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Abstract
Self-awareness holds the promise of better decision making based on a comprehensive assessment of a
system’s own situation. Therefore it has been studied for more than ten years in a range of settings
and applications. However, in the literature the term has been used in a variety of meanings and
today there is no consensus on what features and properties it should include. In fact, researchers
disagree on the relative benefits of a self-aware system compared to one that is very similar but
lacks self-awareness.

We sketch a formal model, and thus a formal definition, of self-awareness. The model is based
on dynamic dataflow semantics and includes self-assessment, a simulation and an abstraction as
facilitating techniques, which are modeled by spawning new dataflow actors in the system. Most
importantly, it has a method to focus on any of its parts to make it a subject of analysis by applying
abstraction, self-assessment and simulation. In particular, it can apply this process to itself, which
we call recursive self-reflection. There is no arbitrary limit to this self-scrutiny except resource
constraints.
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1 Introduction

When the autonomous system itself and its environment are exceedingly complex, dynamic
and unpredictable, a comprehensive and correct assessment of the system’s situation is a
prerequisite for good decisions. This insight has led to a proliferation of research that approach
the challenges from various angles and run under names like autonomic computing [29,
32] and organic computing [23]. Self-awareness has become associated with many self-*
properties including self-monitoring and self-adaptation and it has been identified as key
element for designing complex computer systems [1] and cyber-physical systems [3]. The
challenge has been picked up by funding organizations such as DARPA [25] and the European
Commission [4] who have allocated significant funds for this research. These efforts have
resulted in many conference papers, journal articles and four books [11,18,26,32]. Several
surveys have systematically reviewed the research landscape [9, 16,19,27].

While the term self-awareness is used in the literature in different ways and various
definitions have been provided, researchers at a 2015 Dagstuhl Seminar have proposed a
comprehensive working definition, as summarized by Kounev et al. [13], which is worth
quoting in full:

Self-awareness, in this context, is defined by the combination of three properties that
IT systems and services should possess:
1. Self-reflective: i) aware of their software architecture, execution environment and the

hardware infrastructure on which they are running, ii) aware of their operational
goals in terms of QoS requirements, service-level agreements (SLAs) and cost-
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6:2 Towards a Formal Model of Recursive Self-Reflection

and energy-efficiency targets, iii) aware of dynamic changes in the above during
operation,

2. Self-predictive: able to predict the effect of dynamic changes (e.g., changing service
workloads or QoS requirements) as well as predict the effect of possible adaptation
actions (e.g., changing service deployment and/or resource allocations),

3. Self-adaptive: proactively adapting as the environment evolves in order to ensure
that their QoS requirements and respective SLAs are continuously satisfied while
at the same time operating costs and energy-efficiency are optimized.

Two reference architectures have been developed where these principles are at least
partially implemented, the EPiCS architecture [17,18] and the Learn-Reason-Act loop [12].

Although these and similar definitions are useful, they are still vague and imprecise. For
instance the definition above repeatedly uses the term “aware” in defining self-awareness and
thus does not explain what is meant by awareness. What would be the difference between
being “aware of operational goals in terms of QoS requirements” and storing a list of QoS
requirements and using them during operation? Does “aware of dynamic changes” mean that
some variables and models are updated and then the system continues to use the new values,
or does it mean that the system realizes that a change has happened and ponders its cause
and its implications?

Not least because much of the research on self-awareness is inspired by psychology (e.g.
see [16]) the term “self-awareness” seems to suggest more than a set of variables and models
that represent some features of the system, that it can access during operation. In particular,
the definition above, and all other definitions presented in the computing literature, leave it
open if the self-models are self-created based on self-observations or if the self-models are
provided by the designer. If the latter is the case, would the self-model keep track if the
reality changes? Also, should the system be aware of its self-awareness? And should this
awareness be recursive without bounds? Should the self-awareness be self-adaptive as the
environment, the system, and the self-model changes, as tasks become more or less urgent,
as resources become available or are withdrawn?

Different answers to these questions can lead to technically useful solutions and there
seems to be a spectrum between the point where everything is defined at design time and
the point where everything is self-constructed at run-time. Self-models, self-adaptation and
self-awareness push towards run-time, but how far should we go and how do we determine
the trade-offs?

