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Abstract
A growing number of applications users daily interact with have to operate in (near) real-time:
chatbots, digital companions, knowledge work support systems – just to name a few. To perform
the services desired by the user, these systems have to analyze user activity logs or explicit user
input extremely fast. In particular, text content (e.g. in form of text snippets) needs to be processed
in an information extraction task. Regarding the aforementioned temporal requirements, this has
to be accomplished in just a few milliseconds, which limits the number of methods that can be
applied. Practically, only very fast methods remain, which on the other hand deliver worse results
than slower but more sophisticated Natural Language Processing (NLP) pipelines.

In this paper, we investigate and propose methods for real-time capable Named Entity Recognition
(NER). As a first improvement step, we address word variations induced by inflection, for example
present in the German language. Our approach is ontology-based and makes use of several language
information sources like Wiktionary. We evaluated it using the German Wikipedia (about 9.4B
characters), for which the whole NER process took considerably less than an hour. Since precision
and recall are higher than with comparably fast methods, we conclude that the quality gap between
high speed methods and sophisticated NLP pipelines can be narrowed a bit more without losing
real-time capable runtime performance.
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1 Introduction

The number of application areas, in which users are supported by systems that operate in
(near) real-time, grows: chatbots, digital companions, knowledge work support systems – just
to name a few. Our targeted scenario involves a system based on Semantic Desktop [15]
technology, that semi-automatically re-organizes itself based on user context [10] in order to
better support knowledge work and information management activities1. We envision an
intelligent, proactive assistance parallel to the actual work. Such systems need mechanisms to
analyze observed user activities (entering text, browsing a website, reading/writing files, . . . )
in order to decide on the right support measures and perform them accordingly. The demand
for very short reaction times limits the number of methods that can be applied.

In this paper, we focus on Information Extraction (IE) methods, more precisely Named
Entity Recognition (NER), that are ontology-based (our system operates on knowledge
graphs in the background) and meet the demand for providing meaningful results within
only a few milliseconds on users’ typical computing devices. By only a few we actually
mean a small two-digit number of milliseconds. According to Miller (1968) and Card et al.
(1991), as cited in [13], 100 ms is “about the limit for having the user feel that the system
is reacting instantaneously” and 1000 ms is “about the limit for the user’s flow of thought
to stay uninterrupted”. Our goal is to stay below the first value. In cases, in which this is
not possible (e.g. too much data to be processed at once), 1000 ms should be the upper
bound of processing time to be tolerated. Since we also need some time for selecting and
performing the support measures, the IE task has to be completed within only a fraction
of this time span. Such strict temporal requirements usually rule out very sophisticated
Natural Language Processing (NLP) pipelines (higher quality solutions but slow), leaving
only rather simple (lower quality) but very fast methods often based on pre-defined rules or
gazetteers. A gazetteer is conceptually just a list of terms (typically static), that the input
text is later scanned for, e.g. the names of persons, organizations or locations. Since our
scenario also involves highly inflectional languages like German2, we additionally have to take
slight variations of such terms into account. To vividly illustrate the problem of inflections
in NER, we fed the first paragraph of the German Wikipedia article of Propositional calculus
(German: Aussagenlogik) to DBpedia Spotlight3 [11], a well-known and often used recognizer
for Wikipedia/DBpedia4 entities in given text snippets. The results are depicted in Figure 1
(middle section): Twelve entities (in just three sentences; we highlighted them in yellow) are
not found, ten of them due to lexical variations induced by inflection. E.g. Wahrheitswert
(truth value) is found, whereas its inflected forms ending with -e and -en are not. If we lower
the confidence to 0.0, there are still some entities missing and false positives come up.

