. MAST [2].

However, if hardware resources are shared with components from other cause effect chains,
possibly even components with a different criticality than the chain under analysis, only
verifying response-time bounds is insufficient. In the use-case depicted in Figure 7 this is
the case for the shared vehicle network. Following a conservative design strategy, a designer
would have to assume that by sharing the resource the components are mutually dependent
and that any dependency leads to interference, i.e. failures causing malfunctioning behavior.
Consequently, absence or strict bounds on the dependencies have to be proven in order to
argue freedom from interference.

A timing model for the Ethernet network can be derived from the knowledge of: (i) how
traffic is routed through the network, (ii) which components inject Ethernet frames into the
network at which rate, and (iii) what the maximum payload per frame is.

How traffic is routed is known, as this is under control of the MCC which also deploys
the network configuration. Similarly, the components which inject frames are already known
in the component model. The rate at which they emit a frame i into the network can
be abstracted by standard event models, δ+

i , δ
−
i . These are event model abstractions of

concrete execution traces that capture the maximum/minimum time interval between n

consecutive activation events. δ+
i and δ−

i for a frame i can be derived from the results of
the timing analysis of the component chains on the computation resources with the analysis
described in [26]. Only the maximum payload per frame must be extracted from contracting
information, which must be fed into the MCC. Based on this information a timing model
for the Ethernet network as e.g. described in [31] can be derived. It is formally based on
Compositional Performance Analysis (CPA) [22]. In this model each task τi represents a
frame that is competing for arbitration on a switch port, i.e. the switch ports are the resources.
The payload of each frame is captured by bounds on its worst-case execution time (WCET)
C +

i /best-case execution time (BCET) C −
i on the wire including all protocol overhead. Chains

of dependent tasks on different resources, i.e. Ethernet switch ports, then model a data
stream. This model provides the basis to derive the timing-dependency graph (TDG) for the
network and the components injecting the traffic as e.g. described by [15].

I Definition 3. A Timing Dependence Graph is a graph G = (V, E) consisting of nodes
vi, vj ∈ V and edges ek ∈ E where each edge ek = (vi, vj) describes that vj is dependent
on vi. Each node vi either describes a task parameter p ∈ P = {C +,C −, δ+

in, δ
−
in} or an

(intermediate) timing analysis result r ∈ R = {w+,w−, δ+
out, δ

−
out,R+,R−, qmax}.

To transform the timing model’s parameter and results into a TDG, two conversion
functions are necessary to populate the edge set of the TDG G.

I Definition 4. The parameter conversion function is a function

ϑp : T × {C +,C −, δ+
in, δ

−
in} 7→ V (1)



M. Möstl, M. Nolte, J. Schlatow, and R. Ernst 4:11

that maps each input parameter type p ∈ P for a task τi ∈ T to a node v = ϑp(τi, p) with
v ∈ V in the TDG, and the result conversion function:

ϑr : T × {w+,w−, δ+
out, δ

−
out,R+,R−, qmax} 7→ V (2)

that maps each result type r ∈ R of a task τi ∈ T to a node v = ϑr(τi, r) with v ∈ V in
the TDG.

This conversion function is analysis-specific, i.e. how CPA’s busy-window (w+/w−) and
output event models (δ−

out/δ
+
out) are computed. In general, a TDG is constructed in four

steps: First, for each task in the task graph, the timing dependency graph is populated
with the nodes describing its parameters. In the second step, all explicit dependencies
between tasks on different resources are added as edges in the graph. This happens for two
tasks τa and τb by inserting two edges ek = (vi, vj) and el = (vm, vn) into the dependency
graph in order to capture the dependency between their output and input event model
(δ−

a,out/δ
+
a,out and δ−

b,in/δ
+
b,in). More precisely, vi = ϑr(τa, δ

−
out) and vj = ϑp(τb, δ

−
in) as well as

vm = ϑr(τa, δ
+
out) and vn = ϑp(τb, δ

+
in). The third step then deals with the dependencies on

each resource. It adds dependency edges according to the construction of the busy window
(w+/w−), and the computation of response times (R+/R−). This implies that, for each
scheduler, a specific transformation is necessary. Consequently, the third step must be carried
out for each resource individually, respecting its scheduling analysis. Dependent tasks on
a resource can either be treated as in step two following the generalized CPA theory, or
be treated through the local resource analysis step, as e.g. done in [25] who considers task
chains under static-priority preemptive (SPP) scheduling. The fourth step then deals with
capturing the dependencies that influence the computation of the output event model, based
on the resource-analysis results and the applied propagation strategy to bound them. W.l.g.
we assume busy-window propagation as described by Theorems 1–3 in [29].