Addressing these questions will require to be precise with terminology and to define
and model the involved concepts explicitly and in stringent formal terms. The following
is an attempt of a formal model of self-awareness but it should not be taken as the final
solution but rather as a first step. At several points we are less precise and less complete
than we would like to be, partially due to limited space but mostly because of an incomplete
understanding of what would be the best choices that lead to a sound basis for modeling,
design, exploration and verification. The hope is that a precise formalism will eventually
facilitate a design methodology and effective exploration of the design choices in the space of
self-aware systems.

2 Notation

We use dynamic dataflow based on static dataflow process network models such as [7, 8, 14].
But we generalize these models to allow for dynamic changes in the network structure which
results in dynamic dataflow not unlike the dynamic model proposed by Grosu and Stølen [5,6].
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The processes in the network are called actors and they communicate with each other
through signals.

2.1 Signals

Actors communicate with each other by writing to and reading from signals. Signals may
be produced by sensors or may be the control inputs for actuators. The environment of an
actor can also be modeled as an actor; hence, the actors communicate with each other and
with the environment by means of signals.

Given is a set of values V , which represents the data communicated over the signals.
Events, which are the basic elements of signals, are or contain values. Signals are sequences
of events. Sequences are ordered and we use subscripts as in ei to denote the ith event in a
signal. E.g. a signal may be written as 〈e0, e1, e2〉. In general signals can be finite or infinite
sequences of events and S is the set of all signals.

We assume an untimed model of computation [8, 15] and signals encode only a partially
ordered time, meaning that events within one signal represent a relative ordering in time but
events in different signals are not directly related in time. I.e. an event e appearing before
another event e′ in the same signal occurs before e′; but we do not know which of two events
in different signals occur earlier or later.

We use angle brackets, “〈” and “〉”, to denote ordered sets or sequences of events, but
also for sequences of signals if we impose an order on a set of signals. #s gives the length of
signal s. Infinite signals have infinite length and #〈〉 = 0.

We use the notation Signal(V ) to denote a type of signal that consists of elements of the
set V . E.g. Signal(R) would denote signals with real numbers, Signal(N) would denote
signals with natural numbers and Signal({T, F}) would denote signals that contain the two
types of elements T and F .

Signals are point-to-point connections between actors, and there can only be one producer
and one consumer for each signal. If events of a signal should be used by more than one
actor, we need a copy actor that copies the input signal to two or more output signals. If two
or more actors should contribute to one signal, we need a merge actor that defines how the
events from the producing actors are merged. In the figures of this article we sometimes omit
the copy and merge actors for convenience and clarity, but the model always requires them.

2.2 Signal Partitioning

We use the partitioning of signals into sub-sequences to define the portions of a signal that
are consumed or emitted by an actor in each activation cycle.

A partition π(ν, s) of a signal s defines an ordered set of signals, 〈ri〉, which, when
concatenated together, form the original signal s. The function ν : S→ N defines the lengths
of all elements in the partition, where S is the set of states of the partitioning process.
For example, if we have a signal s = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉, the partitioning process runs
through the sequence of states 〈q0, q1, q2, · · ·〉, and ν(q0) = ν(q1) = 3, ν(q2) = 4, then we get
the partition π(ν, s) = 〈〈1, 2, 3〉, 〈4, 5, 6〉, 〈7, 8, 9, 10〉〉.

Note, that there is nothing static about this partitioning, because the size of the next
partition can be determined by the actor during each activation. Signal partitioning only
captures the notion of activation cycles of actors which repeatedly consume part of the input
and produce more and more of the output.

ASD 2019



6:4 Towards a Formal Model of Recursive Self-Reflection

2.3 Actors
An Actor A ∈ A maps a set of input signals to a set of output signals. Actors repeatedly
evolve through activation cycles, and in each cycle part of the input signals are consumed
and part of the output signals are generated. Also, an actor may have an internal state
which is also drawn from the set of all subsets of values V .
A denotes the set of actors, and S = P(V ), the power set of the set V , denotes the set of

states, with ε ∈ S being the empty set, i.e. the state that has no values. To capture the
notion of activation cycle and to model the behavior of actors, we introduce the state, the next
state function g, the output encoding function f , and the partitioning function ν of an actor.
Thus an actor with n input and m output signals is an eight tuple A = 〈T, I, O, z0, f, g, ν, ~m〉
as follows:

T ⊆ S ... set of states
I ⊆ P(S) ... set of input signals
O ⊆ P(S) ... set of output signals
z0 ∈ T ... the initial state
ν : N→ P(N) ... input partitioning function
f : P(S)×S→ P(S) ... output encoding function
g : P(S)×S→ S ... next state function
~m : S→ Action ... a meta operator

Note, that the sets of input and output signals can dynamically change during the operation,
and, consequently, the functions ν, f and g may have to deal with different numbers of
signals at different time. Events from an input signal not consumed by an actor during an
activation cycle are left in the signal for later consumption, and if no events are generated
for a particular output signal, the signal is unchanged. Thus, an actor is free to ignore input
and output signals in which case they are never modified.