In summary, our goal is to find or implement methods that are fast enough to meet
the aforementioned temporal constraints while at the same time achieving better results
than standard high speed methods. Recognizing entities despite the just mentioned lexical

1 for an overview and more details please see https://comem.ai/
2 other inflectional languages: Spanish, Latin, Hebrew, Hindi, Slavic languages, . . .
3 https://www.dbpedia-spotlight.org/demo/
4 https://wiki.dbpedia.org/
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Figure 1 First paragraph of the German Wikipedia article of Aussagenlogik (top) fed to DBpedia
Spotlight [11] using confidence values of 0.5 (middle) and 0.0 (bottom). (highlighting we applied:
green: existing Wikipedia articles not linked in the original document, yellow: false negatives, red:
false positives.)

variations induced by inflection would be a first improvement step. Note that disambiguation
as well as recognizing Named Entities (NE) yet unknown to the system (i.e. not available as
instances in the knowledge graph) are out of this paper’s scope. Since there is a lot of expli-
citated contextual information available in our system, we intend to address disambiguation
in our scenario in a future paper.

The rest of this paper is structured as follows: Section 2 provides an overview of related
work in this area. Our approach is described in Section 3 and its evaluation is presented in 4.
In Section 5, we conclude this paper and give a an outlook on possible future work.

2 Related Work

We were looking for approaches (more or less) explicitly addressing inflection tolerance or
real-time capability, preferably both at the same time:

Concerning real-time capability, Dlugolinsky et al. [8] present an overview of different
gazetteer-based approaches, especially referring to various versions included in the GATE
(General Architecture for Text Engineering) framework [6]. They distinguish between
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character- and token-based variants and state that the latter usually have “longer running
time and low processing performance”. They thus focus on character-based gazetteers and
present several versions [8, 12]. Since some of their implementations are available online, we
also included them in our evaluation (see Section 4).

Savary & Piskorski [17] investigated solutions for Polish, also a highly inflectional language.
As one subcomponent of their IE platform SProUT they filled a gazetteer by “explicitly
listing all inflected forms of each entry”.

Day & Prukayastha [7] gave an overview of different NER methods especially targeting
Indian languages. Their paper presented gazetteer-based and machine learning approaches
as well as hybrid solutions.

Al-Jumaily et al. [3] present an NER system for Arabic text mining. They use a token-
based approach involving stemming as well as pre- and postfix verification tailored to the
Arabic language. Although they aim for real-time applications, they do not give any details
about their system’s runtime performance.

Al-Rfou & Skiena [4] propose SpeedRead, an NER pipeline which they tested to run ten
times faster than the Stanford CoreNLP pipeline5. Unfortunately for us, they only reported
runtime performance in terms of tokens per second. In their final results, they say SpeedRead
achieves about 153 tokens/sec. Using the word length statistics published by Norvig [14]
and assuming an average token length of about five characters, we would end up having 765
char./sec, which is still much too slow for our scenario as we will later see. Even if we assume
an average token length of twelve, although more than 90% of all English words are shorter
[14], we would still be too slow having 1836 char./sec.

In summary, we found several approaches dealing with either real-time capability or
inflection tolerance. One paper even mentioned both, but did not report any concrete speed
measures. Nevertheless, doing NER extremely fast is apparently rarely discussed in literature,
yet. This may be because usual NER methods operate in only a few seconds, which may be
sufficient for many use cases, unfortunately not ours.

We will refer to some of the ideas discussed in this section when presenting our approach
in the following.

3 Approach

We focus on the very fast recognition of NEs given as instance labels of ontologies. Moreover,
these labels should still be recognized even if they slightly lexically vary as induced by
inflection. To achieve this, we exploit knowledge graphs connected or available to our system
such as an individual user’s Personal Information Model (PIMO) [16] or DBpedia to get
more details about the entities, e.g. their specific type. Based on this type, we can then
accept different lexical variations per instance according to language information coming from
Wiktionary6, for example. For instance, we should not allow too many variations of person
names, whereas we can be more tolerant when dealing with topic, project, organization
or location names, especially if they contain adjectives like the Technical University of
Kaiserslautern or German Research Center for Artificial Intelligence. As an example, Figure
3 shows all 18 inflected forms of künstlich (artificial) in German (word w4 in the figure).