Dependencies are consequently expressed as edges between timing model parameters in
the TDG. The TDG allows identifying timing dependencies that data which is transmitted
over the network experiences.

Since the functional model FG has a correspondence rule with the safety viewpoint (cf.
Figure 2), we can trace safety requirements from there over FG to individual task chains
and thus to the timing model and the TDG. [16] treats safety requirements on timing
requirements as so called confidence requirements. The confidence requirement expresses
how well all timing parameters to compute a timing bound must be known, in order to
utilize the computed bound as proof that the timing requirement and consequently the safety
requirement is fulfilled.

The input description of components on the other hand supplies information how accurate
timing parameters like WCET/BCET, e.g. payload sizes, are known. By propagating
confidence values through the TDG of the system in a flow like manner where the lowest
possible confidence is assigned to a TDG node, also every timing requirement in the TDG
receives a confidence value. In cases where a mismatch between the assigned confidence
and the confidence requirement exists, the MCC either must reject such a configuration or
instantiate enforcement mechanisms to guarantee the expected model behaviour at run-time.

4.3 Monitoring and Enforcement
If the timely transmission of this data is safety relevant and dependent on parameters
with lower confidence than its requirement, the MCC must take actions to bound these
dependencies.

ASD 2019



4:12 CCC – A Multiview Approach Toward Updatable Vehicle Automation Systems

Several authors, e.g. [17, 9, 18] have proposed monitoring and enforcement techniques to
conform run-time inputs to model behavior. These techniques can also be used to shape the
injected traffic into the network. The MCC can deploy such mechanisms into the execution
domain (cf. Figure 6). They render a dependency innocuous since they increase the confidence
into a parameter to the confidence of the enforcement mechanism, which is typically high or
the highest in the system. This is due to the fact that the monitors are reliable middleware
components. In order to prevent overly excessive monitoring and enforcement the MCC
coordinates the model enforcement strategy. Two possible strategies for efficient placement of
monitors that perform enforcement are described by [16], a greedy input monitor placement
and a min-cut strategy. For the MCC the greedy input placement is more suitable as it
avoids complex network management where monitors would have to be implemented in the
switches of the Ethernet network.

Through this enforcement, the network is guaranteed to operate within the bounds of
the timing analysis. A reevaluation of the confidence values after placing enforcing monitors
shows that confidence requirements are now fulfilled. Together with the timing analysis
this is a sufficient proof of freedom from timing interference ([10, clause 3.75,part1]). In the
case study depicted in Figure 7 the MCC performs this for the data that is transferred over
the shared Ethernet network, i.e. between the Sensor Data Preprocessing and the Static
Environment Modelling components, as well as for the reference trajectory sent to the vehicle
control component which interfaces with the legacy control subsystem of the vehicle.

5 Conclusion

In this paper we have presented a design and integration flow that respects safety aspects
of SAE level 3+ vehicle functions. We argued that the system emergent property of safety
requires traceability in a design. To ensure this traceability during integration, we presented
the MCC based integration flow in section 4, where traceability is inherent due to the
automated model-based integration flow. This is mainly achievable due to the cross-layer
model as an implementation of multiviewpoint modelling and the dependency analysis that
is performed based on the cross-layer model. In section 4 we have particularly shown how
this is handled for complex timing dependencies. However, the derivation and formulation
of functional safety requirements for the MCC are still manual. It is our vision, to further
automize the coupling between behavioral and functional safety (cf. Figure 2), i.e. integrating
this aspecet in future versions of the MCC, as it is currently a manual process.

References
1 Genode OS Framework release notes 16.11, 17.08, 18.02 and 18.08. URL: https://genode.

org/documentation/release-notes/index.
2 MAST: Modeling and Analysis Suite for Real-Time Applications. URL: http://mast.unican.

es/.
3 A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy of

dependable and secure computing. IEEE Transactions on Dependable and Secure Computing,
1(1):11–33, 2004.