The meta operator ~m can invoke any of the following actions, which modify the global
dataflow network:

Action
addsig(s) add signal s
connectisig(s,A) add signal s to the set of input signals in actor A.
connectosig(s,A) add signal s to the set of output signals in actor A.
delsig(s) delete input signal s and remove it from the input and

output signals of the connected actors.
addactor(T′, I ′, O′, z′

0, f
′, g′, ν′, ~m′) create a new actor A′ = 〈T′, I ′, O′, z′

0, f
′, g′, ν′, ~m′〉

delactor(A′) delete actor A′

nop do nothing

Since the addactor action assumes all involved signals exist, unconnected signals have to
be created first with addsig and used in addactor calls or attached to existing actors with
connectisig and connectosig actions.

An actor A can be applied to a set of input signals to generate events on output signals.
It does so by repeatedly consuming values from the input signals and producing values for
the output signals. Each such activity is called activation or activation cycle. The number of
input values consumed in each activation cycle is determined by the partitioning function ν.
g computes the sequence of states 〈z1, z2, z3, · · ·〉 and f gradually produces the values for the
output signals. For actor A we write A(〈s1, s2〉) = 〈s3, s4〉 to denote an actor that consumes
two input signals s1 and s2 and generates two output signals s3 and s4.
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Let A and B be two actors with input and output signals IA, IB , OA and OB , respectively.
If a subset O′

A of A’s output signals has the same type as a subset of B’s input signals I ′
B ,

they can be connected such that the signals O′
A = I ′

B. This results in a compound actor
C with input signals IC = IA ∪ (IB \ I ′

B) and output signals OC = (OA \ O′
A) ∪ OB. The

semantics of such actor networks (or process networks) are developed in [7], together with an
analysis of loops and deadlocks.

3 Abstraction

Abstraction is a prerequisite for self-modeling because the model that an actor entertains of
itself, must be simpler, hence more abstract, than itself. Since we try to capture the notion
of unlimited recursive self-modeling, we need to make sure, that the self-model at one level is
more abstract than the self-model of the previous level. Here we do not show what a “good”
abstraction is or how to derive it, but we only show that certain signal abstractions, that we
use in later sections, have reduced information content.

3.1 Signal Abstraction
Given two signals s1 : Signal(V1) and s2 : Signal(V2), an abstraction of s1 is a mapping
Bα : Signal(V1) → Signal(V2) with an abstraction function α : 〈V1〉 → V2 that maps
sequences of s1 onto individual values of s2.

For instance, if a thermometer measures the sequence of temperature values as
s1 = 〈36.7, 36.8, 36.7, 36.8, 36.9, 36.9, 37.0, 37.0, 37.1, 37.2, 37.3, 37.2, 37.3, 37.3, 37.4, 37.5, 37.6, 36.6〉,
then the abstraction Bα with

α(〈t1, t2, t3〉) =


l if (t1 + t2 + t3)/3 < 35.5
n if 35.5 ≤ (t1 + t2 + t3)/3 < 37.5
e if 37.5 ≤ (t1 + t2 + t3)/3 < 38.5
h if 38.5 ≤ (t1 + t2 + t3)/3

the abstraction Bα would map three consecutive temperate measurements onto one symbol,
i.e. Bα(s1) = 〈n, n, n, n, n, e〉.

Many signal processing functions can be considered abstractions. E.g. an ECG signal can
be abstracted into a sequence of pulse periods, or into a sequence of P,Q,R, S, T symbols
to indicate the main components of the ECG signal. The important points are that the
abstracted signal represents less information and thus can be encoded with fewer bits, and that
it reflects regularities and repetitive patterns. If a sequence of values appears many times in
the input signal, this sequence can be abstracted into one abstract symbol. (GrammarViz [28]
and unsupervised symbolization [20] are examples for general methods for signal abstraction.)

