
Ligt: An LLOD-Native Vocabulary for
Representing Interlinear Glossed Text as RDF
Christian Chiarcos
Applied Computational Linguistics Lab, Goethe University Frankfurt, Germany
http://www.acoli.informatik.uni-frankfurt.de/
chiarcos@informatik.uni-frankfurt.de

Maxim Ionov
Applied Computational Linguistics Lab, Goethe University Frankfurt, Germany
ionov@informatik.uni-frankfurt.de

Abstract
The paper introduces Ligt, a native RDF vocabulary for representing linguistic examples as text
with interlinear glosses (IGT) in a linked data formalism. Interlinear glossing is a notation used in
various fields of linguistics to provide readers with a way to understand linguistic phenomena and to
provide corpus data when documenting endangered languages. This data is usually provided with
morpheme-by-morpheme correspondence which is not supported by any established vocabularies for
representing linguistic corpora or automated annotations.

Interlinear Glossed Text can be stored and exchanged in several formats specifically designed for
the purpose, but these differ in their designs and concepts, and they are tied to particular tools,
so the reusability of the annotated data is limited. To improve interoperability and reusability, we
propose to convert such glosses to a tool-independent representation well-suited for the Web of Data,
i.e., a representation in RDF. Beyond establishing structural (format) interoperability by means of a
common data representation, our approach also allows using shared vocabularies and terminology
repositories available from the (Linguistic) Linked Open Data cloud.

We describe the core vocabulary and the converters that use this vocabulary to convert IGT in a
format of various widely-used tools into RDF. Ultimately, a Linked Data representation will facilitate
the accessibility of language data from less-resourced language varieties within the (Linguistic)
Linked Open Data cloud, as well as enable novel ways to access and integrate this information with
(L)LOD dictionary data and other types of lexical-semantic resources. In a longer perspective, data
currently only available through these formats will become more visible and reusable and contribute
to the development of a truly multilingual (semantic) web.

2012 ACM Subject Classification Information systems → Graph-based database models; Computing
methodologies → Language resources; Computing methodologies → Knowledge representation and
reasoning

Keywords and phrases Linguistic Linked Open Data (LLOD), less-resourced languages in the
(multilingual) Semantic Web, interlinear glossed text (IGT), data modeling

Digital Object Identifier 10.4230/OASIcs.LDK.2019.3

Funding The research described in this paper was conducted in the project Linked Open Dictionaries
(LiODi, 2015-2020), funded by the German Ministry for Education and Research (BMBF) as an
Early Career Research Group on eHumanities.

1 Background

Interlinear glossed text (IGT) is a notation frequently used in linguistic research and docu-
mentation. IGTs combine language utterances with their morphological analysis in order to
provide readers with a way to understand linguistic phenomena in languages they do not
necessarily know. An important property of IGT examples is that there is an alignment

© Christian Chiarcos and Maxim Ionov;
licensed under Creative Commons License CC-BY

2nd Conference on Language, Data and Knowledge (LDK 2019).
Editors: Maria Eskevich, Gerard de Melo, Christian Fäth, John P. McCrae, Paul Buitelaar, Christian Chiarcos,
Bettina Klimek, and Milan Dojchinovski; Article No. 3; pp. 3:1–3:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4428-029X
http://www.acoli.informatik.uni-frankfurt.de/
mailto:chiarcos@informatik.uni-frankfurt.de
https://orcid.org/0000-0002-5631-1727
mailto:ionov@informatik.uni-frankfurt.de
https://doi.org/10.4230/OASIcs.LDK.2019.3
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


3:2 Ligt: An LLOD-Native Vocabulary for Representing Interlinear Glossed Text as RDF

between morphemes and corresponding grammatical values as in (1)1:

(1) Min
I

ter-a
live-ST.IPFV

ter-gan
live-PFCT

ezba
house

tau-da
hill-LOC

bas-kan
get_up-PFCT

“I live in the house that is located on the hill” (Tatar, Mishar dialect)

Accessing and analyzing IGT data is vital for a vast amount of linguistic research, especially
when dealing with less-resourced languages. However, unlike other types of linguistic resources
like corpora or dictionaries, this type of data lacks interoperability and reusability. In practice,
linguists rarely use IGTs from outside their research groups. There are two main reasons for
this: a conceptual one and a technical one.

From a conceptual point of view, IGT can vary greatly from a researcher to researcher. The
Leipzig Glossing Rules [3] define guidelines and best practices for writing glossed examples and
texts, but these represent only the basis on which researchers can later build on, introducing
more and refined information in their analysis (e.g., a layer with a phonetic transcription or
more specific abbreviations for linguistic categories). Another source of variability lies in the
list of grammatical categories. In the language documentation community, there is no single
inventory for grammatical categories all over the world and their corresponding abbreviations
(tags), also, there can be several ways for representing the same category (cf. AOR vs. aor vs.
aorist). All these factors make it more difficult to redistribute or reuse IGT data.