4 G. Bagschik, M. Nolte, S. Ernst, and M. Maurer. A System’s Perspective Towards an
Architecture Framework for Safe Automated Vehicles. In 2018 IEEE International Conference
on Intelligent Transportation Systems (ITSC), pages 2438–2445, 2018.

5 Peter Johannes Bergmiller. Towards functional safety in drive-by-wire vehicles. Springer, 2015.
6 A. Elfes. Using occupancy grids for mobile robot perception and navigation. Computer,

22(6):46–57, 1989. doi:10.1109/2.30720.

https://genode.org/documentation/release-notes/index
https://genode.org/documentation/release-notes/index
http://mast.unican.es/
http://mast.unican.es/
http://dx.doi.org/10.1109/2.30720


M. Möstl, M. Nolte, J. Schlatow, and R. Ernst 4:13

S
en
so
r
D
at
a

A
q
u
is
it
io
n

S
en
so
r
D
at
a

P
re
pr
o
ce
ss
in
g

S
ta
ti
c

E
n
vi
ro
n
m
en
t

M
o
d
el
lin
g

T
ar
ge
t

P
os
e

G
en
er
at
io
n

T
ra
je
ct
or
y

G
en
er
at
io
n

V
eh
ic
le

C
on

tr
ol

S
en
so
r
D
at
a

A
q
u
is
it
io
n

re
p
or
t
ro
m

S
en
so
r
D
at
a

P
re
pr
o
ce
ss
in
g

re
p
or
t
ro
m

pr
ox
y
ro
m
1

pr
ox
y
ro
m
2

S
ta
ti
c

E
n
vi
ro
n
m
en
t

M
o
d
el
lin
g

re
p
or
t
ro
m

T
ar
ge
t

P
os
e

G
en
er
at
io
n

re
p
or
t
ro
m

T
ra
je
ct
or
y

G
en
er
at
io
n

re
p
or
t
ro
m

pr
ox
y
ro
m
1

pr
ox
y
ro
m
2

V
eh
ic
le

C
on

tr
ol

n
ic

d
rv

S
en
so
r
D
at
a

D
ec
o
d
er

re
p
or
t
ro
m

S
en
so
r
D
at
a

P
re
pr
o
ce
ss
in
g

re
p
or
t
ro
m

pr
ox
y
ro
m
1

pr
ox
y
ro
m
2

S
ta
ti
c

E
n
vi
ro
n
m
en
t

M
o
d
el
lin
g

re
p
or
t
ro
m

T
ar
ge
t
P
os
e

G
en
er
at
io
n

re
p
or
t
ro
m

T
ra
je
ct
or
y

G
en
er
at
io
n

re
p
or
t
ro
m

pr
ox
y
ro
m
1

pr
ox
y
ro
m
2

V
eh
ic
le

C
on

tr
ol

ca
n
d
rv

E
n
vi
ro
n
m
en
t

P
er
ce
p
ti
on

1
E
th
er
n
et

L
o
ca
liz
at
io
n
/

E
vi
ro
n
m
en
t
P
er
ce
p
ti
on

2
E
th
er
n
et

V
eh
ic
le

C
on

tr
ol

Fi
gu

re
7
V
isu

al
iz
at
io
n
of

ho
w

th
e
ob

st
ac
le

av
oi
da

nc
e
fu
nc

tio
n
gr
ap

h
fr
om

Fi
gu

re
5
is

m
ap

pe
d
to

a
co
m
po

ne
nt

gr
ap

h
(u
pp

er
ha

lf)
.
T
he

co
m
po

ne
nt

gr
ap

h
is

tr
an

sf
or
m
ed

in
to

th
e
co
m
po

ne
nt

in
st
an

ce
gr
ap

h
w
hi
ch

al
so

co
nt
ai
ns

th
e
m
ap

pi
ng

to
th
e
ha

rd
w
ar
e
re
so
ur
ce
s
(l
ow

er
ha

lf)
.
R
ed

in
te
rf
ac
e
sy
m
bo

ls
in
di
ca
te

G
en

od
e
in
te
rf
ac
es
,w

hi
le

gr
ee
n
re
pr
es
en
t
a
da

ta
tr
an

sf
er

ov
er

E
th
er
ne

t.