3.2 Information Reduction by Abstraction
The Shannon Entropy [2] provides a formalism for measuring the information content of a
signal.1 Let V = {v1, v2, . . . , vN} be the set of symbols that appear on the signal s and let

1 The Shannon Entropy assumes independent, identically distributed random variables, which in fact
cannot be assumed in our case. In the following we use the Shannon Entropy as an estimate but
recognize the need for a more appropriate model.
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the probability of vi be pi, then the Shannon Entropy H of signal s is

H(s) = −
N∑
i=1

pi log pi.

H(s) gives the average amount of information per symbol. For a signal of length
m, s = 〈e1, e2, . . . , em〉 the information content is

I(s) = −
m∑
j=1

E[log p(ej)] = −m
N∑
i=1

pi log pi

where p(e) is the probability of event e and N is the number of distinct symbols.

3.2.1 Value Abstraction
We consider two types of abstraction, time and value abstraction. Let the value abstraction
function αv be

αv(〈x〉) =
{
A if x = a or x = b

x otherwise

which maps two symbols a and b onto the same symbol A and leaves all other symbols
unmodified. The abstraction Bαv

leaves the lengths of signals unchanged but reduces the
number of different symbols by one. As a consequence, the information content of the
abstracted signal is reduced as well which can be expressed by way of the Shannon Entropy.

Let V = {v1, v2, . . . , vN} be a set of symbols with v1 = a and v2 = b, let VA =
{A, v3, . . . , vN} be another set of symbols with N − 1 elements, let pi be the probability of
occurrence of vi with p1 = pa and p2 = pb, and pA. Further, let s be a signal of length m
and let sA = Bαv (s) be the abstracted signal of equal length. The Shannon entropy of these
two signals is

H(s) = −
N∑
i=1

pi log pi = −pa log pa − pb log pb −
N∑
i=3

pi log pi

H(sA) = −pA log pA −
N∑
i=3

pi log pi

Since the last sum is identical in both expressions and since pA = pa + pb we have as entropy
difference of these two signals

Hδ = H(s)−H(sA) = pa log pa + pb
pa

+ pb log pa + pb
pb

The information content decreases on average by Hδ per symbol and it depends only on the
probabilities of the two abstracted symbols a and b. For the special case pa = pb = p and
the base 2 logarithm we have Hδ = 2p.

3.2.2 Time Abstraction
Let the time abstraction function αt be

αt(〈x1, x2〉) =
{
A if x1 = a and x2 = a

〈x1, x2〉 otherwise
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Bαt maps two consecutive occurrences of a onto A and leaves all other symbols unchanged.
We assume that all symbols a appear in pairs, thus all a’s are replaced by A’s. This is not a
simplification since we can pick an arbitrary pair of symbols, say 〈b, c〉 and first apply a value
abstraction to transform it into 〈a, a〉 pairs, and then apply the time abstraction function αt.
The key point is that αt shortens the signal by replacing all pairs of symbols 〈a, a〉 by a new
symbol A.

αt reduces the signal length but not the number of symbols and not necessarily the
information per symbol. Thus, the reduction of information content comes from the decreasing
signal length. While the general case is quite involved, we can illustrate the trend with a
special case. Assume an abstraction function

αt(〈x1, x2〉) =


A if x1 = a and x2 = a

B if x1 = b and x2 = b

C if x1 = c and x2 = c

· · ·

Assume further that s consists only of symbol pairs like s = 〈a, a, c, c, a, a, b, b, a, a, d, d, b, b,
. . .〉. The abstraction Bαt

(s) will then half the length of s but probabilities will be maintained
like pa = pA, pb = pB, pc = pC, etc. Thus, the Shannon Entropy for s and sA = Bαt

(s) is

H(s) = −
∑

i∈{a,b,c,... }

pi log pi

H(sA) = −
∑

i∈{A,A,C,... }

pi log pi = H(s)

Hence, the Shannon Entropy denotes the average information content per symbol, which
is unchanged. However, the information content of the entire signal is as follows.

I(s) = mH(s)

I(sA) = m

2 H(sA) = I(s)
2

if the length of s is m and the lengths of sA is m/2 as a result of the abstraction.
Time abstraction has its name because signals encode timing information. This means

that merging two consecutive symbols into one decreases the number of symbols per time.
Hence, timing abstraction reduces the information content per time unit.

Reducing the amount of information is a necessary condition for an abstraction but it is
not sufficient for a useful abstraction. A useful abstraction will reduce the information that
is less relevant and keep the important information, thus increasing its prominence. Much
could be said about finding good abstractions, see for instance [30] for effective abstraction
techniques. Also note, that what constitutes a useful abstraction depends on the actor’s
goals and condition.