From a technical point of view, there is another problem: There is a myriad of ways to
encode IGT, each with its advantages and limitations, ranging from printed PDFs to various
XML (and pre-XML) formats defined by specific tools such as Toolbox and FLEx. Even
in the simple cases it can be difficult to use independently produced IGTs, and it is even
more problematic to compare or combine several data sources. One possible way to overcome
this problem would be to represent data in a tool- and theory-agnostic format. Several
initiatives for this purpose do exist, e.g., TypeCraft or Xigt, based on XML technologies.
Another possibility would be to represent this type of data in RDF. Moreover, in order to
make it truly interoperable, there should exist a standard vocabulary for this type of data.
This paper introduces such a vocabulary, Ligt, an LLOD-native vocabulary for representing
Interlinear Glossed Text as RDF data.

The paper is organized as follows. We describe existing approaches to representing IGT
data in Section 2. We describe the Ligt core vocabulary in Section 3. Converters between
Ligt and several popular formats are described in Section 4. Finally, Section 5 concludes the
paper, outlining its main outcomes.

2 Data models for IGT data

2.1 Existing formats
This section describes several widely used formats for storing IGT data, including existing
Linked Data representations.

There is a great variation in the ways to store IGT data. Probably, the biggest factor
influencing the format is whether the data is stored for research or published alongside the
research. In the latter case, it is usually a part of a book or a paper either scattered thorough
the text or given as an appendix. This representation is not truly machine-readable, so this
format cannot be considered reusable. However, there are initiatives in order to overcome this

1 An example from the second author’s fieldwork materials.



C. Chiarcos and M. Ionov 3:3

Figure 1 Mishar IGT sample, FLEx print view.

problem by making this data accessible, namely, ODIN, the Online Database of Interlinear
Text [7],2 which was created by parsing scholarly documents on the Web in order to extract
such data. For storing the data, ODIN uses Xigt (eXtensible Interlinear Glossed Text).3
Xigt is an XML-based data model created to simplify the format of IGT in most of the cases,
allowing to scale up to accomodate different kinds of annotations. Figure 11 illustrates its
XML data model.

IGT data used in research is mostly generated by field linguists working with (native)
speakers during their work, so the format depends on what tools do they use. The most
widely known applications developed specifically for creating IGT are Toolbox (formerly
Shoebox)4 and FLEx, its successor5. They both provide advanced functionality to enter and
store IGTs, perform analyses, and build dictionaries. Both have their own advantages, and
therefore, both are actively used in the community.

In our previous work, we introduced a shallow RDF representation for both FLEx and
Toolbox formats [1]. Below, we briefly describe the respective data models, both in their
original XML serialization and in a shallow RDF reconstruction. Other formats do exist, as
well, e.g., TypeCraft, and different proposals within the Text Encoding Initiative (TEI).

2.2 RDF reconstruction of FLEx and Toolbox
The FLEx framework stores linguistic data as a set of XML documents: an XML file with
all the texts with their markup and a number of auxiliary files: language settings, project
settings, etc. The main file consists of a number of <rt> elements, each representing a
database record. Hierarchy is established by linking records using the attribute ownerguid
which references the parent record of the element. Records may consist of different elements
depending on their class attribute.

Figure 1 shows selected glosses in the FLEx graphical user interface and Fig. 2 provides
a fragment from its XML representation.

Another way of accessing FLEx data is to export its texts. Unlike the database-like
structure of the main XML format, the format for exporting is hierarchical, and its semantics
is more clear. FLEx distribution includes a (non-validating) XSD schema that illustrates the
basic data structure of these files. Fig. 3 provides a fragment from the XML representation
of the same fragment as in Fig. 2.

In [1], we propose a shallow RDFmodel based on the latter XML representation. Exporting
texts from the main project XML leads to information loss which does not allow converting
the result back to FLEx projects. Despite that, in this paper we employ this model as a
basis for further conversion, while dealing with the main project format is currently under
development.

2 http://depts.washington.edu/uwcl/odin/
3 https://github.com/xigt/xigt
4 http://www-01.sil.org/computing/catalog/show_software.asp?id=79
5 http://fieldworks.sil.org/flex

LDK 2019

http://depts.washington.edu/uwcl/odin/
https://github.com/xigt/xigt
http://www-01.sil.org/computing/catalog/show_software.asp?id=79
http://fieldworks.sil.org/flex


3:4 Ligt: An LLOD-Native Vocabulary for Representing Interlinear Glossed Text as RDF

Figure 2 Mishar IGT sample, FLEx XML.