As depicted in Figure 2, we have a hierarchical NE recognizer as the core of our system. It
operates on several sub-recognizers, mostly Multi-Layer Finite-State Transducers (MLFST)
as described later, each of them having a different focus (configuration). The core recognizer

5 https://stanfordnlp.github.io/CoreNLP/
6 https://www.wiktionary.org/

https://stanfordnlp.github.io/CoreNLP/
https://www.wiktionary.org/
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Figure 2 Architecture of our system.

collects their results and decides (votes) which ones to accept. To acquire the entity labels as
well as background information, it is connected to knowledge graphs and language information
sources as described before. Its individual aspects are discussed in more detail in the following.

3.1 FST-based NER
To meet the aforementioned strict runtime requirements, we basically follow a gazetteer-based
approach. The additionally required inflection tolerance is not well compatible with the usually
static character of a gazetteer. We thus need enhancements as described in the following.

Our core method is based on the well-known string matching algorithm by Aho & Corasick
[2]. It operates on tries, i.e. trees whose nodes represent characters, which are traversed
synchronously to the processing of each character of the input text. Whenever the traversal
ends in an accepting state, there is a string match. Since, in our case, these strings are
the labels of NEs, we additionally demand that their ID or URI is returned, which makes
the system a Finite-State Transducer (FST). The algorithm basically has linear runtime
complexity as discussed later. Our scenario involves a highly dynamic, evolving knowledge
graph, in which instances (and especially their labels) can be added, deleted or updated
potentially several times per minute. We thus omitted further optimizations like suffix
compression in favor of a fast and easy to update FST structure.

3.2 Multi-Layer FST
For runtime performance reasons we decided against sophisticated NLP pipelines (test results
and more details in Section 4) and therefore follow the approach of explicitly listing all
inflected forms of an entity label as proposed in [17]. Without further ado, this would
easily lead to memory performance problems due to a considerable increase of the FST,
especially for multi-word terms: The more words such a multi-word term consists of, the more
potential combinations exist. Although inflection tolerance is discussed more thoroughly
in the paragraph after next, let us just consider a short example here: If we allow each
combination of inflected forms of the term Deutsches Forschungszentrum für Künstliche
Intelligenz (German Research Center for Artificial Intelligence, shortly referred to as DFKI),
although lots of them are grammatically not correct (as also discussed later), we would end
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Figure 3 Multi-layer finite transducer consisting of a character and a word layer, and fed with
the term Deutsches Forschungszentrum für Künstliche Intelligenz (∅: start nodes; wi: word IDs;
gray nodes: accepting states).

up with 576 variations (= 6 · 3 · 1 · 16 · 2; see upper part of Figure 3). Inspired by Abney, who
proposed the idea of finite-state cascades [1], we therefore chose to introduce an additional
layer to separate character from word processing, making our system a multi-layer FST as
illustrated in Figure 3: Once a word is identified in the first layer (i.e. the FST is in an
accepting state; gray node), its ID is passed to the second layer, which checks whether this
word may be accepted at this position, either as a single-word or part of a multi-word term.
If a term match is detected, its ID/URI is returned. As a consequence, each word and its
inflected forms, no matter how often or at which positions (in multi-word terms) they appear,
only exist once in the FST, thus preventing it from growing too fast in size.

To avoid backtracking in the word layer, the system processes several options in parallel
as shown in Figure 4: Once the character layer recognizes a word, e.g. w6, a new word node
processor in the second layer is spawned (see upper left part of the figure; purple color). If
layer 1 then reports the next word w7 (highlighted in green), processor 1 goes one step further
in the graph now having a traversed path containing both words. Additionally, another
processor is spawned, starting directly with w7. For this behavior, we use the metaphor
of a rake (if you merge all start nodes into a single one, you get the image): Spawning
another processor is like adding another tine to the rake. Traversals in the word layer are
only possible if the next detected word is a successor of the current one within any term
of the FST, which, for example, is not the case when processor 2 tries to handle w9, or
processor 4 tries to start directly with w9. The latter means that there is no term in the
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Figure 4 Processing in the word layer: several processors operate in parallel. Their traversed
paths are depicted (∅: start nodes; wi: word IDs; X: failure states).