3.3 Abstractions as Actors
Signal abstraction is modeled as an actor that maps one or more input signals onto
output signals. Let B = 〈T, I, O, z0, ν, f, g, ~m0〉 with T = {ε} (the actor is stateless),
I = {Signal(V1), Signal(V2), . . . }, O = {Signal(V ′)} (one or more input and one output
signal), z0 = ε, (No initial state), ν(.) = 〈c1, c2, . . .〉 (the actor consumes a constant number
of values from each input signal), g(·, ·) = ε (no states), ~m0(·) = nop (no meta actions).

ASD 2019
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B maps one or more input signals consisting of symbols from V1, V2, . . . onto one output
signal with symbols from V ′, and if it applies a combination of value and time abstractions,
we call it a signal abstraction. We can of course conceive more complex abstractions with
internal states, but this kind of abstraction will suffice to illustrate the approach.

Given three actors A,BI , BO an actor abstraction ActAbstraction(A,BI , BO) = AA
denotes an abstraction of actor A, if

BO(A(SI)) = AA(BI(SI))

for all set of input signals SI that can be consumed by A.

... SI

...
SO

...
...

S ′O

S ′′O

A

BI
AA

BO

Figure 1 AA is an abstraction of A if S′
O = S′′

O.

This situation is depicted in Figure 1. AA operates on an abstraction of the input signals
SI , abstracted by the actor BI . If the output signals S′′

O generated by AA are identical to
the signals S′′

O, which are abstractions of SO, then actor AA is an abstraction of actor A.
This definition is not constructive and does not tell us how to derive AA, or BI or BO; nor
does it tell us what a useful abstraction is. Intuitively AA should be significantly simpler
than A but should faithfully reflect relevant properties of A.

4 Self-Model

An actor with a self-model has an abstract model of its own behavior, an abstract model
of the environment it interacts with, and the capability to simulate these abstract models
together.

Let A be an atomic or compound actor (as defined in section 2.3) arbitrarily complex
actor, let BI and BO be abstractors of the input and output of A, respectively, and let
ActAbstraction(A,BI , BO) = AA, just as discussed in section 3.3. Further, let E be the
environment the actor interacts with through the signal sets SI and SO, and let EA be an
abstraction of E, such that we have ActAbstraction(E,BO, BI) = EA.

Moreover, let Ā be a simulatable actor derived from A which behaves like A with the
following additions:

It has an additional input signal denoted as control signal.
It can be stopped and resumed at will through the control signal.
For each input signal of A it has two input signals of the same type; hence it has two sets
of input signals with identical types. The control signal selects one of the two sets for
input in each activation cycle.
It has an additional output signal, denoted as status signal that reports its internal status
under control of the control signal.

The whole situation is illustrated in Figure 2a. In addition we see in the figure a Sim
actor, which controls the models ĀA, ĒA, B̄I and B̄O to simulate them. Also, instead of actor
A we have a modified actor A′ which acts just like A but can at appropriate times invoke the
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simulator, learn about simulation results, which then can support its decision process. Thus,
given appropriate actors A, ĀA, ĒA, B̄I , B̄O and Sim, ActorSelfModel(A, ĀA, ĒA, B̄I , B̄O) =
ASM is a resulting actor corresponding to the one shown in Figure 2a.

4.1 Self-Assessment

ASM

B̄I

E

ĀA

ĒA

B̄O

A′

Sim

S ′′
O

S ′
O

S ′
I

SI

SO

S ′′
I

(a) ASM with a self-model can
simulate its own behavior to-
gether with an abstract model
of the environment.

ASM

E

A′′

Sim

B̄I

ĀA

B̄O

ĒA

JA′′

SI

SO

S ′′
I S ′′

O

S ′
O

∆J

S ′
I

(b) An actor JA′′ continually
monitors and assesses the beha-
viour and performance of A′′.

AASM

E

A′′

ĀL
A

ĒL
A

D2

D1

B̄L
O

B̄L
I

Sim

JA′′

S ′′
O

S ′
I

∆S′
O

S ′′
I

∆S′
I

S ′
O

SI SO

∆J

(c) Adaptive actors require
learning capabilities and error
signals.

Figure 2 A self modeling actor AASM .