The RDFS data model that we take as a basis for FLEx data conversion, and the
aforementioned data fragment converted with respect to this data model are illustrated in
Figs. 5 and 4, respectively.

In earlier work, we have shown that the FLEx conversion can also be applied to Toolbox
data [1]. Together with FLEx, Toolbox is the most tool popular for working with IGT data
is Toolbox. It is a predecessor of FLEx, although in some aspects it is more powerful than
FLEx, so it is still widely used by field linguists. Most notably, it allows creating any number
of user-defined “markers” (glossing/annotation layers) such as multiple orthographies or
different variants of morphological glossing6. Given this, even though there is a process
of importing Toolbox data into FLEx, it is not universally possible to do this without
information loss.

Toolbox stores its data in an SFM7 format. It is a text-based format where each line
represents a layer defined by its marker at the beginning. Interlinear alignment is achieved
by using the precise number of spaces: Each new segment on corresponding lines starts at
the same position8.

An existing shallow RDF representation for Toolbox resembles the one for FLEx with
two key differences:

1. There is no paragraph division in Toolbox data hence flex:has_phrase relations can be
directly between flex:interlinear-glosses and flex:phrase.

2. Triples with information regarding toolbox markers are stored in their own namespace
since they can differ from the FLEx markers.

6 The new version of FLEx, which is now available as beta, has similar functionality. However, the current
stable version is still widely used.

7 Standard Format Markers
8 Due to historical pre-Unicode reasons, the position is calculated in the number of bytes, not in the
number of characters.



C. Chiarcos and M. Ionov 3:5

Figure 3 Mishar IGT sample, FLEx XML export.

Figure 4 FLEx IGT sample, generated RDF graph.

2.3 RDF reconstruction of Xigt
In order to provide a generalization over existing, tool-specific data models, Ligt is being
defined as a generalization over two data models, FLEx/Toolbox data structures and the
data model of the Xigt format. With respect to Xigt, we use a shallow RDF reconstruction
of the Xigt data model as a basis, akin to FLEx RDF for FLEx and Toolbox.

Xigt differs from tool-specific formats such as FLEx and Toolbox in that it aims to provide
a generic data model for IGT data rather than to provide a serialization for an existing tool.
The Xigt format was designed from scratch, it was explicitly intended to be easily extensible
for different types of annotations, and thus differs greatly from FLEx or Toolbox formats.
Xigt was designed as an XML format, and Fig. 6 illustrates the reconstruction of its structure
as an RDFS schema:

The top-level element of a Xigt document is a xigt-corpus, which contains igt elements
that convey the actual annotation.
An igt contains a number tier elements, each corresponding to a single layer of annota-
tion. Each tier consists of several items.
An item can contain text and carry additional attributes that contain the actual annota-
tion, rendered here as datatype properties of the same name, e.g., tag.

LDK 2019



3:6 Ligt: An LLOD-Native Vocabulary for Representing Interlinear Glossed Text as RDF

Figure 5 RDF schema fragment for FLEx data.

Alignment between items is established by alignment expressions stored in items’ attrib-
utes. Those expressions can refer either to one or more items or their parts: p[1:3]
corresponds to characters 1–3 of the item p and p1+p2[0:2] corresponds to the full value
of item p1 and characters 0–2 of the item p2.
The sequential order of igt, tier and item is inherent to the XML model, but must be
explicated in the RDF rendering. For this purpose, we introduce the property next.
For Xigt XML elements that contain a reference to (the id of) another Xigt XML element,
we create an object property of the same name (e.g., dep for the annotation of dependency
syntax).
Any xigt-corpus, igt or tier can carry a metadata property with a Metadata object
(corresponding to the Metadata element in Xigt/XML).
The property meta assigns a Metadata object an XMLLiteral. Normally, this property is
not to be used directly, but subproperties are to be created for different types of metadata.
These subproperties of meta are derived from the @type attribute of meta elements in
Xigt/XML.
The Xigt RDFS vocabulary does not define subclasses of igt, tier and item, but such
subclasses are expected to be defined by different applications, e.g., designated tiers for
word segmentation, and morphological segmentation. In Xigt/XML, this is expressed
with a @type attribute and we expect to derive such more specific subclasses from @type.
In order to ground Xigt/RDF in existing web vocabularies, we define tier and item as
nif:Strings and postulate a nif:subString relation between them [5].
Xigt elements are identified by a URI. If the Xigt XML element provides an @id attribute,
this will be adopted as local name and combined with the document/graph URI. Otherwise,
URIs are inferred from the structure of the Xigt XML file.

