Generation of a Reconfigurable Probabilistic

Decision-Making Engine based on Decision
Networks: UAV Case Study

Sara Zermani
Université de Guyane, Espace-Dev, UMR, 228, Cayenne, France
Sara.Zermani@gmail.com

Catherine Dezan
Université de Brest, Lab-STICC, CNRS, UMR 6285, Brest, France
Catherine.Dezan@univ-brest.fr

—— Abstract

Making decisions under uncertainty is a common challenge in numerous application domains, such as

autonomic robotics, finance and medicine. Decision Networks are probabilistic graphical models that
propose an extension of Bayesian Networks and can address the problem of Decision-Making under
uncertainty. For an embedded version of Decision-Making, the related implementation must be
adapted to constraints on resources, performance and power consumption. In this paper, we introduce
a high-level tool to design probabilistic Decision-Making engines based on Decision Networks tailored
to embedded constraints in terms of performance and energy consumption. This tool integrates
high-level transformations and optimizations and produces efficient implementation solutions on a
reconfigurable support, with the generation of HLS-Compliant C code. The proposed approach is
validated with a simple Decision-Making example for UAV mission planning implemented on the
Zynq SoC platform.

2012 ACM Subject Classification Computer systems organization — Self-organizing autonomic
computing; Computer systems organization — Embedded hardware

Keywords and phrases Decision networks, Bayesian networks, HLS, FPGA
Digital Object Identifier 10.4230/0OASIcs.ASD.2019.9
Category Interactive Presentation

Funding This work is supported by CNRS fundings through the PICS project SWARMS.

1 Introduction

Embedded Decision-Making is necessary in a number of contexts including medical applic-
ations and autonomous vehicles. Embedded solutions make it possible to adapt to the
constraints of a real-time response that would be impossible with centralized off-board
decision making due to the need for communication media access. For instance, in the case of
unmanned aerial vehicles (UAVs) or intelligent vehicles, on-board decision making based on
image recognition enables real-time responses to propose appropriate action (e.g., to continue
tracking or to dismiss) in an autonomous manner. Many examples of embedded decisions
have been recently tested [26] [20] [6].

Among the techniques available for Decision-Making, three approaches have recently
emerged in the literature [3]: 1) Multicriteria Decision-Making techniques, 2) Mathematical
Programming techniques and 3) Artificial Intelligence. Nevertheless, to deal with uncertainty
of the environment and of the system (external or internal hazards), fuzzy techniques [2]
or stochastic/probabilistic models such as Bayesian Networks [21] are used. In this paper,
we focus on Decision Networks (also called Influence Diagrams), which are considered as an

© Sara Zermani and Catherine Dezan;
37 licensed under Creative Commons License CC-BY
Workshop on Autonomous Systems Design (ASD 2019).
Editors: Selma Saidi, Rolf Ernst, and Dirk Ziegenbein; Article No.9; pp.9:1-9:14

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8334-6346
mailto:Sara.Zermani@gmail.com
https://orcid.org/0000-0001-8857-6079
mailto:Catherine.Dezan@univ-brest.fr
https://doi.org/10.4230/OASIcs.ASD.2019.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

9:2

Generation of a Reconfigurable Probabilistic Decision-Making Engine

extension to Bayesian Networks (BN), including a Decision-Making (DM) mechanism based
on utility tables. Compared with a fuzzy model, a Decision Network (DN) is specified by a
causality graph that encapsulates the expert knowledge of the system and provides a good
comprehensive and efficient formulation for the designer.

For an embedded version of a Decision-Making mechanism, the following features are of
major importance: 1) achieving (real-time) performance under the constraints of memory or
computation related to the embedded system, 2) ensuring quality of service under power
consumption constraints. For Bayesian Networks, literature on embedded implementation
can be found for both software [22] and hardware versions, the latter with reconfigurable
hardware [16] [18] [25] using Field-Programmable Gate Array (FPGA). In [25], the authors
propose BN in reconfigurable hardware, but the decision mechanism that integrates temporal
specification in temporal logic is operated by the embedded processor. For embedded DN,
the ARPHA framework [22] [7] makes it possible to design specific failure scenarios from fault
tree specifications. ARPHA generates an embedded software version of a DN, but does not
propose any hardware alternative. To the best of our knowledge, no hardware implementation
of DN on reconfigurable platforms have been proposed as alternative embedded solutions.