To allow for self-assessment the actor requires a model of the specification and requirements
of itself. Such a model can be an elaborate functional model, or it can be a list of properties
that at all times have to be fulfilled. A large body of literature has studied this problem
under terms such as run-time monitoring, fault tolerance, and reliability. Thus, we assume
solutions readily exist and a dedicated actor, named JA′′ , continually monitors the input
and output signals of the actor under observation and detects functional and performance
aberrations. We could connect JA′′ to the actor inputs SI and outputs SO, however, it is
more likely that JA′′ operates on abstractions of those signals like the one provided by B̄I
and B̄O. The output of actor JA′′ in Figure 2b is denoted as ∆J and signifies the difference
between expected and observed behavior. It is fed back to actor A′′ to allow for the use
of this information and improve its performance. Hence, we have a variation of the actor
without that facility, which was named A′.

If JA′′ also maintains a history of the assessment, it facilitates a holistic lifetime self-
assessment as a basis for hindsight analysis, self-explanation and self-improvement.

4.2 Adaptive Self-Model
To model adaptive actors we need to capture the notion of learning.2 A Learning Actor AL
is an actor that takes an error signal as input, in addition to the other signals it needs for its
operation, and modifies its behavior with the goal to minimize the error in the error signal.
Hence, let A be an actor with input signals IA and output signals OA, the learning actor

2 The meaning of terms “learning”, “adaptation” and “optimization” overlap. Here we use the term
“learning” as a basic capability of an actor to modify its own behavior based on an error signal. Depending
on how this capability is used, the actor may be self-optimizing, when the behavior improves within
the same environment, or adaptive, when its behavior appropriately changes as response to a changing
environment, or both.
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AL has input signals IAI = IA ∪ {σε} and output signals OAL = OA, where σε is an error
signal that reflects the quality of A’s performance in some way. It could be a simple numeric
signal or it could be structured to detail which parts and aspects of A’s behavior exhibits
which quality.

Considering Figure 2b, there are several parts that we would like to see continually
improved, in particular the abstractions B̄I and B̄O, and the abstract models ĀA and ĒA. If
we want to make them learning actors, we have to identify the source of the error information.
While actors could use application specific information, obvious generic sources are the
differences between signals S′

O and S′′
O, and between signals S′

I and S′′
I .

Consequently, we introduce actors that analyze the differences in two sets of signals to
generate ∆ signals that inform other actors about observed differences. Figure 2c shows two
actors, D1 and D2 that analyze and compare signals S′

I , S′′
I and signals S′

O, S′′
O, respectively,

to generate the signals ∆S′
I
and ∆S′

O
. These ∆ signals are then used by the learning actors

B̄LI , B̄LO, ĀLA and ĒLA to improve their models and their behavior. Figure 2c shows one
possible scenario but many other strategies are conceivable and other information sources
can be utilized to improve learning actors. We imagine that the learning actors in Figure 2c
start with an initial, relatively crude model or behavior which then is continuously improved
with the expectation that this continuous improvement eventually leads to far better models
and behaviors for B̄LI , B̄LO, ĀLA and ĒLA than could possibly be accomplished with careful
engineering at design time.

5 Recursive Self-Reflection

Our actor has been extended quite significantly as illustrated in figure 2c. Before moving on,
let’s step back and consider what we have done. We have added functionality to our original
actor A twice, as indicated by the two ticks. We have added assessment and simulation
facilities together with abstract models of the actor itself and the environment. This allows
for improved behavior of the actor by using self-assessment information from JA′′ and by
using predictions from Sim. In addition we have introduced learning capabilities for the
abstractions. Thus, A′′ is continually improving by three different means: self-assessment,
simulation based prediction, improving abstract models.

As a result we have obtained the actor AASM , an adaptive, self-modeling actor. Is it
self-aware? The abstract self-model, the simulation engine, the self-assessment and the
learning capabilities are all ingredients of self-awareness but they are not self-awareness, just
like flour, sugar, raisins, yeast are ingredients for a cake, but they are not yet the cake. In
fact, AASM can be considered the cake, but we are not looking for the cake, we are looking
for the process of baking. So far we have used the mechanisms abstraction, simulation,
assessment, and learning deliberately to construct something which resembles self-awareness,
but the result is not self-awareness because self-awareness is the process, not the result. We
need a general method that uses those mechanisms and can be applied to any actor, not just
A. In particular, it must also be applicable to itself.

