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Abstract
One of the existing query recommendation strategies for unknown datasets is “by example”, i.e.
based on a query that the user already knows how to formulate on another dataset within a similar
domain. In this paper we measure what contribution a structural analysis of the query and the
datasets can bring to a recommendation strategy, to go alongside approaches that provide a semantic
analysis. Here we concentrate on the case of star-shaped SPARQL queries over RDF datasets.

The illustrated strategy performs a least general generalization on the given query, computes the
specializations of it that are satisfiable by the target dataset, and organizes them into a graph. It
then visits the graph to recommend first the reformulated queries that reflect the original query as
closely as possible. This approach does not rely upon a semantic mapping between the two datasets.
An implementation as part of the SQUIRE query recommendation library is discussed.
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1 Introduction

One of the main characteristics of the Linked Open Data (LOD) cloud is the heterogeneity
of schemas and vocabularies: it is not rare for RDF datasets to use different vocabularies
to describe similar domains. However, this also entails a proliferation of ontologies for
overlapping domains appearing across datasets. For example, universities and academic
institutions intermittently use AIISO1 or XCRI2 to describe their courses in RDF, and
occasionally use the same properties in different ways. This increases the difficulty to
build, for instance, a recommender system for courses offered by all the universities in

1 Academic Institution Internal Structure Ontology, http://purl.org/vocab/aiiso/schema#
2 eXchanging Course-Related Information, http://xcri.org/
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a country. Finding the right queries for all the datasets usually involves intensive and
time-consuming preliminary work to explore and understand each dataset’s data model and
content, then iteratively reformulate and test SPARQL queries [13]. However, if the user
has prior knowledge of some of the datasets and a tool that can exploit such knowledge to
aid them in the reformulation, this effort can be reduced. Semantic analysis techniques such
as ontology alignment provide support to querying unknown datasets [11], however most
of them only consider how the terms are defined in the corresponding ontologies, hardly
considering their roles in the datasets in terms of relationships between the structure of the
query and that of the dataset. We investigate how much query recommendation “by example”
can benefit from structural analysis for recommending the best queries soonest.

We propose a method that, given a SPARQL query qo that a source RDF dataset DS is
able to answer, reformulates it into queries that can be answered by a target RDF dataset
DT and reflect as closely as possible the intended meaning, structure and types of results of
the original query. The approach analyzes the structure of the query and relates it to the
schema of both datasets, by computing a least general generalization and navigating the
resulting operational structure of its specializations. It does not require an ontology mapping
and/or instance matching between the datasets, but such methods can be integrated with
it, by influencing the recommendation ranking. Basic constructs of RDF(S) and OWL are
considered, but only as potential invariants in the query: in other words, the signature of a
class is merely treated like a structure. In this paper, we concentrate on star-shaped queries,
a class of queries that still represents a significant challenge in query optimization [8, 12].

The implementation of the method has been included with an open source SPARQL query
recommendation toolkit called SQUIRE [1], which comes as a software library, standalone
program and Web application. This offers valuable support for query recommendation,
empowering not only the automatic learning of the data model and content of an RDF
dataset, but also its straightforward use without the user’s prior knowledge of its content.

After illustrating related work in Section 2, the method is detailed in Section 3. Section
4 provides some insight on the experiments underway, before concluding with future work.

2 Related Work

Most research on SPARQL query recommendation uses ontology alignments or schema
mappings explicitly defined between the source and target dataset [5, 10]. We are not aware
of any study on how to recommend queries over unmapped datasets based not on a full
schema, but on just enough knowledge of one to write example queries over another dataset.

Our work was partly inspired by the intuition that the capabilities of a dataset, in terms
of what questions it is able to answer, can be understood by organizing them into a data
structure that can be navigated through methods such as formal concept analysis [6].

The employment of least general generalizations is not new in semi-automated SPARQL
querying: we acknowledge that Lehmann et al have previously implemented it with success
for OWL-based machine learning in DL-Learner [3].

Although the above studies contribute interesting elements for us to build on, they were
mainly driven either by the user’s lack of familiarity with the underlying technologies (which
is not our case), or by the availability of semantic alignments. Regarding the latter, the
placement of our work is immediately before semantic analysis takes place, in an effort to
understand if such techniques can be further led to converge towards ideal recommendations.

Lastly we acknowledge the existence of effective methods, such as that by Fokou et al [7],
to relax failing queries, rather than outright avoid them, for obtaining satisfiable ones. We are
in fact in contact with the authors to investigate a possible intertwining of both techniques.