FST starting with the word w9. These two processors are then in a failure state (indicated
by “X”). If there was a matching term in their traversed path, it is collected to be later
processed by the voter. If that is not the case, the failed processors may be removed from
the rake. The second case in which processors are removed, whether they are in a failure
state or not, is after an explicit signal from the first layer, e.g. when reaching the end of a
file or sentence. Spawning additional processors to evaluate different possibilities in parallel
especially originated from the latter. Consider the case of interpreting a dot: It could either
indicate the end of a sentence (“Today, I met my Prof.”), or an abbreviation (“Prof. Smith
was also there.”). Thus, there is a forking in the second layer to evaluate both possibilities
separately. In theory, this could lead to endless forking, which is prevented by processors
reaching failure states (i.e. given word sequences not matching any term) followed by their
removal. The basic steps of our algorithm are given as pseudocode (see Algorithm 1).

3.3 Real-Time Capability

Reading an input text of length n characterwise yields a basic runtime complexity of O(n).
The same is true for processing n characters in the first layer (at most n transitions having a
constant amount of operations; no backtracking needed). The processing of a character may
lead to the detection of a new word, which then triggers transitions in the word layer. The
number of these transitions depends on the number p of processors (“tines in the rake”). p

does not depend on n, but on the vocabulary, i.e. all words fed to the FST, especially wmax,
the maximum number of words in all multi-word terms. Although pmax is constant for a
given vocabulary, it may still be very large in worst case7. In practical scenarios however,
p � pmax can be assumed, since the vocabulary is only a tiny fraction of the power set
of its words. As a consequence, processors fail very fast due to given word combinations
not matching any term in the FST. Considering an additional constant amount of c > 0
operations per processor in each transition of the second layer yields an upper limit of
c · pmax · n. Since n is thus only multiplied with constants, the overall runtime complexity
remains O(n). Although the second layer’s overhead is noticeable in practice (as we will
see in Section 4), the overall runtime complexity is still linear and benefits our system’s
applicability in scenarios of real-time processing.

7 In worst case, a term consisting of wmax words is read, whereas each subterm also exists in the vocabulary.
Moreover, for each of these subterms there is an additional variant ending with a dot. This leads to
forking after every word and a total amount of pmax =

∑wmax
i=1 2i processors before the first one of them

fails and is removed.
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Algorithm 1: Basic steps of our MLFST-based NER algorithm in pseudocode.
input : text to process (text)
output : found entities (foundEntities)

foundEntities ← { };
collectedTerms ← { };
c ← first character of text;
w ← c;
while c not equals EOF (end of file or text snippet) do

if c is whitespace character then
if w matches in character layer then

add new word node processor (in word layer);
for all word node processors p do

process w with p (may either lead to word match or failure state in p);
end

end
collectedTerms ← collectedTerms ∪ collect matching terms from word layer;
remove word node processors in failure state (word layer);
w ← ∅;

else
w ← w + c;

end
c ← read next character of text (character layer);

end
collectedTerms ← collectedTerms ∪ collect matching terms from word layer;
foundEntities ← do voting on collectedTerms (word layer);
return foundEntities;

3.4 Inflection Tolerance
As mentioned before, to accept different lexical variations of terms, e.g. induced by inflection,
we utilize information coming from connected ontologies as well as other language information
sources. Concerning the latter, we use a lemmatization table extracted from LanguageTool8,
an open source proofreading software for several languages, which itself contains binary files
of Morfologik to look up part-of-speech data. Such entries look as follows:

künstlich künstlich ADJ:PRD:GRU
künstliche künstlich ADJ:AKK:PLU:FEM:GRU:SOL
künstlichem künstlich ADJ:DAT:SIN:MAS:GRU:SOL
...

