
Predicting Math Success in an Online Tutoring
System Using Language Data and Click-Stream
Variables: A Longitudinal Analysis
Scott Crossley
Georgia State University, Applied Linguistics/ESL, Atlanta, GA, USA
scrossley@gsu.edu

Shamya Karumbaiah
The University of Pennsylvania, Philadelphia, PA, USA
shamya@upenn.edu

Jaclyn Ocumpaugh
The University of Pennsylvania, Philadelphia, PA, USA
ojaclyn@upenn.edu

Matthew J. Labrum
Imagine Learning, Provo, UT, USA
matthew.labrum@imaginelearning.com

Ryan S. Baker
The University of Pennsylvania, Philadelphia, PA, USA
rybaker@upenn.edu

Abstract
Previous studies have demonstrated strong links between students’ linguistic knowledge, their
affective language patterns and their success in math. Other studies have shown that demographic
and click-stream variables in online learning environments are important predictors of math success.
This study builds on this research in two ways. First, it combines linguistics and click-stream
variables along with demographic information to increase prediction rates for math success. Second,
it examines how random variance, as found in repeated participant data, can explain math success
beyond linguistic, demographic, and click-stream variables. The findings indicate that linguistic,
demographic, and click-stream factors explained about 14% of the variance in math scores. These
variables mixed with random factors explained about 44% of the variance.

2012 ACM Subject Classification Applied computing → Computer-assisted instruction; Applied
computing → Mathematics and statistics; Computing methodologies → Natural language processing

Keywords and phrases Natural language processing, math education, online tutoring systems, text
analytics, click-stream variables

Digital Object Identifier 10.4230/OASIcs.LDK.2019.25

Funding This research was supported in part by NSF 1623730. Opinions, conclusions, or recommen-
dations do not necessarily reflect the views of the NSF.

1 Introduction

Students need a number of cognitive skills including spatial attention and quantitative ability
to be successful within a math classroom [28]. In addition, recent research has shown strong
links between students’ language production and math success. This research demonstrates
that students that are more proficient in math are generally also more proficient language
users. There are several potential reasons for links between math and language domains, both
of which rely on the ability to interpret and manipulate abstract symbolic systems [40]. One
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25:2 Predicting Math Success in an Online Tutoring System

key reason is that language skills help students learn knowledge and math operations from
text books and tutoring systems, as well as from other people. More generally, students with
greater language proficiency are better able to engage individually and collaboratively with
math concepts and solve math problems because math is not purely based on numbers and
abstract symbols but also on real world problems that involve the words surrounding math
numbers and symbols [2]. Thus, language skills help students to participate constructively
and collaboratively in math discourse and engage with and solve math problems both inside
and outside of the classroom [30, 41].

Some previous studies that have examined links between math success and language
have relied on correlational analyses between standardized tests of language and math.
As an example, previous studies have analyzed association between language proficiency
tests that assess syntax, lexical, and phonological skills and math scores on standardized
tests that assess arithmetic and algebra and found strong links [29, 41]. Another area of
inquiry between language proficiency and math skills has been to compare success rates on
standardized math tests between native and non-native speakers of English. These studies
often find that non-native speakers of English perform lower on math assessments [3, 20, 31]
although see [1] for counter argument. A final approach to examining math and language
links is to assess links between the complexity of language produced by students and their
success on math assessments. Such studies generally find that students that produce more
complex language features score higher in math, possibly because students’ ability to switch
from conversational language to the conventions required in mathematics requires high level
metalinguistic skills [19].

The current study builds on previous studies that have focused on links between the
language produced by students and their math success, by combining fine-grained click-stream
variables and simple demographic data (i.e., grade and gender) with language features in
student production to predict math success. We also assess math performance over time to
better control for variance associated with participants. To do so, we use natural language
processing (NLP) tools to assess language production in e-mail messages sent by elementary
students within an online tutoring system over the course of a year. We then examine the
students’ behaviors within the tutoring system in terms of actions completed, entries into
various elements of the system, and time spent within these elements. The goals of the study
are to combine these data to increase prediction rates within the system. Additionally, we
examine performance over time to assess the degree to which random variance found in
repeated participant data can explain math success beyond linguistics, demographic, and
click-stream data.