A. Adamou, C. Allocca, M. d’Aquin, and E. Motta 1:3

3 Method

A star-shaped SPARQL query is a query such that all its graph pattern expressions (GPEs)
are either triple patterns (subject, predicate, object) that share the same subject, or GPEs
obtained by combining them using the AND operator. For instance, the following:

SELECT DISTINCT ?title ?pic
WHERE {

?s rdf:type bibo:Book ; dc:title ?title ; foaf:depiction ?pic .
}

is a star-shaped query of 3 TPs to get the titles and pictures (e.g. front covers) of books.
To generate query recommendations by example, we first (i) deconstruct the original

query into one or more general queries satisfiable by both datasets (Generalization); (ii)
transform the general queries into queries for the target dataset (Specialization); and (iii)
grade and rank the generated queries to select which ones to recommend (Evaluation).

3.1 Generalization Step

Suppose a query qo is satisfiable (i.e. produces a non-empty result set) w.r.t. a dataset DS but
not necessarily DT . The generalization step produces a set of queries QG = {qG

i , i = 1..m}
so that every qG

i is satisfiable by both DS and DT , but if a non-redundant and non-trivial
triple pattern (i.e. one that is not composed solely of variables and is not a repetition of
an existing triple pattern in qG

i ) were added to it, the resulting query would no longer be
satisfiable by both datasets. This is called a “least general generalization” (lgg) of qo.

When a TP cannot be preserved in an lgg, for it would make the query no longer satisfiable
by both datasets, its terms are excluded from the generalization and replaced with special,
unique SPARQL variables called template variables. These variables use the convention ctj ,
optj and dptj , respectively for the j-th class, object property and data property template
variable. The sets of terms of each category for DS and DT are obtained by inspecting
each dataset and maintaining an index of the terms. The pptj convention is used for
“plain” (RDF) properties when it cannot be determined if they are being used as object
or datatype properties. To reduce the risk of combinatorial explosion of recommendations,
named individuals and literals in a TP are not replaced with template variables. It follows
by construction that the members of an lgg are themselves queries.

Algorithm 1 below illustrates this rationale. Given the initial query qo (2-5 ): take every
class or property that appears in DS but not in DT and substitute every occurrence of it with
an occurrence of a new template variable. At this point (6 ) we have one generalized query,
but it is not guaranteed to be satisfiable by DT . Therefore, build a property co-occurrence
matrix M (7 ), which is a square matrix indexed by properties in DT that indicates the
classes, if any, where they appear together. If there are still concrete classes left, (8-12 ) add
to QG one query for each of them and generalize in each query every property that does not
occur (i.e. does not co-occur with itself in M) for members of that class. Now (13 ) take the
queries that were generated in the steps before and for each (14-17 ) find in M the largest
sets of co-occurring properties appearing in that query (Pj is the set of their indices), then
add to QG one query for every such group, so that only properties of that group appear in
it. If steps 7-17 did not produce any queries, then the query produced before was already
general enough, therefore (18 ) make that the lgg.

LDK 2019
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Algorithm 1 Least general generalization of an input query.
INPUT: two datasets DS and DT ; a query qo that is satisfiable w.r.t. DS

OUTPUT: a set QG of queries that generalize qo and are satisfiable w.r.t. DS and DT

1: procedure generalize(qo, DS, DT )
2: for each non-variable node pi of qo do
3: if pi is an object property in DS but not in DT ) then
4: Replace every occurrence of pi with a new object property template variable.
5: Do the same for data properties, other properties and classes of DS .
6: qG

o ← the new query resulting from the above
7: M ← co-occurrence matrix of all the properties in DT w.r.t classes in DT

8: for each concrete class ci in qG
o do

9: Generate a new query qG
ci

with all the TPs of qG
o where ci occurs

10: for each predicate pj of qG
o that is not rdf:type do

11: if ci ∈Mjj then add to qG
ci

all the TPs with pj

12: else add to qG
ci

all the corresponding TPs after generalizing pj

13: QG ← {qG
ci
}i

14: for each qG
i ∈ QG if QG 6= ∅ otherwise qG

o do
15: for each pj occurring in qG

i do
16: Pj ← largest group of properties pk so that Mjk 6= ∅
17: Add to QG a new query with only the TPs of qG

i whose predicates are in Pj

18: if QG = ∅ then QG ← {qG
o }

For example, suppose the first round of generalization has produced a query:

SELECT DISTINCT ?title ?pic WHERE {
?s rdf:type ?ct1 ; dc:title ?title ; foaf:depiction ?pic .