Along with converters for FLEx, Toolbox and other formats, we provide a converter from
Xigt to Xigt/RDF as part of our LLODifier suite.9

For illustration, we provide a simple sample of the ODIN data base, v.2.3 (from by-doc-
id/xigt/10.xml, see appendix for the original XML).

:igt10-6 a xigt:igt.
:igt10-6 xigt:metadata :meta1.
:igt10-6 xigt:has_tier :tier_18.

:tier_18 a xigt:odin_tier;
xigt:has_item :item_47, :item_48, :item_49.

9 https://github.com/acoli-repo/LLODifier

https://github.com/acoli-repo/LLODifier


C. Chiarcos and M. Ionov 3:7

:item_47 a xigt:item;
xigt:line "103";
xigt:tag "L";
xigt:odin_text "Ahmet hizli ko-uyor-du";
xigt:next :item_48.

:item_48 a xigt:item;
xigt:line "104";
xigt:tag "G";
xigt:odin_text "Ahmet quickly run-PROG-PAST.3sg";
xigt:next :item_49.

:item_49 a xigt:item;
xigt:line "105";
xigt:tag "T";
xigt:odin_text "Ahmet was running quickly.".

In more complex examples (omitted here for reasons of space), items are further split into
morph(eme)s and the analysis is aligned across different tiers. An advantage of Xigt is that
it allows to represent IGTs both in a fine-grained manner (as known from FLEx) and in
such a coarse-grained way (as in the ODIN data, adopted here because of difficulties to infer
morpheme-level alignment).

Aside from being more scalable with respect to its level of detail, Xigt differs greatly from
the FLEx data model described above in the following aspects:

It lacks any data structures that aggregate IGTs into larger groups such as paragraphs.
It does not define formal data types for standard components of IGT analysis. In-
stead, these have to be defined by the data provider (via the @type attribute resp.
rdfs:subClassOf).
It does provide a complex mechanism for expressing and resolving alignment. In FLEx,
this is restricted to substrings.
It does not provide a vocabulary for metadata properties. Instead, these have to be
defined by the data provider (via the @type attribute resp. rdfs:subClassOf).
It does provide some properties that exceed the capability of traditional IGTs (e.g., dep
for depedency syntax).

Like Toolbox (and – to a limited extent – FLEx), Xigt allows to add novel attributes/proper-
ties, it is, however, more generic, and allows to include other aspects of linguistic annotation.
At the same time, it is underspecified with respect to its concepts: As the comparison with
FLEx RDF shows, its data structures are also weaker, in that no vocabulary for essential
categories in IGT annotation are provided, most notably words (tokens) and morph(eme)s.
We design the Ligt vocabulary as a compromise between both extremes: A vocabulary
that provides obligatory IGT data structures (as FLEx), but with the potential for further
extensions and underspecification (as Xigt).

3 A native LLOD vocabulary for interlinear glossed text

We motivate Ligt as an abstraction over two application-specific data models, FLEx and
Xigt, resp., the RDF vocabularies created for expressing their information in RDF. We see
the main contribution of our paper in the formulation of this vocabulary, as a basis for an
exchange and publication format for interlinear glossed text in the web of data, and for a

LDK 2019



3:8 Ligt: An LLOD-Native Vocabulary for Representing Interlinear Glossed Text as RDF

Figure 6 Xigt RDFS data model, also cf. Fig. 11, p. 15 for the underlying XML Schema.

tool chain developed for such data, e.g., converters from classical IGT formats via Ligt to
other annotation formats, e.g., tabular formats such as used by ELAN. As part of such a
tool chain, we provide a converter suite that generates Ligt from FLEx, Toolbox and Xigt
data, and by means of SPARQL, a generic functionality to generate TSV exports from Ligt
is already provided by off-the-shelf technology.

In addition, we see an important contribution of this vocabulary as an input to the
development of specifications for morpheme-level analyses for W3C vocabularies for lexical
data10 and linguistic annotations.11

3.1 Core vocabulary
Ligt vocabulary defines classes and properties to describe the relations between the documents,
morphemes and their annotations in texts with an interlinear glossing. This vocabulary is a
generalization over two shallow RDF representations introduced in the previous section: a
model for data from FLEx or Toolbox, and Xigt RDF model. Other than these, however, it
is defined independently from an existing tool chain.

In order to develop an interoperable solution, the base classes are derived from two widely
used external vocabularies: Dublin Core [12]12 and the NLP Interchange Format [6, NIF].13

10Note the development of a morphology module within the OntoLex vocabulary https://www.w3.org/
community/ontolex/wiki/Morphology.