1.1 Relationships between Language and Math Skills
The body of research demonstrating connections between proficiency in language and math
skills continues to grow, becoming more robust as researchers explore the potential underlying
causes. Early studies focused on links between scores on math and language tests. For
instance, MacGregor and Price [29] found that students who scored high on an algebra test
also scored well on language tests. Using a more difficult algebra test produced a stronger
relationship between algebraic notation and language ability. Similarly, Hernandez [22]
found significant positive correlations between reading and math scores in standardized
tests. Vukovic and Lesaux [41] also reported links between language and math skills, but
additionally found that language skills differed in their degree of relation with math knowledge.
For example, general verbal ability was indirectly related with symbolic number skills while
phonological skills were directly related to arithmetic knowledge. Lastly, LeFevre et al. [28]
reported that language ability was positively related to number naming.
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More recent studies have begun to examine links between the language features found in
students’ language production and their success in math learning using NLP tools. These
studies have focused on elementary and college level students. In an early study of elementary
students, Crossley et al. [12] examined language features found in transcribed student speech
during collaborative math projects and found that language features related to cohesion,
affect, and lexical proficiency explained a significant amount of variance in students’ math
scores. More mathematically proficient students produced more cohesive language that was
comprised of more lexically sophisticated words. In another study, Crossley and Kostyuk [11]
examined links between the language features of elementary students’ language production
while e-mailing a virtual pedagogical agent in an online math tutoring system and math
success within the system. They found that students who expressed more certainty in their
writing and followed standardized language patterns scored higher in math assessments. In
a more recent study, Crossley et al. [13] used linguistic features found in student e-mails
within an online math tutoring system to predict math success. They found that lexical
features and syntactic complexity indices were significant predictors of math success such
that more successful students used words that were found across a variety of registers and
used more sophisticated words. In addition, higher scoring math students produced fewer
complex sentences.

Studies assessing links between language features and math success for college level
students have reported similar findings. For instance, Crossley et al. [10] examined college
students’ forum posts in an online tutoring system that was part of a blended math class
(i.e., a class with both online and traditional face-to-face instruction). They investigated
relationships between language features in these posts and final scores in the class, finding
that success in the class was predicted by language features related to affect, syntactic
complexity, and text cohesion. Specifically, more complex syntactic structures and fewer
explicit cohesion devices were associated with higher course performance. The linguistic
model also indicated that less self-centered students and students using words related to
tool use were more successful. In a similar study using the same data set, Crossley et al.
[16] examined how linguistic features derived from cohesion network analyses could predict
math success. The models from this study indicated that students who encouraged greater
language collaboration within forum posts (i.e., those students that precipitated discussion
among other students) received higher final scores in the class.

In general, these studies demonstrate that linguistic features from students’ language can
predict math performance across grade levels (from elementary to college level students) in
different types of learning environments (collaborative online tutors, traditional online tutoring
systems, and blended math courses). Overall, younger students that are more proficient
at math produce more cohesive language that includes more sophisticated vocabulary. In
addition, younger students that are more proficient at math are better at following expected
language patterns and produce less complex syntactic structures. In contrast, older students
who receive higher grades in math class produce more syntactically complex structures that
are less cohesive. These students also encourage greater collaboration through their language
use. The differences between older and younger students’ language production is likely related
to different stages of language acquisition.

1.2 Click-stream Data and Student Success in Math
There is growing research that demonstrates the strength of using student interaction data
[34] in online learning environments (i.e., click-stream data) to predict short- to long-term
learning, engagement and interest in mathematics. Data on fine-grained aspects of student

LDK 2019



25:4 Predicting Math Success in an Online Tutoring System

behavior provides opportunities to explore how patterns of interaction relate to outcomes.
For instance, Beal et al. [8] reported that students’ use of interactive multimedia hints in
an online tutor for SAT-Math problems were predictive of learning gains in the system. To
extract richer information from the raw student log data, researchers have also extensively
used student interaction data for a discovery with models approach [23]. For example, student
interactions in a math tutor were used to build a predictive model of students’ careless errors
[38], and those models were connected with predictive models of affective states to study the
relationship between affective states and carelessness [39].