}

and dc:title and foaf:depiction are both present in DT but never together. In that
case, the following rounds will generate two queries (the largest property groups being
{rdf:type, dc:title} and {rdf:type, foaf:depiction}), whose patterns are respectively:

?s rdf:type ?ct1 ; ?dpt1 ?title ; foaf:depiction ?pic .

?s rdf:type ?ct1 ; dc:title ?title ; ?opt1 ?pic .

Having computed the set that represents the lgg of the original query, we need to know in
which ways it can be transformed into a set of queries over the target dataset DT , and detect
those queries that are potentially closer to the original one. This is what specialization does.

3.2 Specialization Step
The goal of specializing an lgg QG is to generate the space of candidate queries, regardless of
which query is to be preferred over which. A necessary condition for a query to be among
the candidates is that it must be satisfiable by the target dataset DT .

Specialization can be regarded as the repeated application of some operation over a query.
We distinguish two such operations: Removal (Rop) and Instantiation (Iop).
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Removal (Rop) systematically removes an entire TP from a query, as well as removing from
its projection (e.g. the SELECT statement) any variable that appeared only in that TP.
Along with the obvious precondition of there being more than one TP in the query for
Rop to be applied, we also restrict to only applying Rop on TPs that contain at least one
template variable.

Instantiation (Iop) replaces every occurrence of a template variable in a query with one
concrete (non-variable) value, thereby instantiating the template variable in question.

Applied to our specialization method, removals may be performed on a query regardless
of the target dataset, since by monotonicity no solutions are lost if a TP is removed from
an intersection of TPs. Instantiations, on the other hand, are performed so as to preserve
the satisfiability of the query. To do so, Iop only replaces template variables with concrete
values that occur in the target dataset. This requires knowledge of what the applicable
instantiations are which, when repeatedly applied to a generalized query, produce a query
that is satisfiable by the target dataset. One practical way to know them is to query the
target dataset for them. We therefore take each query in QG and replace all the variables in
the projection with all the template variables. So if a generalized query is:

SELECT DISTINCT ?s ?title ?pic WHERE {
?s rdf:type ?ct1 ; dc:title ?title ; ?opt1 ?pic .

}

then the discovery query for possible instantiations is the same as the one above, except that
the projection, i.e. the variables in the SELECT clause, becomes ?ct1 ?opt1.

The resulting query is run through DT . Every solution returned (the URI bindings for ct1,
opt1) denotes the possible instantiations that generate a candidate query for recommendation.

The set of solutions for every such query derived from QG defines the space of candidate
queries for recommendation that can be obtained through instantiation.

Every time an operation from the specialization step is applied, a new query is generated,
which reduces the occurrences of template variables compared to the query from before the
operation was applied. Any query generated in this way is an intermediate query if at least
one template variable occurs, or a candidate query otherwise. Generalized, intermediate and
candidate queries are organized in a structure that is explored in the next step. To that end,
create a directed graph (digraph) g = (Vg, Eg), called specialization graph, so that:

1. Every generalized query q0l in QG is a vertex in Vg.
2. If a vertex qij is in Vg and an operation in the specialization step can be applied to it, so

that a new query qi+1k is generated, then qi+1k ∈ Vg and (qij , qi+1k) ∈ Eg.

It follows that g contains all the generalized, intermediate and candidate queries as
vertices, and that the candidate queries have no outgoing edges. Also every applicable
operation on a query denotes an edge in g labelled after it. Figure 1 shows an example.

The next step is to navigate the specialization graph in order to pick the best candidate
queries, trying to detect them as early as possible.

3.3 Evaluation Step
The goal now is to measure the appropriateness of a candidate query using distance measures
from one of the generalized queries. With the specialization graph in place, if we set weights
on its edges we will have reduced our problem to one of finding the shortest paths to traverse
a digraph, from a generalized query to a candidate query. Shortest path traversal can be
performed using textbook algorithms that compute the least costly paths. However, in order
to assign weights to the edges, we will need to have a cost model.

LDK 2019
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Figure 1 Example specialization graph of an lgg QG = {qG
1 , qG

2 } (unweighted). The edges are
annotated with the last operation performed, whereas the vertices are annotated with the sets of
(remaining) template variables and/or the values used to substitute them in the corresponding query.