They contain the inflected form, its lemma as well as declension information like word class,
case, number, gender, etc. We additionally used Wiktionary, a free wiki-based dictionary,
whose data9 we extracted using DKpro JWKTL10 [18]. Nevertheless, there were still lots of
words not covered by any of these sources, especially compound words like Forschungszentrum

8 https://github.com/languagetool-org (uses https://github.com/morfologik)
9 https://dumps.wikimedia.org/ (dump file of 2016-07-01)
10 https://dkpro.github.io/dkpro-jwktl/

https://github.com/languagetool-org
https://github.com/morfologik
https://dumps.wikimedia.org/
https://dkpro.github.io/dkpro-jwktl/
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(research center). To counter this, we additionally implemented heuristics like longest suffix
matching to decompound words and use the inflected forms of the last part (if available).
In the case of Forschungszentrum not being in our database, the heuristic would first look
for the word orschungszentrum (fails), then rschungszentrum (fails), schungszentrum (fails),
etc., until finally finding zentrum and using its inflected forms, i.e. Zentrum, Zentrums
and Zentren. The matching part of the original word is then replaced with these inflected
forms as shown in Figure 3. The heuristic additionally expects a parameter indicating the
minimum length of the remaining suffix (e.g. five characters) to receive more meaningful
results. Our tool is thus able to handle yet unknown words to a certain extent without
user interaction. In this regard, let us revisit the aforementioned 576 variations of the term
DFKI. As also mentioned, most of them are grammatically not correct. Since we also want
to handle yet unknown words, especially compound ones, while keeping the user interaction
as low as possible (not asking for feedback), we decided to accept all variations obtained
as the Cartesian product of all inflected forms of each of a term’s words. We assume that
grammatically wrong variants do rarely occur in given texts and if they do, users will agree
with the entity being recognized despite the misspelling. Nevertheless, the question remains
whether this decision considerably increases the false positive rate. We will address this
in Section 4. To avoid actually harmful false positives of incorrectly inflected variants, we
exploit additional ontological information like the type of an entity. For example, the name
of a person tolerates far less variants than the name of a topic. Basically, we only allow
a possessive/genitive case “s” at the end, like stated before. As a consequence, our NE
recognizer is actually not just a single MLFST, but a combination of several ones each having
a different configuration. Currently, there is one having higher and another one having
lower tolerance. The latter, for example, contains person names. There is also an option
to especially deal with acronyms: They do not only require exact matches, moreover all
characters need to be uppercase. To further avoid non-meaningful variants, we only use
adjective and noun information from the lemmatization table, which reduces ambiguities
when not having thorough NLP information. This is a compromise we can accept, since
labels more often contain nouns and adjectives than verbs.

When processing input text, the different MLFST operate in parallel. In the end, a voter
receives, assesses, filters and finally returns their results. Additionally, each MLFST has its
own internal voter which assesses all results simultaneously present in a processing rake. In
the current implementation, these voters follow a strategy of only keeping the longest match,
e.g. if the term personal information management is found in the text, the also matching
terms of personal information and information management would be discarded.

4 Evaluation

4.1 Setting
Besides finding out how fast our NE recognizer performs in practice, we were especially
interested whether our design decisions (see Section 3) would lead to a considerable increase
in false positives. We were thus looking for large amounts of German natural language texts
(prose) written by different people to test our approach. The German Wikipedia meets this
requirement but lacks ground truth data for the inflected forms present in these texts. We
therefore decided to only look at the wikilinks (see Figure 1, top section, blue words) and
take them as a silver standard: A human has annotated terms in the text (often in inflected
form) with the label of their respective Wikipedia article (typically in basic form). Figure 1
also shows that users themselves decide which terms they annotate: There are lots of entities
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(highlighted in green), which are not annotated although there is a Wikipedia article for
them. This is especially true for self-references, e.g. the term Aussagenlogik is not annotated
in “its own” article (i.e. the one about Aussagenlogik). Recognizers fed with such terms,
would nevertheless find them, which has to be considered when measuring precision.