Log data from math tutors have also been used to predict student scores on end-of-year
state accountability exams, resulting in better prediction than paper-pencil benchmark tests
and standardized tests [4, 18, 21]. These models become better still when supplemented with
data on student strategies [36]. Xie et al. [42] showed how learning strategies defined by
interaction data (e.g., learning from errors, switching to a new topic, and reviewing previously
mastered topics) predicted end of semester assessments.

Other research has found that student behavior in math tutors in middle school year
are predictive of long term success. For example, San Pedro et al. [37] found that student
carelessness, and intentional misuse to complete problems without learning in a middle
school math tutor are associated with lower probability of college attendance and STEM
major. Similarly, Ocumpaugh et al. [34] conducted a longitudinal study of the relationship
between middle school math performance and interaction-based affect detectors with student’s
vocational self-efficacy and interest. They found that both self-efficacy and interest in high
school were negatively correlated with confusion during middle school, but that both were
positively correlated with carelessness.

Recent studies have also examined click-stream data and math success, usually in con-
junction with NLP tools. For instance, Crossley and Kostyuk [11] reported that elementary
students who met more objectives within an online math tutoring system and those that
sent fewer messages to a pedagogical agent, performed better on math problems. Crossley et
al. [10, 16] reported that college level students that received higher final scores in a blended
math class spent more time in a forum that allowed postings between students and teachers
and visited the online learning platform more often.

1.3 Current Study
As discussed above, a number of studies have demonstrated strong links between students’
linguistic knowledge, their affective language patterns and their success in math. In addition,
studies have shown that click-stream variables are important predictors of success in online
learning systems. This study builds on this previous research in two ways. First, it
combines linguistics and click-stream variables along with demographic information to
increase prediction rates for math success. Second, it examines how random variance, as
found in repeated participant data, can explain math success beyond linguistic, demographic,
and click-stream variables.

To derive our language features of interest, we analyzed the language produced by students
sending email messages to a virtual pedagogical agent within an online math tutoring system.
We analyzed the language using several Natural Language Processing (NLP) tools in order to
extract language information related to text cohesion, lexical sophistication, and sentiment.
Our click-stream data was extracted from the online tutoring data and focused on actions
within the system, entries into various modes of the system, and temporal data related to
time spent in those modes. Demographic data included grade and gender. We collected data
from students in two consecutive semesters (fall and spring) allowing us to track performance
over time. Thus, in this study, we address the following research question:



S. Crossley, S. Karumbaiah, J. Ocumpaugh, M. J. Labrum, and R. S. Baker 25:5

Are linguistic and click-stream factors along with participant variance over time
significant predictors of math performance in an online tutoring environment over two
semesters of study?

2 Method

2.1 Reasoning Mind
We collected data from Reasoning Mind’s Foundations product, which is a blended learning
mathematics program used in grades 2–5. Foundations students learn math in an engaging,
animated world at their own pace, while teachers use the system’s real-time data to provide
one-on-one and small-group interventions [32]. The algorithms and pedagogical logic un-
derlying Foundations (previously called Genie 2) are described in detail by Khatchatryan
et al. [24].

The main study mode in Foundations, called Guided Study, consists of a sequenced
curriculum divided into objectives, each of which introduces a new topic (e.g., the distributive
property) using interactive explanations, presents problems of increasing difficulty on the
topic, and reviews previously studied topics. Within Guided Study, every student completes
problems addressing the basic knowledge and skills required in the objective. These basic
problems (known as A-level problems) typically require only a single step to solve and are the
lowest of three possible difficulty levels. Students who do well on A-level problems may also
proceed to problems of higher difficulty that require two or three steps to solve (e.g., B-level
and C-level problems) within the objective. They may also access the higher-level problems
in an independent study mode called Wall of Mastery. Other modes in Foundations allow
students to play math games against classmates, tackle challenging problems and puzzles,
and use points earned by solving math problems to buy virtual prizes.