ASD 2019



4:14 CCC – A Multiview Approach Toward Updatable Vehicle Automation Systems

7 Norman Feske. Genode OS Framework Foundations 18.05, May 2018. URL: http://genode.
org/documentation/genode-foundations-18-05.pdf.

8 Patrik Feth, Rasmus Adler, Takeshi Fukuda, Tasuku Ishigooka, Satoshi Otsuka, Daniel
Schneider, Denis Uecker, and Kentaro Yoshimura. Multi-aspect Safety Engineering for Highly
Automated Driving: Looking Beyond Functional Safety and Established Standards and
Methodologies. In Barbara Gallina, Amund Skavhaug, and Friedemann Bitsch, editors,
Computer Safety, Reliability, and Security. SAFECOMP 2018. Lecture Notes in Computer
Science, volume 11093, pages 59–72. Springer International Publishing, 2018.

9 Kai Huang, Gang Chen, C. Buckl, and A. Knoll. Conforming the runtime inputs for hard
real-time embedded systems. In 2012 49th ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 430–436, June 2012.

10 Intern. Organization for Standardization - ISO. ISO 26262 - Road vehicles - Functional safety,
2 edition, April 2011.

11 Intern. Organization for Standardization - ISO. ISO/IEC 42010 - Systems and software
engineering – Architecture description, 2011.

12 International Standard Office. ISO/PRF PAS 21448: Road vehicles : Safety of the intended
functionality. ISO, 2018.

13 Helmut Martin, Kurt Tschabuschnig, Olof Bridal, and Daniel Watzenig. Functional Safety
of Automated Driving Systems: Does ISO 26262 Meet the Challenges? In Computer Safety,
Reliability, and Security. SAFECOMP 2017. Lecture Notes in Computer Science, pages 387–416.
Springer, Cham, 2017.

14 Richard Matthaei, Gerrit Bagschik, Jens Rieken, and Markus Maurer. Stationary Urban Envir-
onment Modeling Using Multi-Layer-Grids. In 17th International Conference on Information
Fusion, 2014.

15 Mischa Möstl and Rolf Ernst. Cross-Layer Dependency Analysis with Timing Dependence
Graphs. In Proceedings of the 55th Design Automation Conference (DAC), 2018.

16 Mischa Möstl, Johannes Schlatow, and Rolf Ernst. Synthesis of Monitors for Networked
Systems With Heterogeneous Safety Requirements. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(11):2824–2834, November 2018. doi:10.1109/
TCAD.2018.2862458.

17 M. Neukirchner, T. Michaels, P. Axer, S. Quinton, and R. Ernst. Monitoring Arbitrary
Activation Patterns in Real-Time Systems. In Real-Time Systems Symposium (RTSS), 2012
IEEE 33rd, pages 293–302, 2012. doi:10.1109/RTSS.2012.80.

18 Moritz Neukirchner, Philip Axer, Tobias Michaels, and Rolf Ernst. Monitoring of Workload
Arrival Functions for Mixed-Criticality Systems. In 2013 IEEE 34th Real-Time Systems
Symposium, pages 88–96. IEEE, 2013. doi:10.1109/RTSS.2013.17.

19 M. Nolte, M. Rose, T. Stolte, and M. Maurer. Model predictive control based trajectory
generation for autonomous vehicles — an architectural approach. In 2017 IEEE Intelligent
Vehicles Symposium (IV), pages 798–805, 2017.

20 Marcus Nolte, Gerrit Bagschik, Inga Jatzkowski, Torben Stolte, Andreas Reschka, and Markus
Maurer. Towards a Skill- And Ability-Based Development Process for Self-Aware Automated
Road Vehicles. In 2017 IEEE 20th International Conference on Intelligent Transportation
Systems (ITSC), Yokohama, Japan, 2017.

21 Andreas Reschka, Gerrit Bagschik, Simon Ulbrich, Marcus Nolte, and Markus Maurer. Ability
and Skill Graphs for System Modeling, Online Monitoring, and Decision Support for Vehicle
Guidance Systems. In 2015 IEEE Intelligent Vehicles Symposium (IV), pages 933–939, Seoul,
South Korea, 2015.