Consider Figure 3, where a learning actor AL interacts with the environment and is
continuously monitored by JAL . Imagine the monitor JAL is more complex than checking
properties. It keeps track of a set of goals that may be hierarchically organized and in part
mutually contradictory. The goals could be to perform some useful function, to keep the
battery loaded, avoid harming people, avoid damage to itself and to its environment, etc.
The ∆J signal informs to which extent these goals are satisfied at any time during operation.
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Figure 3 A self-awareness facilitating actor.

In addition we have an actor ALSAF that facilitates self-awareness. It is informed by
JAL about the actor’s performance and, through the signals sAL and sJAL

it keeps track of
which actors are in the system. If it deems necessary, for instance when it is unhappy about
the actor’s performance, it can trigger an investigation. At its disposal it has simulation,
abstraction, learning and other facilities. Picking an actor, for instance AL, it can spawn a
monitoring and assessment setup as illustrated in Figure 4a. It does all this through meta
actions through the ~m output in the figure. The self-awareness facilitator still keeps track of
many, but not necessarily all, actors in the system, which is indicated by the SA input signal.
It can spawn a new investigation into any of the newly created actors if deemed useful and if
the available resources suffice.
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SAF .

Figure 4 A self-awareness facilitating actor AL
SAF targeting other actors for study.

In addition, we propose to also provide an explanation actor F that, through a question
and explanation interface (signals sQ and sF ), provides a mechanism to explain what has
happened, which decisions have been taken, what observations have been made. We expect
this actor to be useful in the interaction with other systems. In particular in the interaction
with humans it will convey to which extent the ASA actor is self-aware and at what level it
understands what it is doing.

For now, let’s assume ALSAF deletes the newly created actors and returns to the state
shown in figure 3, and then picks actor JAL as a next target for investigation, the result
of which is shown in figure 4b. Moreover, it may target itself, if unhappy with its own
performance or if just curious, and thus create a situation as shown in figure 4c.

In its simplest form the proposed self-reflection mechanism picks an actor, atomic or
compound, abstracts this actor and assesses the behavior of the abstracted actor by comparing
it to the actor’s stated goals. Hence, a prerequisite for this operation is the accessibility of
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stated goals, which may be part of the actor under study or may come from somewhere else.
From that it follows, that ALSAF can study any other actor for which it has access to its
inputs, outputs and goals. This may in principle be the case for any of the actors visible in
Figures 4a – 4c. But note, that not every interior detail of an actor is necessarily subject to
this mechanism, since it is limited to behavior visible from the outside.

To warrant the name “recursive” the mechanism must be applicable to itself and to thus
recursively derived actors, without principle limits. Consequently, any actor created by ALASF
in Figure 4 could have its inputs, outputs and goals again be accessible to ALASF . Without
working out the details here this is plausible for all created actors because ALASF generates
the inputs and outputs itself and “knows” what it is supposed to accomplish.

In summary, we define self-awareness as the capability to pick any actor in the system,
it may be a simple or compound actor or the entire system itself, and apply abstraction,
assessment, prediction, and learning techniques, as outlined in this article, in order to analyze,
assess and possibly improve its performance.

6 Related Work

As alluded to in the introduction a substantial amount of papers have been published on the
topic of self-awareness. Here we only compare our proposal to definitions of self-awareness
that have similar scope and ambition.

In 2009 Agarwal et al. [1] argue that self-aware subjects should be “introspective” (they
can observe and optimise their own behaviour), “adaptive”, “self-healing”, (they monitor
themselves for faults and take corrective actions), “goal oriented”, and “approximate”, (they
use the least amount of precision to accomplish a given task).

In 2011 Lewis et al. [19] base their concepts on work in psychology, in particular on Morin’s
definition of self-awareness as “the capacity to become the object of one’s own attention” [22]
and Neisser’s five-level model [24] which includes the “ecological self ”, the “interpersonal self ”,
the “extended self ”, the “private self ” and the “conceptual self ”, the last being “the most
advanced form of self-awareness, representing that the organism is capable of constructing
and reasoning about an abstract symbolic representation of itself ” [19].

In 2014 Jantsch et al. [10] give seven properties that constitute awareness and define a
subject to be aware at level 0 to 5, depending on which of these properties are exhibited
by the subject. For instance level 4 requires that the subject assesses its own performance
over the history of its lifetime, and can simulate future actions for prediction and planning
purposes. The highest level 5 defines group awareness which requires subjects to be aware of
its peers in a group.

We have cited the 2017 definition by Kounev et al. [11] in the introduction and repeat
here only that it requires a subject to be self-reflective, self-predictive and self-adaptive.