Foundations uses animated characters to provide a backstory to the mathematics being
learned and to deliver emotional support. The main character is the Genie, a pedagogical
agent who encourages students throughout their work in the system. Students are also
able to send emails to the Genie. These messages are answered in character by part-time
Reasoning Mind employees who reference an extensive biography of the Genie and project a
consistent, warm, and encouraging persona, model a positive attitude toward learning, and
emphasize the importance of practice and challenging work for success. The Genie email
system is a popular component of the system, having received 129,879 messages from 38,940
different students in the 2016–17 academic year.

2.2 Participants
The students sampled in this study were selected from the 34,602 students who used
Foundations in the 2016–17 academic year. The students were from 462 different schools
located in 99 different districts, most of which were located in Texas. We included those
students that had attempted A-level problems in both the fall and spring semester. As an
additional requirement, these students needed to have written at least 50 words within the
Genie email system (the minimum number of words needed to develop a linguistic profile for
the students). From the available student data, 1,036 students met these criteria.

2.3 Genie Email Corpus
Our language sample for this analysis consisted of messages sent from the students to the
Genie. Because many messages contained only a few words, we aggregated all emails sent by
each student to create a representation of an individual student’s linguistic activity.
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We then implemented data cleaning procedures to reduce the amount of noise in the
data. First, all the data was cleaned of non-ASCII characters that could interfere with
the NLP tools. Second, all texts were automatically spell-checked and corrected using an
open-source Python spelling correction library, in addition to several Python text-cleaning
scripts that we developed. Furthermore, several measures were taken to clean the texts,
including removing random, non-math symbols such as “#”, “@”, and “&”, as well as
omitting repeating words, excessively long words, words with repeating characters, such as
“wooorrrddd”, and mixed-type words, such as “$word$” (with the exceptions of currencies,
percentages, timestamps, and ordinals). Next, all non-dictionary, invalid words were removed
from the data. This was accomplished by first checking each word against synonym sets
(synsets) in WordNet, and if a match could not be found, then checking if it consisted of all
consonants (always invalid), or if any pair of characters (digraph) in the word were invalid in
the English language. Words that met either of these two conditions were removed. Lastly,
all texts were cleaned of repeating, non-overlapping groups of words, such as “this word this
word this word.” Only word groups of lengths two, three, and four were removed by this
approach.

2.4 Natural Language Processing Tools

We used several NLP tools to assess the linguistic features in the aggregated posts of sufficient
length. These included the Tool for the Automatic Analysis of Lexical Sophistication
(TAALES) [26], the Tool for the Automatic Analysis of Cohesion (TAACO) [14], the Tool
for the Automatic Analysis of Syntactic Sophistication and Complexity (TAASSC) [27], and
the SEntiment ANalysis and Cognition Engine (SEANCE) [15]. In addition, we developed
specific indices related to topics commonly discussed with the Genie email system using
Latent Dirichlet Allocation (LDA). Thus, the selected NLP features consisted of language
variables related to lexical sophistication, text cohesion, syntactic complexity sentiment
analysis, and topic similarity respectively. The features are discussed in greater detail below.

TAALES. TAALES [26] is a computational tool that is freely available and easy to use,
works on most operating systems, affords batch processing of text files, and incorporates
over 100s of classic and newly developed indices of lexical sophistication. These indices
measure word frequency, lexical range, n-gram frequency and proportion, academic words
and phrases, word information, lexical and phrasal sophistication, and age of exposure.
For many indices, TAALES calculates scores for all words (AW), content words (CW),
and function words (FW). For instance, for word frequency, TAALES reports frequency
counts retrieved the SUBTLexus databases [9].
TAALES also reports on a number of word information and psycholinguistic scores derived
from the University of South Florida (USF) norms [33], and the English Lexicon Project
(ELP) [5] among others. The USF norms are used to calculate the number of associations
per word while the ELP is used to calculate many lexical features including the number
of orthographic neighbors a word has (i.e., how many words are spelled similarly). Lastly,
TAALES reports on type token ratios (TTR) that reference how many unique words are
found within a sample.