11At the time of writing, morphology is not adequately covered by existing RDF vocabularies for linguistic
annotations: NIF [6] and NIF-based vocabularies such as ITS [4] focus on annotations at the level of
words or larger, Web Annotation [11] does not provide a designated vocabulary for linguistic annotation
at all.

12 http://purl.org/dc/terms/
13 http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html

https://www.w3.org/community/ontolex/wiki/Morphology
https://www.w3.org/community/ontolex/wiki/Morphology
http://purl.org/dc/terms/
http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html


C. Chiarcos and M. Ionov 3:9

ligt:Document. A document is a subclass of dc:Dataset that represents a collection of
interlinear glossed texts. We formulate no constraints on the nature of documents, a
document may be the electronic edition of a set of coherent texts, but also an unstructured
collection of isolated examples. A ligt:Document is equivalent to a flex:document, and
closely resembles xigt:corpus.

ligt:has_text. A document must have at least one ligt:has_text property that points to
a ligt:Segment, e.g., an object of type ligt:InterlinearText. The property is closely
related with flex:has_interlinear_text.

ligt:Segment. A segment is a nif:String that is an abstraction over (interlinear) text, para-
graph and utterance. Segments that contain each other are connected by nif:subString.
ligt:InterlinearText. An interlinear text is a coherent sequence of interlinear glosses,

and defined as a dc:Text and equivalent with flex:interlinear-text. There is no
exact pendant of ligt:InterlinearText in Xigt. ligt:InterlinearText is equival-
ent to a ligt:Segment without another ligt:Segment that it is a nif:subString
of.

ligt:Paragraph. A paragraph is a nif:Paragraph within a ligt:InterliearText
that groups together multiple utterances or other segments. It corresponds to
flex:paragraph, no pendant in Xigt. Paragraph is equivalent with a ligt:Segment
that is neither ligt:InterlinearText nor ligt:Utterance.

ligt:Utterance. An utterance is a coherent, consecutive sequence of words, as typically
produced by a single speaker in a communication situation. The notion of utterance is
closely related to a nif:Sentence, but we do not require utterances to be sentential
in a syntactic sense. We define an utterance as a ligt:Segment without further
ligt:Segments as nif:subString. Utterance is equivalent to flex:phrase. There is
no exact pendant of xigt:igt in Ligt, but every xigt:igt is both a ligt:Utterance
and a ligt:InterlinearText.

ligt:hasTier. This property assigns an utterance a tier that contains its annotations.
Corresponds to flex:has_tier.

ligt:Tier. A tier is a set of annotations that share the same characteristics, and in particular,
the same segmentation. Tier corresponds to xigt:tier, there is no exact equivalent in
FLEx, as FLEx considers tier definitions as being inherent in the notions of flex:phrase,
flex:word and flex:morph. Based on FLEx data structures, two subclasses of tier are
provided:
ligt:WordTier. A tier adopting a segmentation into words (i.e., flex:words).
ligt:MorphTier. A tier adopting a segmentation into morph(eme)s (i.e., flex:morphs).
Note that unlike FLEx, Ligt does not posit a uniqueness constraint on these tiers, but
instead supports, for example, to have multiple tiers for morphs at different granularity.
Ligt also permits to provide application-specific tiers (as currently by Xigt XML @type
attributes).
We define a tier as a nif:String and its items as the corresponding nif:subStrings.

ligt:item. Property assigning a ligt:Tier a ligt:Item. Corresponds to xigt:has_item.
As both ligt:Tier and ligt:Item are defined as nif:Strings, this property is defined
as a subproperty of nif:subString.

ligt:Item. Abstract class representing elements of a ligt:Tier, representing the unit of
annotation in an IGT. Equivalent to xigt:item, and likewise defined as a subclass of
nif:String. It is possible to provide application-specific subclasses (as by @type in Xigt).

LDK 2019



3:10 Ligt: An LLOD-Native Vocabulary for Representing Interlinear Glossed Text as RDF

Two following pre-defined subclasses are provided:
ligt:Word. A grammatical or orthographic word as the basis for further annotation,

equivalent with nif:Word. A ligt:WordTier is defined as a ligt:Tier for which
every item is a ligt:Word. Roughly equivalent with flex:word, but note that Ligt
(unlike FLEx) does not prohibit concurrent word segmentations of the same utterance.

ligt:Morph. We define a morph as a nif:String that corresponds to the smallest unit
of grammatical analysis applicable to a given word. A ligt:MorphTier is defined
as a ligt:Tier for which every item is a ligt:Morph. Roughly equivalent with
flex:morph, but note that Ligt (unlike FLEx) does not prohibit concurrent word
segmentations of the same utterance.

An item can be a nif:subString of another item at another tier; this is the preferred
way to express that a ligt:Morph is contained in a ligt:Word (cf. flex:has_morph).

ligt:next. Presents the sequential order of items, corresponds to xigt:next and
flex:next_word and flex:next_morph.