In this paper, we propose a design tool to generate a reconfigurable implementation
of Decision Networks from high-level specifications of a Decision-Making engine. This is
the first design tool that proposes automatic generation of Decision Networks on FPGA.
The main contributions are: 1) the specific High Level Synthesis (HLS) transformations to
produce a HLS-Compliant C Code, 2) the generation of adequate HLS directives for efficient
implementation on an FPGA /SoC (System On Chip) platform.

The paper is organized as follows. Section 2 gives an introduction to Decision Networks.
Section 3 introduces the design tool to generate the embedded Decision-Making engine from
DN specifications, with a specific focus on the dedicated HLS transformations and HLS
directives for an efficient implementation on the FPGA/SoC platform. Section 4 presents a
case study that validates the flow up to implementation on a Zynq platform.

2 Background on Decision Networks and Probabilistic Beliefs

Decision Networks extend Bayesian Networks to provide a mechanism for making rational
decisions by combining probability and utility theory. In addition to chance nodes defined
by a BN, a DN also includes utility and decision nodes. Decision nodes represent the set
of choices open to the decision maker, while utility nodes are used to express preferences
among possible states of the world represented by the chance nodes and decision nodes.

2.1 Bayesian networks for probabilistic beliefs

BNs are probabilistic graphical models used to understand and control the behaviour of
systems [8] by providing diagnoses. They are composed of nodes and oriented arcs between
nodes representing the knowledge expertise of the system. In Fig. 1 a), we propose to evaluate
the probability of a UAV increasing or decreasing its altitude (U__A) based on the information
given by two sensors: the altimeter sensor (S_A) and the barometer sensor (S__B). The
BN nodes of the networks represent random variables whose values can depend on specific
states, and the arcs of the network indicate the conditional dependencies represented by the
conditional probabilities defined with probability tables (CPTs). In the example, each node
has two states, represented by the values inc and dec. The probabilities of the BN are also
known as the parameters of the network.

S. Zermani and C. Dezan

P(U_A=inc)=0.5
P(U_A=dec)=0.5

U_A

0.2 Altimeter Barometer' S_B=inc| 0.9 0.1

S_A=dec| 0.3 | 0.8 S_A S_B S_B=dec| 0.1 | 0.9
a)

@ inc_d‘(sc)
A(t+1)=inc |0.6] 0.4

U_A(t+1)=dec|0.4| 0.6

|
SISCIS

)

9:3

P(U_A=inclS_A=inc)=0.778

U_A
S_A=inc /

('Qimetx Barometer
\\\S_A / S_B

_ b)

. Speed up
Actions Slow down
Emergency landing

UAV
Altitude
UA /™~
‘ Decision
d)

Figure 1 BN principle and DN example: a) BN example, b) Inference illustration, ¢) Dynamic

BN, d) DN example.

To obtain the probability of one variable being in a specific state (A), we use an inference
mechanism that takes into account some observations (evidence indicators) of the system in

order to compute the posterior probabilities over A using Bayes’ theorem (Eq. 1).

P(A|B)P(B) = P(AN B) = P(B|A)P(A)

(1)

We use Bayes’ theorem for our example (illustration in Fig. 1 b) to compute the probability
of the variable U__A being in a state "increasing" by taking into account the value of the

altimeter S A as evidence.
This is done as follows:

P(S_A=1InclU_A=Inc)P(U_A = Inc)

PU_A=1InclS_A=1Inc)=

- 0.7%0.5
T0.7%05+0.2%0.5

P(S_A=1Inc)
=0.778

We can thus say that the probability of the altitude status being "increasing" is equal
to 0.778. If, for example, we add observations from the barometer sensor, also giving it an
increasing value, the probability P(U_A = Inc|S_A = Inc,S__B = Inc) increases to 0.969.

The probabilities can change over time. So it could be more appropriate to use dynamic
BN to model the change. In the case of a UAV, if we have a greater chance of maintaining
an increasing altitude if the UAV is already in this situation, and can model this with

time-dependent variables as proposed in Fig. 1 ¢).

As BN are dedicated to computing the probabilities of the states, we need an extra
mechanism to express the decision making that takes into account these values for the choice
of appropriate actions to safely continue a mission. We therefore use the Decision Networks

for the Decision-Making process.