TAACO. TAACO [14] incorporates a number of classic and recently developed indices
related to text cohesion. TAACO has features for content and function words and
provides linguistic counts for both sentence and paragraph markers of cohesion. The tool
incorporates WordNet synonym sets, latent semantic analysis, and word2vec features.
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Specifically, TAACO calculates sentence and paragraph overlap indices and a variety of
connective indices.

TAASSC. TAASSC [27] measures large and fined grained clausal and phrasal indices of
syntactic complexity and usage-based frequency/contingency indices of syntactic sophis-
tication. TAASSC includes a number of pre-developed fine-grained indices or clausal
complexity and phrasal complexity. In addition, TAASCC reports on features related to
verb argument constructions (VACs) including the frequency of VACs and the attested
constructions in reference corpora taken from the Corpus of Contemporary American
English (COCA) [17] to include sub-corpora such as academic writing, magazines, and
fiction.

SEANCE. SEANCE [15] is a sentiment analysis tools that relies on a number of pre-existing
sentiment, social positioning, and cognition dictionaries. SEANCE contains a number
of pre-developed word vectors to measure sentiment, cognition, and social order. These
vectors are taken from freely available source databases. For many of these vectors,
SEANCE also provides a negation feature (i.e., a contextual valence shifter) that ignores
positive terms that are negated (e.g., not happy). SEANCE also includes a part of speech
(POS) tagger.

2.5 Click-Stream Variables
Reasoning Mind extensively logs the interaction of the students in the system at the action-
level. Actions include logging in, entering a mode, seeing a problem, submitting an answer,
and reviewing theory. The type of action a student can take depends on the mode they are
in. For instance, in City Landscape, students can switch modes such as Guided Study and
Wall of Mastery, where students practice math problems. The Game Room also provides
an opportunity for students to learn math through games. In contrast, no math learning
happens in the City Landscape mode, which is simply the landing page in Reasoning Mind
from where the student navigates to other modes. Students can also spend time in the
Shopping Mall purchasing items to decorate their My Place, which might have an impact on
their overall engagement with the system.

To explore the student interaction patterns in the tutor, we engineered features that
captured the distribution of a student’s effort in the various phases of the tutor. Along
with quantifying the kind of actions a student performs, these features also measure their
persistence in an activity. For instance, a higher number of visits to City Landscape mode
would denote that the student is less persistent in focusing on a single activity.

For each student, we extracted features based on the actions in the 27 modes (e.g., City
Landscape), the actions within the 11 module types of Guided Study mode (e.g., Introduction,
Theory, Problems, Homework) and 6 content types (e.g., Problem A, Problem B). For each
of these, we mined the log data to extract three kinds of features – 1) number of entries to
the mode (e.g., number of entries to City Landscape mode); 2) number of actions performed
in the mode/module/content type (e.g., number of actions performed in Problems module
type); 3) total time-spent in the mode/content type (e.g., total time spent solving Problem A
content type). Thus, the feature Time in City Landscape refers to the total sum of time spent
by a student across all logins in the City Landscape mode. Similarly, the feature Number of
entries to Guided Study is calculated by counting the number of times a student enters the
Guided Study mode and summing the counts across all their logins in a semester. The feature
value varies drastically across the students in this dataset. For instance, Number of entries
to Guided Study has a mean of 125.96 and a standard deviation of 116. In contrast, Time in
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Guided Study has a mean of 18.86 hours and a standard deviation of 15.25 hours per semester.
In addition, we calculated normalized features measuring number of hints, number of virtual
prizes purchased, and problem accuracies. In total, we mined 110 click-stream features.