Ligt is grounded in the generalization over (the RDF vocabularies inferred for) FLEx
and Xigt, but the concept of tiers is exclusive to Xigt, so there is no straightforward way
to generalize this concept for both representations. In order to do this, we introduced
a base class ligt:Tier and two subclasses: ligt:WordTier and ligt:MorphTier which
should correspond to sequences of words and morphs, respectively. Tiers in Ligt must
consist of elements on the same level of granularity hence we merge Xigt tiers with identical
segmentation. Xigt has been designed for reversible IGT parsing. This means that it provides
a standoff mechanism that refer to segments and annotation values rather than providing
them. In Xigt RDF, these are resolved, but xigt:content and xigt:alignment are preserved.
In the generalization, these are no longer necessary. They should not be deleted, though, as
they cannot be easily reproduced. But they provide Xigt-specific information and do not
need to be represented in the overarching model.

Both ligt:Word and ligt:Morph are subclasses of ligt:Item and are objects of a
property ligt:item for the word and morph tiers, respectively. Finally, for compatibility
with FLEx, we introduce subclasses of ligt:Morph for representing prefixes, suffixes, stems
and enclitics.

The data model for text representation in Ligt is illustrated in Fig. 7.

3.2 Metadata
Every concept identified above can be subject to metadata annotations. In order to provide a
consistent domain definition for such properties, we introduce ligt:Element as an abstract
superclass over ligt:Document, ligt:Segment, ligt:Tier and ligt:Item.

FLEx metadata is represented by (a fixed set of) simple properties (flex:version,
flex:comment, flex:title, flex:has_media, flex:has_language, etc.) for which no
generalization is provided. In opposition to that, Xigt metadata is modelled by means
of reification, with a xigt:Metadata object mediating between metadata properties and
its target.14 In Ligt, we thus support both mechanisms, but we do not prescribe any
specific metadata vocabulary. Instead, any metadata property must be a subproperty of

14 In Xigt XML, metadata is represented by the container element metadata that groups together several
meta statements. As the metadata element can carry its own XML attributes, it has to be rendered as
reification in Xigt RDF.



C. Chiarcos and M. Ionov 3:11

Figure 7 Ligt data model, excluding metadata.

ligt:metadata, and any metadata object must be an instance of ligt:Metadata. As for
the reified representation of metadata, we follow the Web Annotation data model [11].

ligt:metadata. Abstract datatype property that assigns a ligt:Element a literal value.
Superproperty of flex:version, etc.

ligt:Metadata. Subclass of oa:Annotation that represents the reification of ligt:metadata.
ligt:metaTarget. Subproperty of oa:hasTarget that points from a metadata object to the

ligt:Element that the metadata refers to. Corresponds to the inverse of xigt:metadata.
ligt:metaBody. Subproperty of oa:hasBody that connects a ligt:Metadata object with

the literal value that contains the metadata. Superproperty of xigt:iso-693-3, etc.
ligt:refBody. Subproperty of oa:hasBody that connects a ligt:Metadata object with

another (metadata) object. Corresponds to xigt:ref.

The Xigt data model allows complex metadata attached to any corpus, igt or tier
element. It can be both simple values like language, source or date and complex structures. In
the shallow RDF representation this was modeled with reification, where multiple attributes
for the same type of metadata are represented as a collection. This approach is powerful,
but does not make much sense for atomic metadata properties from FLEx data model. In
order not to overcomplicate the model, we decided to use both RDF reification to express
the complex Xigt metadata and the more transparently structured FLex metadata. This will
keep the model simple but retain its expressivity.

In order to be able to link metadata to elements on different level, we define a top-level
concept ligt:Element, which is the domain of ligt:metadata property. Top-level class
ligt:Document is defined as its subclass. Atomic metadata elements should be subclasses
of ligt:annotation whereas complex metadata should be a subclass of ligt:metadata.
The reified representation is modeled with properties ligt:metaTarget and ligt:metabody,
which are derived from hasTarget and hasBody properties of the OpenAnnotation vocabu-
lary [10].

LDK 2019



3:12 Ligt: An LLOD-Native Vocabulary for Representing Interlinear Glossed Text as RDF

ligt:Element

ligt:Metadata
(sub oa:Annotation)

ligt:metaTarget
sub oa:hasTarget

XMLLiteral

metadata

ligt:metaBody
sub oa:hasBody

metadataRef

any URI

ligt:refBody
sub

oa:hasBody

Figure 8 Ligt metadata representation.

The metadata part of the model is illustrated in Fig. 8.