Regardless of possible shortcuts, annotations are structured as follows: the term appearing
in the text and the name of the Wikipedia article it refers to (in the following also shortly called
the link) are written in double brackets separated by a pipe symbol, e.g. [[Häuser|Haus]]
(plural form of house appears in the text, whereas the article is labeled with the singular
form). Since inflection usually just changes one to four characters, the Levenshtein distance
(LD) between term and link can help us identifying samples we could use to evaluate our
approach. Note that independent term-link-combinations like [hometown|Eton] or adjective-
noun-combinations like [entscheidbar|Entscheidbarkeit](decidable/decidability) are un-
desirably also covered by such an LD-based heuristic. On the other hand, this evaluation
approach offers millions of inflection samples (we ran our tests on 3.9M articles having 50.4M
annotations).

We downloaded German Wikipedia dump files11 and used 3.9M article names as a
basis for feeding our recognizers. Disambiguation information in brackets like in “Berlin
(Russland)” (a village in Russia sharing its name with the German capital) were removed
(this raises disambiguation issues as discussed later). We also removed number-, symbol- and
single-character-only labels, since they were not relevant for our investigations. As ontological
background information we used types12 coming from DBpedia, which were available for
about 0.5M entities. For types like person, city, film, etc., we applied a low tolerance strategy
(i.e. possessive/genitive case “s” is the only accepted variation), whereas all other ones were
treated with higher tolerance.

4.2 Evaluated Named Entity Recognizers

We evaluated our MLFST approach against three baseline methods. The first and most
obvious one, StemFST, was also implemented by us and uses the MLFST’s character layer
combined with the Lucene13 German Stemmer, which is based on [5]. The other methods are
the previously mentioned ones by Dlugolinsky et al. [8], who made two of their gazetteers
available online14: one based on hash-map multi-way trees (HMT ), and the other based on
first child-next sibling binary trees (CST ). Both produce the same results in terms of found
NEs, but differ in memory consumption and runtime performance.

After filtering and editing as mentioned in the previous paragraph, we had slightly above
3.3M article names of the German Wikipedia that we fed to all four NE recognizers. HMT
and CST take these terms without further changes. StemFST splits each term into words
and reassembles it after stemming them. Then it adds the altered term to its FST. MLFST
does the same but instead of stemming the words, it looks up (or tries to infer) their inflected
forms. Completely filled, the inner high-tolerance MLFST contained 8.5M character nodes
and 3.5M word nodes, the low-tolerance part kept 1M and 0.4M nodes, respectively.

11 https://dumps.wikimedia.org/ (dump file of 2016-11-01)
12 https://downloads.dbpedia.org/3.9/de/instance_types_de.ttl.bz2
13 https://lucene.apache.org/
14 http://ikt.ui.sav.sk/gazetteer/

https://dumps.wikimedia.org/
https://downloads.dbpedia.org/3.9/de/instance_types_de.ttl.bz2
https://lucene.apache.org/
http://ikt.ui.sav.sk/gazetteer/
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4.3 Results
All computations were performed on a notebook having an Intel Core i7-4910MQ 2.9 GHz
CPU and 16 GB RAM, running on Windows 7 (64-bit).

HMT only needed 10.4 min for processing 3.9M articles (9.4B characters), while the
others needed 31.0 to 47.7 min (see Figure 5). Figure 6 shows that HMT trades memory
efficiency for speed, since it is the only recognizer passing the 1 GiB mark by needing 3.5
GiB. The others needed 0.72 to 0.96 GiB.

0 min 

15 min 

30 min 

45 min 

60 min 

Figure 5 Processing time.

0 GiB 

1 GiB 

2 GiB 

3 GiB 

4 GiB 

Figure 6 Memory usage.

4.3.1 Recall
Let us next consider recall: All recognizers reached values slightly below or above 70%.
Figure 8 additionally shows the results itemized by LD. If term and link match exactly (LD=0,
which is the case for 69% of all annotations), all recognition rates are above 92%15. In LD
ranges of LD=1 to LD=4 (11% of all annotations), HMT/CST’s recall is close to 0%, whereas
MLFST still has rates of 79%, 66%, 36% and 8%, respectively. StemFST even has slightly
higher rates. Reaching recall near 100% should not be expected, since not all variations are
caused by inflection and their number decreases with increasing LD. For higher LD values
(LD>4, 21% of all annotations), all recognition rates are close to 0%.