All these definitions have some concepts in common, like goal orientation, adaptation, and
introspection, but also differ in whether they include self-healing, approximation, learning,
or prediction. But note that a definition that does not include an aspect such as learning
probably does not mean to exclude it either. What is mentioned explicitly may only reflect
the prominence given to some of the aspects, while others are less emphasized. These
ambiguities and imprecision are a consequence of the informal style used to describe rather
than define the key concepts of self-awareness.

Hence the first main difference to the work cited above is our attempt to provide a formal
semantic for the involved concepts thus avoiding ambiguities and imprecision. We admit,
that this attempt in giving a formal semantic is not complete but we argue it is a first step
that shows the contours of such a semantic and that suggests it can be given.
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The work by Vassev and Hinchey [31] is a formal approach to model self-awareness based
on knowledge representation. It captures knowledge the system has about itself that includes
information, rules, constraints and methods. The formal model has the benefit of clarity and
unambiguity which makes clear that awareness is reduced to knowledge representation. In
the described case study this self-knowledge is used by robots in a swarm to make situation
dependent decisions that sensibly contribute to an overall swarm behavior. However, a
mechanism to observe, assess and reason about its own usage of self-knowledge is missing.

Hence, the second main difference is the concept of recursive reflection. No other previous
definition or model allows for applying self-awareness recursively onto its own activity.
However, we contend that this unbounded recursion is the essence of self-awareness and it
requires a formal model to demonstrate its feasibility and its utility.

7 Conclusions

The proposed formal model of self-awareness is based on a dynamic dataflow semantics. It
captures the notion of signal abstraction, actor abstraction, adaptive actors, self-assessment,
and recursive self-reflection. Even though many details of the formalism are still missing and
the approach has not yet been demonstrated we are hopeful that it can be implemented and
simulated in an appropriate framework.

A particular appealing aspect of recursive self-reflection is its promise, that any particular
situation can be abstracted up to a level, where it is amenable to the assessment and planning
capabilities of the system. Thus, there is no situation too complex that the self-aware
actor is able to handle, provided it finds the appropriate sequence of abstractions. Since an
abstraction step reduces the amount of information and since abstractions can be recursively
applied, a given situation can be abstracted up to the level, where its information amount is
within the limit of the system. The human mind seems to be doing something similar, because
it manages to analyze, elaborate, and handle arbitrarily complex subjects even though the
amount of conscious information processing is severely limited as has been established in
Miller’s seminal paper in 1956 on the magical number seven [21], and confirmed many times
since then. If this analogy is correct, and if sufficiently effective and efficient abstraction
techniques can be developed and employed, recursive self-reflection would turn out to be a
wonderfully general tool for dealing with arbitrary situations where assessment and planning
is crucial but an overwhelming diversity and complexity seems to render any general technique
futile. These are big Ifs and a number of questions arise.

Abstraction techniques. We need efficient techniques for automated abstraction. The defin-
ition of ActAbstraction is not constructive and there seems to be no good, general
method to abstract an arbitrary actor. However, many abstraction methods exist but all
of them have their strength and drawbacks. Thus, we need to identify good abstraction
methods for our purpose and we need methods to select the most appropriate for a specific
actor and for specific objectives.

Abstraction level. Related to the abstraction method is the question of the right abstraction
level. A given set of data and a given abstractor can be abstracted more or less. It is not
well understood what constitutes a good abstraction level in general, and how to identify
a good abstraction level in a particular case.

Assessment techniques. We need good assessment techniques. Again, we do not have good
general methods for assessment of an arbitrary actor.

Goal Management. Complex systems often have a complex goal structure, which may be
hierarchical and dynamic with partially overlapping and partially mutually exclusive
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goals. Handling these goals and assessing an actor’s performance with respect to given
goals is an interesting challenge.

Learning. Machine learning is an active research domain and many methods have been
proposed and studied. The challenge for us is to identify appropriate and efficient learning
methods streamlined for our purpose.

Simulation. Finally, general and efficient simulation methods will be instrumental to make
self-awareness as proposed efficient. The key here is probably not the simulation method
itself, but to find the right abstraction level in combination with efficient simulation
methods.

With a precise, formal and operational model of self-awareness we can identify its
challenges, address the open problems and study its benefits and drawbacks in the context
of specific applications. As a result, self-awareness could be made into a powerful generic
method that can be the foundation of truly autonomous systems.
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