2.6 Statistical Analysis
Prior to analysis, all numeric scores were standardized. We used linear mixed effects (LME)
models in R [35] using the lme4 package [7] to develop models of math scores over time
(i.e., across the fall and spring semesters). We opted to use LME models because they offer
statistical advantages over traditional repeated measures analyses of variance (RM ANOVAs).
Specifically, LMEs account for both pooled and individual variance among participants as
opposed to only pooled group variance by including subjects as random effects (i.e., assigning
a unique intercept for each participant), resulting in more accurate estimates based on
individual participant variation. The purpose of the model was to test whether any of the
independent variables (e.g., grade level, linguistics and affect features, and click-stream
variables) significantly predicted math success. Accordingly, in the model, we entered math
success as the dependent variable, with grade level, gender, linguistics and affect features,
and click-stream variables as fixed effects (i.e., predictor variables). No interactions were
conducted between fixed factors. The baseline grade level was second grade. Grade levels
were balanced at around 250–300 students in grades 3–5. There were fewer students in first
grade (∼150) and sixth grade (∼15).

To help prevent over-fitting, we removed several variables prior to analysis. First, we
conducted correlations between the dependent variables and the independent variables. Any
independent variable that did not demonstrate at least a small relationship with the dependent
variable (r ≥ 0.100) was removed from the analysis. Next, we checked for multicollinearity
between the remaining independent variables using variance inflation factors (VIF) with
a threshold set to 5 (i.e., high multicollinearity). All variables showing VIF above 5 were
removed from the analysis and the remaining variables were used in the LME analysis. This
variable pruning left us with five click-stream variables ad seven linguistic variables. For each
dependent variable, an initial LME model was run with all independent variables. After an
initial model was constructed, we used a stepwise variable selection technique (backwards)
to eliminate non-significant effects. The results of the stepwise model were used as the final
models for the analyses.

We used several other packages to aid in our construction and interpretation of our
models. We used lmerTest [25] to derive p-values from the models and to perform automatic
backward elimination of variables in the LME models, and the MuMIn package [6] to obtain
two measures of variance explained: a marginal R2 measuring the variance explained by the
fixed effects only, and a conditional R2 measuring the variance explained by the fixed and
random effects combined.

3 Results

An LME model predicting math success as the dependent variable reported significant main
effects for a number of click-stream and linguistic features. In general, the click-stream effects
indicate that students that were more successful at level A math problems spent less time
in the main page of the system (i.e., the City Landscape), entered Guided Study more, and
purchased more items. The linguistic effects demonstrated that students that were more
successful at level A math problems produced more sophisticated language (i.e., words with
fewer associations, fewer orthographic neighbors and lower range scores), used a greater



S. Crossley, S. Karumbaiah, J. Ocumpaugh, M. J. Labrum, and R. S. Baker 25:9

Table 1 LME model predicting math success.

Fixed effect Estimate Percent of estimate Std. Error t p

(intercept) 0.086 0.064 1.335 0.182
6th grade -0.512 0.265 0.213 -2.405 0.016
3rd grade -0.291 0.151 0.080 -3.654 0.000
5th grade -0.274 0.142 0.083 -3.299 0.001
4th grade 0.219 0.114 0.080 2.758 0.006
Time in City Landscape -0.137 0.071 0.023 -5.911 0.000
Number of entries into Guided
Study

0.094 0.049 0.025 3.765 0.000

Word associations (USF) CW -0.068 0.035 0.022 -3.097 0.002
Number of items purchased 0.061 0.031 0.023 2.629 0.009
Word range (SUBTLEXus) AW -0.060 0.031 0.023 -2.577 0.010
Attested constructions (Maga-
zine)

0.060 0.031 0.024 2.490 0.013

Moving Avg. Type Token Ratio
(MATTR)

0.057 0.029 0.022 2.541 0.011

Semantic overlap between sen-
tences (word2vec)

0.052 0.027 0.025 2.080 0.038

Orthographic neighbors (CW) -0.047 0.024 0.023 -2.019 0.044

diversity of words, used more common syntactic constructions, and produced language that
was more cohesive. Time was not a significant predictor. The model reported a marginal R2

of 0.139 and a conditional R2 of 0.438. Table 1 displays the estimates, percent of estimate,
standard errors, t-values, and p-values for the fixed effects for this model.