4.3.2 Precision
Concerning precision, we already mentioned the problem of how to measure it adequately.
We decided to calculate multiple values: PO measures precision only for terms overlapping
with annotation positions, because only there we have “ground truth” data. As shown
in Figure 7, some found terms (purple highlighting) are not exactly matching the actual
annotation (blue word, highlighted in green as the only true positive). If terms are overlapping
with the annotation, we count them as a false positive. PA counts all terms not exactly

Figure 7 Example sentence to illustrate the different precision values.

15 errors in the dump and imperfect parsing caused a slight decrease (100% expected)
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Figure 8 Recall itemized by Levenshtein
distance of term and link.

Figure 9 Precision P ∗
O itemized by the

terms’ number of words (#w).

matching as false positives, especially also the non-overlapping ones (red highlighting). Since
disambiguation was out of this paper’s scope and there are labels belonging to more than 1000
instances (e.g. Jewish cemetery), it makes a large difference whether or not we additionally
count more than 1000 false positives for each true positive in a text. We thus introduce
P ∗
O and P ∗

A, which count multiple entities having the same label only once. P ∗
O is 79% for

HMT/CST and 80% for MLFST, while StemFST only reaches 71%. Figure 9 additionally
depicts P ∗

O itemized by the number of words a term consists of. For multi-word terms, all
approaches achieve values between 87% and 92%. There is a remarkable difference for single
word terms: Here, stemming seems to be too rough causing terms to lose their specifity
and StemFST to lose 14% compared to MLFST, which performs best having 74%. The
other overall precision values PO, PA and P ∗

A are shown in Figure 10. They are far lower
than P ∗

O due to the aforementioned reasons. However, in a short experiment, in which
students annotated some randomly chosen articles manually, we observed values for P ∗

A
that were similar to P ∗

O above. We thus have a slight indication that P ∗
A (depicted above)

heavily underestimates our algorithm’s precision. Finally answering one of our initial research
questions: the false positive rate of MLFST is not considerably higher (in some cases even
lower) than with the other recognizers.

4.3.3 Runtime Performance
Regarding runtime performance, MLFST and StemFST process between 3281 and 5048
characters per millisecond and are thus comparable to CST as illustrated in Figure 11.
HMT is about three times faster at the expense of memory consumption (see Figure 6). All
tested recognizers are by orders of magnitude faster than basic NLP pipelines. We tested
OpenNLP16 and CoreNLP using a basic pipeline consisting only of a tokenizer, sentence
splitter and part-of-speech tagger. Although no NER-specific analyzers like noun chunkers or
type classifiers were added yet, their processing time was already out of our targeted range.
Running the basic pipeline on all 3.9M articles would presumably have taken about 18 days
in the case of CoreNLP, for example.

16 https://opennlp.apache.org/

https://opennlp.apache.org/
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Figure 10 Precision: P ∗
O, PO, P ∗

A, PA. Figure 11 Processed characters per ms.

5 Conclusion & Outlook

In this paper, we presented an ontology-based NER approach that is comparably fast as
available high speed methods while outperforming them in the recognition of terms that
lexically vary slightly, e.g. induced by inflection. We were thus able to narrow the quality
gap to more sophisticated but also much slower NLP pipelines a bit more without losing
real-time capable runtime performance.

In the future, we plan to additionally incorporate StemFST into MLFST, since its recall
was slightly better for multi-word terms. Additionally, we could add more layers scanning
for patterns like phrases that indicate todos or appointments, Hearst patterns [9], etc. There
is also much potential for improving the language capabilities of our approach, e.g. improved
rules and heuristics (e.g. to infer inflections) or multi-language support. Last but not least,
we plan to incorporate disambiguation mechanisms by exploiting the explicated user context
available in our system.
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