ASD 2019

9:4

Generation of a Reconfigurable Probabilistic Decision-Making Engine

2.2 Example of a Decision Network

DN are directed acyclic graphs (DAG) with nodes belonging to three different categories:
chance nodes (ellipses or circles in graphical notation), which represent (as in BN) discrete
random variables; decision nodes (rectangles), which represent actions or decisions with
a predefined set of states; and value nodes (diamonds), which represent utility (or cost)
measures associated with random or decision variables. Edges represent direct (possibly
causal) influence between connected objects. An example of Decision-Making (see Fig. 1 d)),
linking the two BNs (representing the probabilities of the UAV Altitude state and of the
well-functioning Battery state), and the possible actions (Speed Up action, Slow Down action
and Emergency Landing action) to be chosen with the respect of a utility table. The utility
table (detailed in the Table 1) gives a score for each action relative to the BNs, and the
choice of the adequate action is given by computing a utility function (U;) for each action.

Table 1 Utility table for decision making with DN associated with the actions Speed Up (SU),
Slow Down (SD) and Emergency Landing (EL).

UAV inc dec
Alt.
(Ua)
Battery ok bad ok bad
(He)
Actions | SU | SD | EL | SU | SD | EL | SU | SD | EL | SU | SD | EL
(A4)
U 100 | O 0 0 0 100 | O 100 | O 0 0 100

To compute the utility function we need the probabilities provided by the BNs. The
utility function of each action is equal to the sum of the products of the action with the
adequate probability concerning the UAV state and the battery state. The action to be
chosen is the action that has the highest utility function.

Let us consider the example of Fig. 1 d):
Action_ to_activate = Max(U__fsu,U__fsp,U_ fEL)
where each U__fi,(k = {SU,SD, EL}) is equal to

U fr=> Y UA=kUs=iHg=j)« P(Us=1i)*P(Hg = j)
i
(i = {inc,dec} and j = {ok,bad})

In this example, if we take the BN probabilities P(Us = inc) = 0.9 and P(Hg = ok) = 0.8
and the utility table in Table 1, then U_ fgy = 72, U_ fsp = 8 and U__fg;, = 20, which
means that the action chosen is SU ("Speed up") this case.

3 Design Tool Proposal

The proposed design tool (Fig. 2) incorporates the two following main layers:

1. In the first layer, the Bayesian core tool takes a DN as input. The DN specifications
can be expressed in .net format or .m format to make them compatible with other
tools such as Genie [14] or BNT [19] for Matlab. First, a series of dedicated high-level

S. Zermani and C. Dezan

transformations are proposed for the BN part: AC compilation based on model patterns
and evidence optimization. Then, optimizations on the whole DN part are proposed, such
as bitwidth optimization and a functional/structural decomposition based on the choice
of the elementary function for a hierarchical decomposition before the generation of the
C-code.

2. In the second layer, a refinement of C-code is proposed by introduction of HLS directives
for code parallelization, memory and interface management. This latter C-HLS compliant
code is tailored for complete FPGA implementation on ZedBoard.

The first layer proposes high-level transformations and provides parallel opportunities for the

code, independent of the target platform. The second layer gives a more practical guide for

parallel implementation on a FPGA/SoC platform. This second layer is platform dependent.

In this presentation, we focus on specific high-level transformations for BN and on the

generation of C-code in order to show the ability of the design tool to generate parallelism.
We therefore do not detail the bitwidth adaptation and functional/structural decomposition.

The probabilities are defined here in a floating-point representation in the different examples
of Section 4, but they can easily be limited to fixed-point representation, thus saving some
FPGA resources at the same time.

BN Pattern recognition
Bayesian Networks Modular AC generation
Evidence optimization

Influence Diagram for DM

Bitwidth optimization
Structural decomposition

DN specification in .net or .m

HLS directives
(for parallelisation,
memory optimisation,
SW/HW interface)

HLS tool/FPGA implementation

Figure 2 Proposed HLS Design tool for Decision Networks on an FPGA support.

3.1 Bayesian core tool for DN: Dedicated high-level transformations
for DN

In this section, we start with an introduction to the intermediate representation (arithmetic
circuit compilation) used to synthesize the BN specifications. High-level transformations are
then proposed to generate a synthesizable C-code for DN specifications.

9:5

ASD 2019

9:6

Generation of a Reconfigurable Probabilistic Decision-Making Engine

3.1.1 Arithmetic circuit (AC) compilation for BN inference

BN inference algorithms are used to answer queries when computing posterior probabilities.
Classical inference algorithms are based on propagation on the junction tree. A major
problem for embedded systems is the complexity of the computation. Algorithms based on
ACs are powerful and can produce predictable real-time performances [4] [10].

