
Beyond Classical Parallel Programming
Frameworks: Chapel vs Julia
Rok Novosel
Faculty of Computer and Information Science, University of Ljubljana
Večna pot 113, 1000 Ljubljana, Slovenia
novosel.rok@gmail.com

Boštjan Slivnik1

Faculty of Computer and Information Science, University of Ljubljana
Večna pot 113, 1000 Ljubljana, Slovenia
bostjan.slivnik@fri.uni-lj.si

Abstract
Although parallel programming languages have existed for decades, (scientific) parallel programming
is still dominated by Fortran and C/C++ augmented with parallel programming frameworks, e.g.,
MPI, OpenMP, OpenCL and CUDA. This paper contains a comparative study of Chapel and Julia,
two languages quite different from one another as well as from Fortran and C, in regard to parallel
programming on distributed and shared memory computers. The study is carried out using test cases
that expose the need for different approaches to parallel programming. Test cases are implemented
in Chapel and Julia, and in C augmented with MPI and OpenMP. It is shown that both languages,
Chapel and Julia, represent a viable alternative to Fortran and C/C++ augmented with parallel
programming frameworks: the programmer’s efficiency is considerably improved while the speed of
programs is not significantly affected.
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1 Introduction

To implement a parallel algorithm or to write a parallel application, most programmers
would use Fortran or C/C++ and a parallel programming framework that best suits the
target parallel computer’s architecture. Hence, MPI and OpenMP would be used for
programs designed to run on distributed and shared memory computers, respectively, or
OpenCL/CUDA if the computation must run on a GPU. In 2019 this remains de facto
approach to parallel programming even though parallel programming languages have been
around for decades.

Among parallel programming languages, Fortran stands out as in its 2018 version it
includes a wide range of constructs supporting data parallelism and concurrency. Otherwise,
many languages died away, e.g., SISAL, ZPL and Fortress, or faded into obscurity, e.g., X10.
Nevertheless, it has always been claimed that languages supporting parallel programming
will one day boost parallel application development [8], and were therefore studied and
analyzed [6, 16].
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In this paper writing parallel programs in two programming languages, namely Chapel
and Julia, is considered. Chapel has been developed at Cray, a traditional supercomputer
manufacturer, and has been intended for increasing supercomputer productivity and parallel
programming from the start. With its explicit support for declaring a topology of processor
unit the program is to be run on it is a border case of a domain-specific language. Julia is
rather different. Designed for programming high-performance computational science, it is
definitely a general programming language. It is a dynamic language with garbage collection
and uses just-in-time compilation. Hence, a list of characteristics usually not associated with
the fastest possible execution.

Chapel and Julia are compared one against the other and against the combination of C and
a selected parallel programming framework. The comparison is performed by implementing
the algorithms for using three selected problems (Section 2) and evaluating the programming
process and the final result (Section 3). Although this approach is far from new [12, 4], it has
been called for more studies like this as no better methodology for comparing programming
languages is available today [26].

2 Test Cases

2.1 k-Means Clustering
The k-means algorithm [21], also known as Lloyd’s algorithm, is a method of finding clusters
in a dataset. Its aim is to organize n points in d-dimensional space into k clusters: in the
end, each point should belong to the cluster with the nearest mean (centroid) according to
the Euclidean distance. The algorithm starts by creating initial clusters and then iteratively
updating them. There are multiple ways of initializing the clusters: despite sophisticated
methods like kmeans++ [2], we choose random points from the dataset to serve as initial
clusters. Each update performs two steps:
1. Compute the centroid of a cluster.
2. Reassign points to be in the cluster with the nearest centroid.

The iterative procedure ends when no points exchange clusters, or it reaches a maximum
iteration limit. Fig. 1 illustrates the iterations of the k-means algorithms where n = 1000
and k = 3.

Iteration: 1 Iteration: 5 Iteration: 10
k-means iterations

Figure 1 Iterations of the k-means clustering where n = 1000 and k = 3.

The algorithm is parallelized by distributing the points among the parallel workers and
then independently calculating the nearest cluster. We compute global centroids by combining
the local centroids of each worker. We decided to parallelize the k-means algorithm since it
serves as an example of the map-reduce pattern [11]. It can be generalized to other machine
learning algorithms that can be parallelized using the same pattern [10].
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2.2 Samplesort
Sorting is a ubiquitous operation in computer science that has to handle large quantities of
data in a short amount of time. That is why efficient parallel implementations are necessary.
Samplesort [14] provides a good benchmark for testing whether new parallel languages are
able to handle the mentioned constraints.

Samplesort is a divide-and-conquer sorting algorithm. It addresses the limitations of the
Quicksort algorithm by allowing more than one partitioning element. Partitioning elements
are determined by sampling the elements of the input array. Samplesort partitions the
elements into m bins by constructing a m × m matrix where m is the number of parallel
workers. Each column in the matrix corresponds to a bin. The entire algorithm consists of
the following steps:
1. Sample m − 1 elements from the input array.
2. Distribute elements among workers.
3. Each worker partitions the local array into m bins according to the selected samples.
4. The bins matrix is re-distributed, and each worker takes ownership of a column.
5. Each worker sorts the elements in its column.
6. Finally, the columns are merged to get the sorted array.