As there is no unique way of measuring the distance and/or similarity between two
queries [9], the cost C of going from qi to a qj satisfiable w.r.t. D is a linear combination:

C(qi, qj , D) = α· qsd(qi, qj) + β· tpc(qi, qj) + γ· ppd(qi, qj , D) + δ·Φ (1)

where α, β, γ, δ are arbitrarily set coefficients that depend on how we wish to reward or
penalize a certain measure, and qsd, tpc and ppd are measures defined as follows:

Query Specificity Distance (qsd) measures the alterations of variables and triple patterns:

qsd(qi, qj) = qsdV ar(qi, qj) + qsdT P (qi, qj) (2)

qsdV ar is the ratio of variables in qi that were preserved by the operation, over those of qi

and qj combined. qsdT P does the same with the triple patterns of qi that were preserved.
Triple Pattern Collapse (tpc) measures the increase in occurrences of every concrete value

from one query to another. If occ(x, q) extracts the set of occurrences (triplepattern, role)
of a variable or value x in a query q, then:

tpc(qi, qj) =
∑

u∈concrete(qi)

||occ(u, qj) \ occ(u, qi)|| (3)

Only Iop operations can cause an increase in value occurrence, by instantiating one or
more occurrences of a template variable to an existing URI value. The side effect is
that two or more TPs are collapsed by rendering them virtually indistinguishable. This
measure imposes a penalty on queries with such TPs. Rop operations are not penalized.

Property Preservation Distance (ppd) counts the properties whose nature has changed
across datasets, e.g. replacing an object property with a datatype property or vice versa.

Finally, Φ is a black-box similarity measure, which can be based on the syntactic or
semantic analysis of the query. It is treated like a black box here, since we assume to know
nothing about it: at a minimum one could use simple string similarity, just to allow us to
prefer one edge over others that would otherwise be equally weighted.
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We apply the cost function C(qij , qi+1k, D
T ) to all the vertices connected by an edge and

use the result as the weight of that edge. We can then proceed to visit the graph. The least
costly paths, from a vertex that represents a generalized query, to each final vertex, can
be found using an algorithm such as Bellmann-Ford or Dijkstra, depending on whether the
coefficients [α − δ] can be negative or not [2]. The resulting list of final vertices, already
sorted by ascending cost to reach, constitutes the query recommendation.

4 Implementation

Our approach was implemented as part of the SQUIRE open source toolkit for SPARQL
query recommendation3. SQUIRE provides query recommendation facilities packaged as:
(a) a Java library to be included into other programs; (b) a standalone application from the
command line; (c) a Web Service with an associated Web Application frontend. SQUIRE
supports Lucene-based4 dataset indexing to inform the generalization and specialization steps
of the method. The indices were populated through paginated exploratory SPARQL queries.

The base implementation of SQUIRE can be extended with metrics based, for instance,
on the semantic analysis of queries and datasets (i.e. the Φ in Formula (1)). As we are
currently evaluating our approach, we are minimizing the bias of this factor by instead using
an intentionally naïve Jaro-Winkler similarity [4] computed on the class and property labels,
or on the path ends or fragments of their URIs. We are constructing a suite of queries a
datasets pairs to benchmark query recommendation. At the time of writing, the optimal
recommendation could be found among the first five candidates for most queries tried so far.

5 Conclusions and future directions

We have illustrated an approach to the recommendation of SPARQL queries for datasets
that the user does not know, based on a query that they are already able to formulate for
another dataset. Our initial study concentrated on assessing how far it is possible to go with
an analysis of the query and datasets that is largely structural, only considering basic RDFS
and OWL constructs, such as classes as properties, as potential invariants of such structures.
We started with star-shaped queries, an essential yet already challenging structural category.

With experimental validation currently underway, we noted that there is no benchmark for
SPARQL recommendation, therefore we set out to publish one to complement our evaluation.
As for extending the method itself, there are several directions to take. One is to extend the
structural analysis to other classes of queries, such as snowflake and chain. Another one is
of course to introduce other types of analysis (such as those based on semantic alignments
or subsumption hierarchy) and measure if our structural analysis aids the convergence to
better recommendations sooner than without it. Having multiple analysis techniques will
also allow a comparative evaluation of the method’s efficiency. Finally, we will keep refining
the structural analysis method itself, especially considering other types of operation for
generalizing and specializing queries, and possibly taking FILTER clauses into account.

3 SQUIRE on GitHub, https://github.com/carloallocca/Squire
4 Apache Lucene, http://lucene.apache.org
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