The AC representation of BN can be built from the multilinear function (MLF) f [11]
associated with the marginal probabilities of the BN (Figure 3). The leaves of the arithmetic
circuit are A\ (evidence indicator) and € (network parameter), and the inner nodes of the
tree represent a multiplication (*) or an addition (4), alternately. To compute the posterior
probability P(z|e)= £2¢) (where x is a variable and e the evidence) for the diagnostic, two

f(e)
steps are required: the first to evaluate f(e) and the second to compute the circuit derivatives

to obtain f(z,e)= 2 W
+

®——®

A B | 0pa
a b | fa=01 Ao O + Mg bz +
a b |6,=09 / \ / \
@ b | fyz=02
a b | ;=08
J = 2Aaba(Xobyja + Aby,) + Aaba(Mebeia + Aty 1) b/ >b /\/ >b b/ >ba b/ \ba

(a) (b)

Figure 3 (a) A Bayesian network with a multilinear function. (b) The corresponding arithmetic
circuit.

3.1.2 Modular AC generation associated with model patterns

It is possible to simplify the generation of AC if the BN structures correspond to identified
patterns. For instance, in the examples of Section 4, the structure of BN is clearly repetitive
and matches the pattern we named the FMEA__HM pattern, described in Fig. 4. Other
patterns can also be used, like the SWHM (software Health Management) model proposed
n [24]. The BN of FMEA__HM pattern evaluates the probability of well functioning for a
specific item in the system providing the diagnosis, also called HM (Health Management).

In such cases, the generation of the AC uses a modular approach of inference computation
by taking advantage of the factorization of the MLF and the regular structure associated
with the pattern. In the case of an FMEA_HM pattern, the AC MLF factorization is based
on the relationship between child and parent nodes. The sub-MLFs for child nodes (if there
is no conditional dependence between them) are represented by a + in the AC, and parent
nodes combine them with a *. In this model, all error type nodes and all monitor nodes are
children of the U node (unobservable status of the system). Since there is no conditional

S. Zermani and C. Dezan

dependence between these nodes, their MLF can be calculated separately and in parallel,
similar to the sub-BNs of each error type, where the parent node is the error type and
the child nodes are the monitor and appearance context nodes. This allows us to have a

hierarchical and modular AC.

Figure 4 FMEA__HM pattern for BN where the S_U, S__FEi nodes represent the sensor nodes
of either a hardware or a software monitor, the nodes U, U__Fi are the internal states possibly
affected by an error Fi, the H_ U node represents the health of the system, H_S and H__ Fi nodes
represent the health of the sensor, and the A__H, A__H_ Fi are the appearance contexts.

This principle can be easily extended to Dynamic Bayesian Networks by considering the
temporal variables.

3.1.3 BN optimization based on evidence

In an AC, we can see that the values (A, A\z) of evidence of a variable X are equal to:

(Az, Az) = (1,1) when there is no observation on the variable X,

(Az,Az) = (1,0) when the evidence is on the variable X and the observation is x,

(Az, Az) = (0,1) when the evidence is on the variable X and the observation is z.
Furthermore, in our examples in Section 4, two types of node (observable and unobservable)
are known: C, A and S nodes are observable (evidence), so they take the values (1,0) or (0, 1)
for evidence. The other nodes are unobservable, so they take the values (1,1) for evidence.
These observations and the symmetrical structure of the AC make it possible to reduce the
AC as follows:

Delete the left (or right) topmost branch containing a C (or an H) node, and in all

sub-branches where C (or H) appears, replace the probability parameters by a choice

between the right or left value. We can simplify here, because the value of (A, Az) of
these nodes is never equal to 1 at the same time,

Repeat this procedure for all C and H nodes,

Fix all the A, values for the unobservable nodes at (1,1).

9:7

ASD 2019

9:8

Generation of a Reconfigurable Probabilistic Decision-Making Engine

3.1.4 C-synthesizable code for DN

The decision-making approach is based on the utility function equation, taking the HM
results from BNs, actions and utility table as input. The C-synthesizable code is generated
for BN in two ways: a) in a hierarchical way, by choosing several kinds of elementary block,
or b) in a flat way. In a hierarchical version, the elementary blocks are chosen considering
the structure of the AC tree.

The C-synthesizable code of the DN is given by the following algorithm:

Algorithm 1 Decision Making.