4 Discussion

This study builds on previous work that examines links between math success and language
production by examining how language features and click-stream variables combine to explain
student success in an online tutoring system. Unlike previous studies, the current study
included student growth over time as a variable. In addition, the click-stream variables
examined in this study were finer-grained than in previous studies, allowing us to better
understand how student behaviors within the system help explain math success in conjunction
with language features. Overall, our fixed factors explained about 14% of the variance in
math scores (marginal variance) while a mix of both fixed and random factors explained
about 44% of the variance (conditional variance).

In general, the results indicate that grade level was the strongest predictor of math
success such that there was a decline in the percentage of level A problems correctly answered
among students in higher grades, although fourth-grade students showed a notable departure
from that trend. Post-hoc analyses (not reported here) indicated that trends were not linear
with fourth graders performing better than third, fifth and sixth graders. We hypothesize
that these results may be indicative of a developmental milestone or a change in curriculum
expectations (e.g., with competence generally increasing, but fifth and sixth graders receiving
more challenging material), but more research is needed.

Beyond grade level, the next strongest predictors were related to click-stream variables.
Specifically, the more time that students spent in the City Landscape, the lower they performed
on A-level math problems. This is not surprising, as no math learning happens in City
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Landscape. In fact, spending more time in City Landscape may suggest the student has lower
persistence because they are constantly trying to switch modes in the tutor. In comparison,
the more entries they made to Guided Study, which is the main instructional and study mode
in Foundations, the better they performed. We also observe that high student performance
was correlated with more purchases in the shopping mall; this is because the points used
to make purchases are earned through better mathematics performance. It may be an
interesting area of future work to see if differences in the items students purchase relate to
differences in math success.

In terms of language production, more successful students produced words that were more
sophisticated. For example, more successful students used words that had fewer associations,
were found in fewer texts (i.e., a lower range score), and had fewer orthographic neighbors
(i.e., words that are spelled similarly). All of these indices indicate that more successful
students had more depth of lexical knowledge. Not only were the words they produced more
complex, these students also used a greater variety of words (i.e., lexical diversity) indicating
that they had larger productive vocabularies (i.e., breadth of lexical knowledge). Beyond
lexical knowledge, more successful students also produced a greater number of verb argument
constructions indicating a greater range of syntactic structures and produced language that
was more cohesive in terms of semantic similarity between sentences. These data indicate
that students who are more successful at solving math problems are more proficient language
users, in line with previous findings [10, 11, 12, 13, 16].

It is interesting to note that time was not a significant predictor of math success in our
LME model. Thus, there is no evidence of improved performance between the fall and spring
semester in terms of A-level problems. This is likely related to the curriculum design, which
scaffolds student learning and arranges content to become increasingly difficult as a student
masters easier content. In addition, gender was not a significant predictor of math success;
girls and boys performed similarly on level A problems.

5 Conclusion

The work presented here provides additional evidence that links language production to math
success. In general, there seems to be strong evidence that students who are more successful
in math produce language that is more sophisticated in terms of words and more complex in
terms of syntax. In addition, more successful math students also produce language that is
more cohesive and follows language conventions found in adult language corpora.

The study also finds that student choice of activities is associated with their degree
of success. Specifically, this study looked at the virtual locations within RM City, which
represent different activities within the Foundations curriculum. We found that students
who were struggling were more likely to be switching from one activity to the next (through
the City Landscape mode). while high performing students were more likely to engage in
other types of activities, like making purchases for their My Space) and spending more time
in modes related to math problems.

While we were able to capture many features of student behavior within the system and
student language production, there is of course room for further feature engineering. For
example, it may be possible to better capture the variation in student behavior in the system
through creating additional temporal features. Linguistically, features related to intention
and meaning should be deployed as well to increase our knowledge of how language and
math skills interact.
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Lastly, of interest is the amount of variance explained by the random factors (i.e., the
conditional variance). While the fixed factors explained about 14% of the variance in the math
score, the majority of the variance (∼30%) was explained by the random factor of participant.
This finding may indicate that much of math success is not in behaviors within the system,
grade level, or language production but likely rather resides in the individual differences of
students. These results suggest that it may be useful in future research to look into which
individual differences (e.g., ELL status, geographic location, ethnicity, socio-economic status)
may best explain math success.
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