The choice of the actual sorting algorithm in the fifth step is arbitrary. We used the
Quicksort algorithm. Fig. 2 demonstrates sorting 20 input elements with three parallel
workers. Each of the differently colored rows or columns indicate that a worker can execute
them in parallel.
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Figure 2 Samplesort with 20 elements and 3 parallel workers.

2.3 n-Body Simulation
The n-body problem requires that positions and velocities of n interacting particles is
computed, usually in discrete time intervals. It is regularly used when evaluating parallel
languages and frameworks [23, 25] as it was classified as a parallel “dwarf” [3]. The solution
to the n-body problem is found by simulating the behavior of the particles.

The simplest way of simulating particle behavior is by calculating the effect of all other
particles on a specific particle. This results in a O(n2) algorithm, which is computationally
expensive for a large number of particles. The key to lowering the computational cost is to
group nearby bodies and treat them as a single body. If it is far enough, we can approximate
the gravitational effect of the group by using the center of its mass. The Barnes-Hut
algorithm [5] achieves this by using the octree data structure [22] to split the particle space
into cubic cells. Once the octree is constructed, the algorithm traverses the tree structure
for each body and calculates the gravitational effect of each node. If the bodies contained
in the node sub-tree are sufficiently far away, the effect is approximated by their center of
mass. Otherwise, the algorithm reaches the leaf nodes which contain the original bodies. In

SLATE 2019
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Figure 3 A 2-dimensional representation of the particle space and the corresponding Barnes-Hut
quadtree: particle space divided into quadrants (left) and Barnes-Hut quadtree (right).

Fig. 3(a), we used 2-dimensional particle space to simplify the explanation. A 2-dimensional
particle space is divided into quadrants and the Barnes-Hut algorithm constructs a quadtree
as illustrated in Fig. 3(b).

We used different parallelization strategies for shared and distributed memory imple-
mentations. For shared memory, we statically divided the 3rd level of the octree (containing
64 nodes) among the threads. Each thread computes the necessary subtrees and the main
thread combines the subtrees into the Barnes-Hut octree. For the distributed implementation
we followed the algorithm outlined in [24]. Its main advantage is that it can balance the
amount of work for each worker using orthogonal recursive bisection [13]. The algorithm
works as follows:
1. Decompose the particle space using orthogonal recursive bisection so that each cell

contains equal amount of work.
2. Each worker owns one cell and the particles within it.
3. Each worker builds a local octree from the particles (locally essential tree).
4. Next, it sends its local octree nodes to any other worker that might need them.
5. It receives the necessary octree nodes from other workers and inserts them into his octree.
6. Each worker can now compute the positions and velocities independently.

3 Evaluation

We evaluated the parallel capabilities of Chapel and Julia by implementing the test cases
from the previous section. For each test case we implemented an algorithm targeted for a
shared and a distributed memory computer. We used the programming language C with
OpenMP for shared memory and MPI for distributed memory as the baseline for comparison.
Since Julia is using JIT compilation, we also discarded the first two execution times to
properly “warm-up” the JIT compiler.

We used Chapel version 1.18 and Julia version 1.1. For shared memory, we used Ubuntu
18.04, AMD Ryzen 7 2700X (8 cores, 16 threads, and 3.7GHz) processor and 16GB of RAM.
For distributed memory, we used 32 HP DL160 G6 servers, each running Ubuntu Server
11.04 with Intel Xeon 5520 processor and 6GB of RAM.

3.1 k-Means Clustering
We generated 4 datasets for evaluation purposes. Each dataset contains 256 clusters with
128-dimensional points. The results in Fig. 4 indicate that the performance bottleneck in
the k-means clustering is the computation of the Euclidean distance. Julia has a highly
optimized linear algebra module based on the LAPACK library [1]. This is the main reason
why we were able to outperform the C shared-memory implementation. The Julia distributed
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(a) k-means clustering benchmark for the shared
memory implementation.
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(b) k-means clustering benchmark for the distributed
memory implementation.

Figure 4 k-means clustering benchmarks.
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(a) Samplesort benchmark for the shared memory
implementation.
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(b) Samplesort benchmark for the distributed
memory implementation.

Figure 5 Samplesort parallel benchmarks.

memory implementation suffered from a significant overhead when spawning remote processes
and communicating through remote channels. Based on Hoare’s CSP [15], a channel is a
FIFO data structure enabling remote processes to send and receive data.

Increasing the number of processes only exacerbated the problem. To eliminate the
overhead we would have to benchmark a much larger dataset.

3.2 Samplesort

Sorting efficiency depends highly on the input elements themselves. Therefore, we could
not pre-generate the input arrays. For each input size, we generated 100 random arrays
and measured the execution time for each array. The final result was the average of all the
execution times. The results are in Fig. 5.