Require: Proba from BNs HMy, HMs>,, HM,, actions Ay, As,, A, and the utility
table U
for all states i; of HM; do

for all states i,, of HM, do

for all actions A; do
// Compute utility function for each action

Uf,Ak = Uf,Ak, + U(Ak,HMl =i1,... HM, = Zn)
«P(H M, :il)*...*P(HMn Iin)

end for
end for
end for
return Maximum of U;_ A

3.2 Generation of HLS directives for a SoC implementation on
ZedBoard

3.2.1 ZedBoard target for SoC/FPGA implementation

Our design approach is characterized by the separation of processing components from
functional programmable components. The proposed design targets the ZedBoard incorpor-
ating a hybrid Zynq processor [9]. As shown in Figure 5, the architecture is built around
the ARM Cortex-A9 processor (Zynq processing system PS). The processor communicates
with dedicated HW accelerators using programmable logic through an Advanced eXtensible
Interface (AXI) bus.

For the SoC implementation on ZedBoard, numerous HLS directives have been proposed [1].
Here, we list only the main ones used for this experimentation.

3.2.2 Parallelization directives at function calls and for loops

In order to increase the parallelism, the following main directives are chosen:

1. INLINE: Inlines this function call (does not create a separate level of RTL hierarchy) and
allows resource sharing and optimization across hierarchy levels.

2. UNROLL: Duplicates computation inside the loop and increases computation resources,
decreases number of iterations.

3. PIPELINE: Pipelines computation within the loop (or region) scope and increases through-
put and computation resources.

S. Zermani and C. Dezan

Zynq Memory ProE;Z?gn;fble
Proi:eSSIFr:g Interfaces [AXI INTERCONNECT |
system

y ? ¢ f ¢ Mastz:w)orts T L T
. ARM®@ IAXI_DMA| AXI_DMA
Common Dual Cortex-9 ¢ T ¢ ?
Peripherales| I MPCORE T System
Accel 1 | = Accel N

Slave Ports (GP) T ?

| AXI INTERCONNECT |

Figure 5 The hybrid architecture of the Zynq processor for SoC implementation.

Most of the time, the resources available for the IP are limited because other applications can

share the resource. So the parallelization directives are used considering resource constraints.

3.2.3 Memory management directives

For the storage of the parameters of the Bayesian network, two main options are used for an
embedded version inside the programmable logic component:

1. BRAM: with the directives array_map or array_ partition

2. LUT: default option

The data organization should be addressed correctly taking into account the interface
mechanism.

3.2.4 Interface management

The inputs of the SoC are the evidence of the networks that are data provided by sensors.

These are stored in an external memory (DDR). As for the evidence of the networks, the
parameters of the BN are inputs of the IP and can be stored either inside the SoC (BRAM,
LUT or CACHE) or outside in an external memory. This choice depends on the designer’s
needs and on the possible changes of the network parameter values. To access the external
memory, different interface options are possible:

1. STREAM: AXI stream

2. DMA: Master DMA

4 Case Study of a Simple UAV Mission Plan

In this section, we present a case study that validates the design flow up to implementation
on the Zynq platform. In this section we consider a simple UAV mission that address two
main failure scenarios; one related to GPS failure and the other to the battery failure. Both
can be expressed by BN, considering the FMEA_HM pattern.

4.1 Bayesian networks for the health of the GPS receiver and of the
battery

The accuracy and reliability of the position given by a GPS depend on contextual factors
affecting the satellite signal during its propagation or its reception. The sources of error
can be identified at the system level by means of additional bias in the computation of

9:9

ASD 2019

9:10

Generation of a Reconfigurable Probabilistic Decision-Making Engine

pseudo-range measurements [17] [23]. These measurements can tune the GPS positioning
accuracy from slightly imprecise to completely faulty. They can be improved by introducing
observations [12] or real environments [13]. The main GPS localization errors are illustrated
in Fig. 6 with a BN.

Clock error “‘

Orbit error
Satellite

lonospheric delay

Tropospheric delay

N Multipath
Clock error \@
Receiver

Figure 6 GPS potential errors and BN description.

To model battery behaviour, we use a dynamic BN to represent the linear progression of
the energy consumption over time.

This dynamic Bayesian network is described at two time steps (2TBN, cf Figure 7) to
take into account the previous past value. External events such as strong wind can increase
the energy consumption, as may any application/component used in a period of time. Each
status of an application (U node) is associated with a command node (C) that represents an
action to enable or disable the application. The battery level is given by a sensor that can
fail; its health is reinforced by the appearance contexts (low temperature, for example).