4 Implementation

Here we describe the problems with converters we developed between the shallow RDF
representations and Ligt. Mainly, the conversion is performed by a series of SPARQL
updates. In the following paragraphs we briefly discuss our decisions and difficulties with the
conversion.

Xigt → Ligt. When converting to Ligt, we drop explicit information about segmentation and
alignment, since this is already resolved, and we want to keep the data as general as possible.
For the same reason we drop tier ordering information (property xigt:nextTier), since
the ordering of tiers is specific only to Xigt. We also need to convert the metadata
information to the OpenAnnotation metadata model.

Xigt ← Ligt. The main problem with the conversion in this direction is that Ligt omits tier
ordering information even if the data was originally got converted from Xigt. In order to
convert, the order of tiers should be specified manually or left in the default order and
then get reordered later by other means.
If the data originally came from FLEx or Toolbox, there may be information about
paragraphs or texts, which cannot be expressed in terms of Xigt, which means that this
information will be ignored.

FLEx ↔ Ligt. In this conversion, the main difficulty is transforming the data properties
into metadata, for instance, language information stored in FLEx data model should
become metadata in Ligt representation and vice versa. Another thing is the introduction
of fictitious elements within multiple conversions, e.g. putting the text in the paragraph
even if there was no paragraphs in the original data when converting to FLEx RDF.

One application of Ligt is to facilitate the integration and the querying of IGT from
various sources. The concept is illustrated in Fig. 9. At the moment, we provide converters
from FLEx, Toolbox and Xigt to FLEx RDF and Xigt RDF as part of our LLODifier
repository,15 respectively, as well as SPARQL Update scripts to convert that data into Ligt.16

15 https://github.com/acoli-repo/LLODifier
16 https://github.com/acoli-repo/ligt

https://github.com/acoli-repo/LLODifier
https://github.com/acoli-repo/ligt


C. Chiarcos and M. Ionov 3:13

Figure 9 Ligt-based IGT processing workflow.

We have converted the ODIN v.2.3 into Ligt, with a total of 7.5 million triples for 158 007
IGTs for 2 888 language varieties. Interfaces tailored towards the needs of end users (linguists)
are still under development.

5 Summary and outlook

In this paper we presented Ligt, the first LLOD-native IGT vocabulary for LLOD-data, based
on three formats. This vocabulary is grounded in widely used vocabularies (Dublin Core,
NIF and WebAnnotation), but extends them with respect to the coverage of morphology.
With Ligt, we aim to achieve the following goals:

Provide a vocabulary for publishing and sharing IGT data via the (Linguistic) Linked Open
Data cloud.

Contribute to the extension of W3C vocabularies such as Ontolex-lemon with respect to
the coverage of morphology.

Trigger the development of morphology-aware vocabularies for the representation of corpora
and linguistic annotations.

Prepare the ground for developing an infrastructure for the integrated querying and pro-
cessing of IGTs and related linguistic data.

Publishing interlinear glosses as LLOD facilitates their reusability and interoperability,
allowing querying several IGT datasets at once, linking them to external resources and more.
At the same time, using different shallow data models, each of which inherits conceptual
model of the corresponding framework, is not enough to achieve true interoperability. All
three frameworks provide slightly different set of functions, and the conceptual model behind
their data representation differ greatly. Even though this shallow approach guarantees data
structures that are transparent and familiar to their user community, it does not provide the
rich semantics of more advanced vocabularies for language resources.

By creating a universal vocabulary for modeling IGT annotations, and creating converters
from those three formats to this unified representation should improve interoperability further.

Given this, the main contribution of this paper is a proposal of an RDF-native data model
that not only allows to unify IGT data developed under different frameworks to a completely
new level, but also allows to generalize to other use cases in linguistics, as well. Beyond

LDK 2019



3:14 Ligt: An LLOD-Native Vocabulary for Representing Interlinear Glossed Text as RDF

establishing structural (format) interoperability by means of a common data representation,
our approach also allows to make use of shared vocabularies and terminology repositories
available from the (Linguistic) Linked Open Data cloud, e.g., for representing language
varieties [9], linguistic phenomena [2], or lexical information [8].

References
1 Christian Chiarcos, Maxim Ionov, Monika Rind-Pawlowski, Christian Fäth, Jesse Wichers

Schreur, and Irina Nevskaya. LLODifying linguistic glosses. In Proceedings of Language, Data
and Knowledge (LDK-2017), Galway, Ireland, June 2017.

2 Christian Chiarcos and Maria Sukhareva. OLiA - Ontologies of Linguistic Annotation. Semantic
Web Journal, 518:379–386, 2015.