22 Kai Richter. Compositional Scheduling Analysis Using Standard Event Models. Institut für
Datentechnik, 2005. URL: http://www.digibib.tu-bs.de/?docid=00001765.

23 J. Rieken, R. Matthaei, and M. Maurer. Toward Perception-Driven Urban Environment
Modeling for Automated Road Vehicles. In 2015 IEEE 18th International Conference on
Intelligent Transportation Systems, pages 731–738, 2015.

http://genode.org/documentation/genode-foundations-18-05.pdf
http://genode.org/documentation/genode-foundations-18-05.pdf
http://dx.doi.org/10.1109/TCAD.2018.2862458
http://dx.doi.org/10.1109/TCAD.2018.2862458
http://dx.doi.org/10.1109/RTSS.2012.80
http://dx.doi.org/10.1109/RTSS.2013.17
http://www.digibib.tu-bs.de/?docid=00001765


M. Möstl, M. Nolte, J. Schlatow, and R. Ernst 4:15

24 SAE. J3016: Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle
Automated Driving Systems. Vehicle Electrification Subscription, 2014.

25 Johannes Schlatow and Rolf Ernst. Response-Time Analysis for Task Chains in Communicating
Threads. In Real-Time Embedded Technology & Applications Symposium (RTAS), Vienna,
Austria, April 2016.

26 Johannes Schlatow and Rolf Ernst. Response-Time Analysis for Task Chains with Com-
plex Precedence and Blocking Relations. International Conference on Embedded Software
(EMSOFT), ACM Transactions on Embedded Computing Systems ESWEEK Special Issue,
16(5s):172:1–172:19, September 2017.

27 Johannes Schlatow, Mischa M“ostl, and Rolf Ernst. An extensible autonomous reconfiguration
framework for complex component-based embedded systems. In 12th International Conference
on Autonomic Computing (ICAC), pages 239–242, Grenoble, France, July 2015.

28 Johannes Schlatow, Marcus Nolte, Mischa Möstl, Inga Jatzkowski, Rolf Ernst, and Markus
Maurer. Towards model-based integration of component-based automotive software systems.
In Annual Conference of the IEEE Industrial Electronics Society (IECON17), Beijing, China,
October 2017. doi:10.24355/dbbs.084-201803221525.

29 Simon Schliecker, Jonas Rox, Matthias Ivers, and Rolf Ernst. Providing accurate event
models for the analysis of heterogeneous multiprocessor systems. In Proceedings of the
6th IEEE/ACM/IFIP international conference on Hardware/Software codesign and system
synthesis, CODES+ISSS ’08, pages 185–190, New York, NY, USA, 2008. ACM.

30 T. Solte, Tianyu Liao, Matthias Nee, Marcus Nolte, and Markus Maurer. Investigating
Cross-Domain Redundancies in the Context of Vehicle Automation - A Trajectory Tracking
Perspective. In IEEE International Conference on Intelligent Transportation Systems (ITSC),
pages 2398–2405, 2018.

31 Daniel Thiele, Philip Axer, and Rolf Ernst. Improving Formal Timing Analysis of Switched
Ethernet by Exploiting FIFO Scheduling. In 52nd Annual Design Automation Conference,
DAC ’15, pages 41:1–41:6, New York, NY, USA, 2015. ACM.

32 Waymo. Waymo Safety Report: On the Road to Fully Self-Driving, 2017.
33 J. M. Wille, F. Saust, and M. Maurer. Stadtpilot: Driving autonomously on Braunschweig’s

inner ring road. In 2010 IEEE Intelligent Vehicles Symposium, pages 506–511, June 2010.

ASD 2019

http://dx.doi.org/10.24355/dbbs.084-201803221525

	Introduction
	Behavioral Safety in Systems Engineering
	Concurrent Change Use-Case
	Research Vehicle MOBILE
	Environment Perception & Trajectory Planning System

	CCC's integration and verification system
	The MCC's cross-layer model
	Analysis and Verification by the MCC
	Monitoring and Enforcement

	Conclusion