4.2 Decision making with an influence diagram

Figure 8 shows the decision-making mechanism of the mission considering the two cases of
failure (GPS failure (GPS HM), Battery failure (Energy HM)) and three actions (Nothing
to report, Change localization method, Emergency Landing). This figure illustrates the
monitoring of the GPS HM, the energy consumption HM and the DM at each time. Figure
8.(a) shows the interest of the context appearance nodes, which reinforces the confidence
in error types and sensor health. For example, from time ¢t = 0 until ¢ = 4, we observe
no problem in the GPS localization and, due to the evidence on appearance contexts, the
probability of the health of the system grows from 0.835 to 0.915. At time ¢ = 4, a problem
in the GPS localization is observed. Without observation on the appearance context nodes,
the probability of the health of the system decreases to 0.365, but according to the evidence
on appearance contexts it decreases to 0.143. Figure 8.(b) shows monitoring in a nominal
case for energy consumption. According to observation of sensors and appearance contexts,
the energy consumption is healthy but decreases over time because the related Bayesian

S. Zermani and C. Dezan

pra—

SLICE 0 SLICE 1

Figure 7 2TBN for Health Management for the battery.

Network evolves dynamically. Figure 8.(c) shows the evolution of Decision Making over time
based on the health probability of the GPS localization and energy consumption. From time
t = 0 until ¢ = 4, the maximum of the utility functions is “nothing to report”, which reflects
the case of “no problem in the mission”. At time ¢ = 4, the maximum of the utility functions
is “change localization method”, which reflects a problem in the mission, i.e., the GPS failure
scenario is detected.

4.3 SoC implementation

For our case study, Table 2 shows the evaluation of resources used for our implementation in
terms of Bloc RAM (memory BRAM), Digital Signal Processors (DSP), Look Up Tables
(LUT) and Flip Flop registers (FF). The total number of DSPs on the ZedBoard equals
220, that of LUTs is 53200 and that of FFs is 106400. The results are given for hardware
solutions maximizing parallelism. The parallelism is better exploited in the case of GPS
because there is less conditional dependency between nodes. The complete DM model uses
the same number of DSPs as in case of GPS HM, which is explained by resource sharing.

Table 2 Resources used by the BN model for the programmable logic part.

BRAM | DSP | LUT | FF
GPS localization HM 0% 34% | 33 % | 9%
Energy consumption HM 0% 29% | 2% | ™%
GPS HM+ Energy HM+ Decision | 0% 34 % | 51% | 14%

Table 3 shows the performance for the HW/SW implementation. We observe a good HW
speed-up in all cases because the SW implementation is sequential. A better speed-up is
observed in the energy case, which is due to the computational complexity from the dynamic
BN. The complete DM model has a good speed-up, which could be improved, but only at

9:11

ASD 2019

9:12 Generation of a Reconfigurable Probabilistic Decision-Making Engine
Probability
J— P(H_GPS= healthy | evidence on sensors)
T

0.835 : : ; ! : H
1]]]]

0.365 i P i l
| ! ! ! H
i i 1 H i & Time

GPS HM_——J Probabiity 2 3 4 5
P(H_GPS= healthy | evidence on sensors and appearance contexts)

0.915f———— = = R ': """ !
3 l v | XK i

0.143 ! ! 1 ! !
1 1 1 1 . Tlme
1 2 3 4 5

Probability
P(H_E= healthy | evidence on sensors and appearance contexts)
.
099 f——"—"—""1" i il [

Energy HM

Decision

Utility function

b3R8

8.42

— Nothing toreport
- Change localization method
" Emergency landing

Figure 8 Results for the Decision Making of a simple UAV mission.

(b)

(c)

the expense of more resources. We also observe that although the communication time to
send the network parameters is high, this can be eliminated or reduced if a local memory is

used, which also means an increase in HW resources.

Table 3 The HW/SW performance of the BN nodes and DM, where HW Speed-up =SW
execution time/HW execution time.

SW time | HW time | HW

(cycles) (cycles) Speed-up
GPS localization HM 955 391 2.42
Energy consumption HM 1268 339 3.74
GPS HM+ Energy HM+ Decision | 2190 698 3.13

Table 4 Performance, Resource and Energy consumption of the Decision Making mechanism.

Resource Latency | Speed-up | Energy
BRAM | DSP | LUT | FF (cycles) cons.(uJ)
HM/DM
in HW 14% 50% | 34% | 21% | 419 6.28 9.81
HM in
HW only | 13% 44% | 42% | 20% | 665 3.96 15.11

The results in Table 4 show the interest of a complete solution implemented in HW in
terms of performance and energy consumption. Nevertheless with three actions, a good
speed-up is already obtained for both versions of the DM, if HM are implemented in HW.