3 Bernard Comrie, Martin Haspelmath, and Balthasar Bickel. The Leipzig Glossing Rules: Con-
ventions for interlinear morpheme-by-morpheme glosses. https://www.eva.mpg.de/lingua/
pdf/Glossing-Rules.pdf, 2008.

4 David Filip, Shaun McCance, Dave Lewis, Christian Lieske, Arle Lommel, Jirka Kosek,
and Felix Sasaki. Internationalization Tag Set (ITS) Version 2.0. Technical report, W3C
Recommendation, 2013.

5 Sebastian Hellmann, Jens Lehmann, Sören Auer, and Martin Brümmer. Integrating NLP
using Linked Data. In 12th International Semantic Web Conference, 21-25 October 2013,
Sydney, Australia, 2013. URL: http://svn.aksw.org/papers/2013/ISWC_NIF/public.pdf.

6 Sebastian Hellmann, Jens Lehmann, Sören Auer, and Martin Brümmer. Integrating NLP
using Linked Data. In Proc. 12th International Semantic Web Conference, 21-25 October
2013, Sydney, Australia, 2013. also see http://persistence.uni-leipzig.org/nlp2rdf/.

7 William D. Lewis. ODIN: A model for adapting and enriching legacy infrastructure. In
Second International Conference on e-Science and Grid Technologies (e-Science 2006), 4-
6 December 2006, Amsterdam, The Netherlands, page 137. IEEE Computer Society, 2006.
doi:10.1109/E-SCIENCE.2006.106.

8 John P. McCrae, Julia Bosque-Gil, Jorge Gracia, Paul Buitelaar, and Philipp Cimiano. The
Ontolex-Lemon model: development and applications. In Proceedings of eLex 2017 conference,
pages 19–21, 2017.

9 Sebastian Nordhoff and Harald Hammarström. Glottolog/Langdoc: Defining dialects, lan-
guages, and language families as collections of resources. In First International Workshop on
Linked Science 2011-In conjunction with the International Semantic Web Conference (ISWC
2011), 2011.

10 Robert Sanderson, Paolo Ciccarese, and Herbert Van de Sompel. Open Annotation Data
Model. Technical report, W3C Community Draft, 08 February 2013, 2013.

11 Robert Sanderson, Paolo Ciccarese, and Benjamin Young. Web Annotation Data Model.
Technical report, W3C Recommendation, 2017.

12 Stuart Weibel, John Kunze, Carl Lagoze, and Misha Wolf. RFC 2413 - Dublin Core metadata for
resource discovery. URL http://www.ietf.org/rfc/rfc2413.txt (July 31, 2012), September
1998. Network Working Group.

A Xigt XML data

In the paper, we presented Xigt RDF as one starting point for the development of Ligt.
In order to relate this to actually available Xigt data, the interested reader may be in-
terested in the original XML schema and sample data, provided here in Figs. 11 and 10,
respectively. Additional documentation can be found under https://github.com/xigt/
xigt/wiki/DataModel.

https://www.eva.mpg.de/lingua/pdf/Glossing-Rules.pdf
https://www.eva.mpg.de/lingua/pdf/Glossing-Rules.pdf
http://svn.aksw.org/papers/2013/ISWC_NIF/public.pdf
http://persistence.uni-leipzig.org/nlp2rdf/
http://dx.doi.org/10.1109/E-SCIENCE.2006.106
http://www.ietf.org/rfc/rfc2413.txt
https://github.com/xigt/xigt/wiki/Data Model
https://github.com/xigt/xigt/wiki/Data Model


C. Chiarcos and M. Ionov 3:15

<igt id="igt10-6" doc-id="10" line-range="103-105" tag-types="L G T">
<metadata>

<meta id="meta1">
<dc:subject olac:code="tur" xsi:type="olac:language">Turkish</dc:subject>
<dc:language olac:code="en" xsi:type="olac:language">English</dc:language>

</meta>
</metadata>
<tier id="n" type="odin" alignment="c" state="normalized">

<item id="n1" alignment="c1" line="103" tag="L">Ahmet hizli ko-uyor-du</item>
<item id="n2" alignment="c2" line="104" tag="G">Ahmet quickly run-PROG-PAST.3sg</item>
<item id="n3" alignment="c3" line="105" tag="T">Ahmet was running quickly.</item>

</tier>
</igt>

Figure 10 Xigt XML sample data, ODIN v. 2.3, file by-doc-id/xigt/10.xml.

Figure 11 Xigt XML Schema.

LDK 2019


	Background
	Data models for IGT data
	Existing formats
	RDF reconstruction of FLEx and Toolbox
	RDF reconstruction of Xigt

	A native LLOD vocabulary for interlinear glossed text
	Core vocabulary
	Metadata

	Implementation
	Summary and outlook
	Xigt XML data