In Julia, we add multi-threading by prefixing a for loop with the @threads macro. The
macro wraps the body of the for loop in a closure and splits the iterations between the
available threads. Using variables captured in a macro closure is a performance concern and
is still an open issue in Julia [19]. The recommended solution, for now, is to extract the body
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(a) Barnes-Hut n-body simulation benchmark for
the shared memory implementation.
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(b) Barnes-Hut n-body simulation benchmark for
the distributed memory implementation.

Figure 6 Barnes-Hut n-body simulation benchmarks.

of the for loop in a separate function and thus bypass the macro closure. It is not a perfect
solution and that is why we still see a deviation from the C and Chapel results in shared
memory implementations.

The Chapel distributed memory implementation caused the most issues. The standard
way of diagnosing distributed implementations is by using the CommDiagnostics module,
which outputs all the implicit Chapel communication. It did not output any unnecessary or
unintended communication. Our reasoning is that the Chapel compiler and the underlying
GASNET [7] communication library are not able to optimize the transfer of large arrays
during sorting. In spite of the mentioned issues, we found that using Chapel domains we
were able to elegantly solve the samplesort problem.

3.3 n-Body Simulation

For the n-body simulation, we generated equally distributed particles in a pre-defined cube.
The results are in Fig. 6. In the shared memory implementations we observed consistent
results for all test cases. The execution times of C with OpenMP and Julia both running
with 16 threads are almost equal. It would be interesting to see if Julia could outperform C
and OpenMP if both are given more threads.

The algorithm we chose for the distributed memory implementations was designed for
the SPMD (single program, multiple data) parallel model. As such, MPI was the ideal target
when the algorithm was designed. With Julia and Chapel, we were forced to replicate the
SPMD behavior. In Julia, it was relatively easy to replicate the SPMD model using channels.
On the contrary, Chapel does not have a way for processes to directly communicate with each
other. All communication has to be done through distributed global arrays. We used sync
variables to prevent multiple processes from altering the same element in the array. Sync
variables are roughly analogous to mutex locks in other languages with the exception that a
sync variable is itself a lock. Any basic type (integer, float, etc.) can become a sync type
by prefixing it with the sync keyword. Chapel does not support sync variables on complex
types like arrays or objects. For complex types, we had to create two arrays one containing
values and one containing sync variables. Considering the orchestration behind the Chapel
implementation it is not surprising that for a small amount of data and a large number of
processes it does not perform well. Increasing the amount of data hides the overhead from
sync variable contention.
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It is also important to note that both Julia and Chapel do not support fixed-sized arrays
out-of-the-box. Using regular (dynamic) arrays was a huge performance bottleneck in the
n-body simulation and the k-means clustering implementations. We used the StaticArrays
package in Julia but resorted to using tuples in Chapel. Further research is necessary to
design n-body simulation algorithms that would better fit Julia and Chapel.

4 Conclusion

In general, we had little to no issues with our C implementations. Once we eliminated all
segmentation faults C implementations needed only minor improvements to run efficiently.
In contrast, Chapel and Julia implementations were easier to write initially but required a
lot of efficiency improvements and fine-tuning afterwards.

Julia provides a small but powerful set of parallel features. The multi-threading module
is still marked as experimental, but we were still able to get good results with it. The
Julia development team is planning to replace the current multi-threading module with an
implementation based on parallel depth-first scheduling [9]. The main two issues with Julia
were type instability and unexpected memory allocations. If Julia is not able to infer the
type of variable it resorts to runtime type checking which adds significant overhead. The
solution was to always annotate all variables with types to avoid runtime type checking.
The Julia standard library contains multiple macros for code inspection and benchmarking.
Examples include @code_warntype which outputs variables with ambiguous types and @time
which outputs execution time and total memory allocated. Julia provides a web page [20]
containing performance tips that have to be followed rigorously if performance is an issue.

Chapel provides a broad spectrum of parallel functionality. It can serve as an excellent
introductory language for parallel and distributed programming courses. It includes enough
the high-level features from other languages so that it immediately feels familiar to novices.
Parallel concepts can be easily demonstrated using built-in constructs like domains, sync
variables, parallel iterators, etc. Chapel itself is still under heavy development. Developers
are currently trying to implement as many parallel features as possible. Consequently, the
performance of Chapel programs is not as important right now. That causes it to lag behind
C and Julia in our benchmark tests. During the development of this paper, we also found
multiple bugs and performance issues in the compiler [17, 18]. We also experienced that
the Chapel compiler is fairly slow when compiling large applications. As an example, our
distributed n-body simulation takes roughly 1 minute to compile. During the implementation
process, this prevented us from quickly iterating and examining new solutions.

The authors realize that the definitive comparison of languages for parallel computing
would require a randomized controlled trial as advocated in [26]. Nevertheless, the results
presented here can be understood as a justification for carrying out such experiment.
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