S. Zermani and C. Dezan

5 Summary and Conclusions

We present an original design tool for the implementation of Decision Networks on FPGA.
This tool helps the designer to specify and implement the Decision-Making process under
real-time constraints and energy constraints, making it suitable for embedded solutions
on autonomous vehicles. We detail the design flow, giving the specific HLS optimizations
and transformations available to generate implementation on an FPGA /SoC platform. We
propose a validation example that demonstrates the interest of such a tool by providing
efficient HW implementation for the Decision-Making engine.

Because of the complexity related to BN and DN definition and to their related classical
inefficient implementation using junction trees [15], decision-making mechanisms based on
DN were not really considered as a possible engine for embedded applications until now.
Nevertheless, new compilation methods based on AC and on pattern identification for the
BN description can help to achieve efficient implementation on both CPU and FPGA. These
methods also help us to define a completely new embedded Decision-Network engine on the
both supports. The present paper addresses this opportunity.

As perspectives for future work, we propose to integrate the runtime constraints of the
sensors to fit the constraints of the mission in a more realistic manner. In this way, we could
extend and couple the presented offline tool, which provides HW/SW implementation of
mission planning, by adding an online engine that can choose the most appropriate version
of the decision core implementation considering the CPU load, the system constraints in
terms of energy and timing, and which can take into account service quality requirements.
If the implementation of the decision process can be achieved on an FPGA /SoC support,
the HW /SW alternatives can be chosen dynamically at runtime in the same way as this is
possible for other applications, such as those for image processing [5].

—— References

1 Vivado-HLS. https://www.xilinx.com/products/design-tools/vivado/integration/
esl-design.html/. Accessed: 2016-09-30.

2 Kai-Yuan Cai and Lei Zhang. Fuzzy reasoning as a control problem. IEEE Transactions on
Fuzzy Systems, 16(3):600-614, 2008.

3 Junyi Chai, James NK Liu, and Eric WT Ngai. Application of decision-making techniques
in supplier selection: A systematic review of literature. FExpert Systems with Applications,
40(10):3872-3885, 2013.

4 Mark Chavira and Adnan Darwiche. Compiling Bayesian Networks with Local Structure. In
Leslie Pack Kaelbling and Alessandro Saffiotti, editors, IJCAI pages 1306—1312. Professional
Book Center, 2005. URL: http://www.ijcai.org/papers/0931.pdf.

5 Hanen Chenini, Dominique Heller, Catherine Dezan, Jean-Philippe Diguet, and Duncan
Campbell. Embedded real-time localization of UAV based on an hybrid device. In 2015
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
1543-1547. IEEE, 2015.

6 Hsin-Han Chiang, Yen-Lin Chen, Bing-Fei Wu, and Tsu-Tian Lee. Embedded driver-assistance
system using multiple sensors for safe overtaking maneuver. IEEE Systems Journal, 8(3):681—
698, 2014.

7 Daniele Codetta-Raiteri and Luigi Portinale. Dynamic Bayesian networks for fault detection,
identification, and recovery in autonomous spacecraft. Systems, Man, and Cybernetics:
Systems, IEEE Transactions on, 45(1):13-24, 2015.

8 Robert G Cowell. Probabilistic networks and expert systems: Exact computational methods for
Bayesian networks. Springer Science & Business, 2006.

9:13

ASD 2019

https://www.xilinx.com/products/design-tools/vivado/ integration/esl-design.html/
https://www.xilinx.com/products/design-tools/vivado/ integration/esl-design.html/
http://www.ijcai.org/papers/0931.pdf

9:14

Generation of a Reconfigurable Probabilistic Decision-Making Engine

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

L.H. Crockett, R. Elliot, and M. Enderwitz. The Zynq Book: Embedded Processing with the
Arm Cortex-A9 on the Xilinx Zyng-7000 All Programmable Soc. Strathclyde Academic Media,
2014. URL: http://books.google.fr/books?id=9dfvoAEACAAJ.

Adnan Darwiche. A differential approach to inference in Bayesian networks. J. ACM, 50(3):280—
305, 2003. doi:10.1145/765568.765570.

Adnan Darwiche. A differential approach to inference in Bayesian networks. Journal of the
ACM (JACM), 50(3):280-305, 2003.

Fabio Dovis, Bilal Muhammad, Ernestina Cianca, and Khurram Ali. A Run-Time Method
Based on Observable Data for the Quality Assessment of GNSS Positioning Solutions. Selected
Areas in Communications, IEEE Journal on, 33(11):2357-2365, 2015.

Vincent Drevelle and Philippe Bonnifait. Reliable positioning domain computation for urban
navigation. Intelligent Transportation Systems Magazine, IEEE, 5(3):21-29, 2013.

Marek J Druzdzel. SMILE: Structural Modeling, Inference, and Learning Engine and GeNle: a
development environment for graphical decision-theoretic models. In Aaai/Iaai, pages 902-903,
1999.

Frank Jensen, Finn V Jensen, and Sgren L Dittmer. From influence diagrams to junction
trees. In Uncertainty Proceedings 1994, pages 367-373. Elsevier, 1994.

Z. Kulesza and W. Tylman. Implementation Of Bayesian Network In FPGA Circuit. In
Proceedings of the International Conference on Mizxed Design of Integrated Circuits and System,
pages 711-715, June 2006. doi:10.1109/MIXDES.2006.1706677.

Richard B Langley. The GPS error budget. GPS world, 8(3):51-56, 1997.

Mingjie Lin, Ilia Lebedev, and John Wawrzynek. High-throughput Bayesian Computing
Machine with Reconfigurable Hardware. In Proceedings of the 18th Annual ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, FPGA 10, pages 73-82, New
York, NY, USA, 2010. ACM. doi:10.1145/1723112.1723127.

Kevin Murphy et al. The bayes net toolbox for matlab. Computing science and statistics,
33(2):1024-1034, 2001.

Kourosh Noori and Kouroush Jenab. Fuzzy reliability-based traction control model for
intelligent transportation systems. IEEFE Transactions on Systems, Man, and Cybernetics:
Systems, 43(1):229-234, 2013.

Judea Pearl. Probabilistic reasoning in intelligent systems: Networks of plausible inference.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

Luigi Portinale and Daniele Codetta-Raiteri. ARPHA: AN FDIR ARCHITECTURE FOR
AUTONOMOUS SPACECRAFTS BASED ON DYNAMIC PROBABILISTIC GRAPHICAL
MODELS. In Proc. IJCAI workshop on Al on Space, Barcelona, 2011.

Daniel Salés, Christophe Macabiau, Anais Martineau, Bernard Bonhoure, and Damien Kubrak.
Nominal GNSS pseudorange measurement model for vehicular urban applications. In Position
Location and Navigation Symposium (PLANS), 2010 IEEE/ION, pages 806-815. IEEE, 2010.
Johann Schumann, Timmy Mbaya, Ole Mengshoel, Knot Pipatsrisawat, Ashok Srivastava,
Arthur Choi, and Adnan Darwiche. Software health management with Bayesian networks.
Innovations in Systems and Software Engineering, 9(4):271-292, 2013.

Johann M Schumann, Kristin Y Rozier, Thomas Reinbacher, Ole J Mengshoel, Timmy Mbaya,
and Corey Ippolito. Towards real-time, on-board, hardware-supported sensor and software
health management for unmanned aerial systems. International Journal of Prognostics and
Health Management, 6, 2015.

Poorani Shivkumar. Intelligent controller for electric vehicle. In 2008 IEEE International
Conference on Sustainable Energy Technologies, pages 978-983. IEEE, 2008.

http://books.google.fr/books?id=9dfvoAEACAAJ
http://dx.doi.org/10.1145/765568.765570
http://dx.doi.org/10.1109/MIXDES.2006.1706677
http://dx.doi.org/10.1145/1723112.1723127

	Introduction
	Background on Decision Networks and Probabilistic Beliefs
	Bayesian networks for probabilistic beliefs
	Example of a Decision Network

	Design Tool Proposal
	Bayesian core tool for DN: Dedicated high-level transformations for DN
	Arithmetic circuit (AC) compilation for BN inference
	Modular AC generation associated with model patterns
	BN optimization based on evidence
	C-synthesizable code for DN

	Generation of HLS directives for a SoC implementation on ZedBoard
	ZedBoard target for SoC/FPGA implementation
	Parallelization directives at function calls and for loops
	Memory management directives
	Interface management

	Case Study of a Simple UAV Mission Plan
	Bayesian networks for the health of the GPS receiver and of the battery
	Decision making with an influence diagram
	SoC implementation

	Summary and Conclusions

