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Abstract
A highly successful approach to route planning in networks (particularly road networks) is to identify
a hierarchy in the network that allows faster queries after some preprocessing that basically inserts
additional “shortcut”-edges into a graph. In the past there has been a succession of techniques
that infer a more and more fine grained hierarchy enabling increasingly more efficient queries. This
appeared to culminate in contraction hierarchies that assign one hierarchy level to each vertex.

In this paper we show how to identify an even more fine grained hierarchy that assigns one
level to each edge of the network. Our findings indicate that this can lead to considerably smaller
search spaces in terms of visited edges. Currently, this rarely implies improved query times so that
it remains an open question whether edge hierarchies can lead to consistently improved performance.
However, we believe that the technique as such is a noteworthy enrichment of the portfolio of
available techniques that might prove useful in the future.
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1 Introduction

Computing shortest, fastest, or otherwise optimal routes in networks is a fundamental
problem needed to be solved in many applications. For road networks alone there are
multiple important applications, e.g., car navigation, traffic simulation, planning in logistics,
etc. An important approach to fast route planning is to preprocess the network in such a
way that subsequent queries are accelerated. In this paper we focus on point-to-point queries
in road networks but note that other types of queries or networks might also be supported in
a way analogous to previous applications of contraction hierarchies [12, 3].

A particularly successful class of preprocessing techniques for road networks is to exploit
hierarchy in the network. An informal way to describe this is, that “usually”, the farther away
we are from source or destination, the more important are the roads we use. Hierarchical route
planning techniques had a history in becoming more aggressive in exploiting the hierarchy
resulting in smaller and smaller search spaces. This began with early heuristics based on road
categories [15, 16] and later used exact techniques that insert shortcut edges. Shortcuts encode
that certain subpaths are important and, together with an appropriate query algorithm,
ensure that optimal paths can be found using hierarchical routing techniques. Such techniques
include overlay graphs [22, 7], reach based routing [14], highway hierarchies [20] and highway
node routing [21] – so far culminating in contraction hierarchies (CHs) [11, 12, 9].
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10:2 More Hierarchy in Route Planning Using Edge Hierarchies

CHs order the vertices of the network by importance, i.e., we conceptually have n levels of
hierarchy in a network with n vertices. By inserting appropriate shortcuts, CHs ensure that
there exists an up-down path between any pair of vertices that is a shortest path. An up-down
path progresses from the source vertex to more important vertices and then descends to less
important vertices until reaching the destination. CHs are widely used since they are simple,
allow fast preprocessing using little space and lead to very small search space.

In this paper we introduce edge hierarchies (EHs) as an even more fine grained way to
define hierarchy in the network. EHs order edges rather than vertices by importance. They
keep the concept of up-down paths resulting in a very simple query algorithm. Intuitively,
this should further reduce search spaces. EHs – in contrast to CHs – only have to explore
edges out of a vertex v that are more important than the edge leading to v in the current
query. Also note that EHs are very close to the informal definition of hierarchical routing
that we gave above.

After introducing basic terms and techniques in Section 2 and discussing further related
work in Section 3, we describe EHs in detail in Section 4. While the basic query algorithm
is simple by design, a preprocessing algorithm finding the “right” shortcuts turns out to
be much more complicated. We also discuss some basic techniques for pruning the query
search space.

In Section 5 we perform an experimental evaluation using large real world road networks
and different cost functions. It turns out that EHs relax significantly less edges than CHs in
particular for cost functions that are known to be difficult for CHs – with distance as the
main optimization criterion and/or explicit modeling of turn penalties. Unfortunately, the
overall query time is usually slightly worse than CHs and preprocessing time is considerably
larger. Overall, EHs are thus an intriguing concept with considerable potential but they
need further research to find out whether they will eventually be useful in some applications.
In Section 6 we discuss possible research in this direction.

2 Preliminaries

In this paper, we consider directed and weighted graphs G = (V,E,w), where V is a set of
vertices, E ⊆ V × V a set of edges connecting vertices and w : E → R+

0 a non-negative edge
weight function. A path is a sequence of vertices (v0, . . . , vn) such that (vi, vi+1) ∈ E for
0 ≤ i < n. The length of a path is the sum of its edge weights. The length of a shortest
path with source vertex s and target vertex t is also called the distance between s and t,
or dist(s, t).

The classical algorithm for finding shortest paths is Dijkstra’s algorithm [10]. It maintains
a distance label (dist) for each vertex and repeatedly settles the vertex u with the currently
smallest distance label among all unsettled vertices. It then relaxes all outgoing edges (u, v)
by setting dist(v)← min (dist(v),dist(u) + w(u, v)). In the bidirectional version of Dijkstra’s
algorithm, the forward search from s is complemented by a backward search from t that only
considers incoming edges of the settled vertices.

A shortcut is an edge whose length corresponds to the length of some nontrivial path
in the graph. For example, for edges e1 = (u, v) and e2 = (v, w), a shortcut es = (u,w)
with w(es) = w(e1) + w(e2) can be added to the graph. Note that adding shortcuts does
not change the distance for any pair of vertices in the graph. Also, by storing skipped
vertices, we can recursively unpack shortcuts, e.g., by replacing es with e1 and e2 to find the
corresponding path that only uses original (non-shortcut) edges.
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Contraction Hierarchies [11, 12, 9] use shortcuts to build a hierarchy where every vertex
is on its own level. Vertices are repeatedly removed from the graph in order of a measure of
importance. If for any pair of incoming and outgoing neighbors u,w the removed vertex v is
on the only shortest path (u, v, w), then a shortcut (u,w) is added. Whether this shortcut
is necessary is determined by a so-called witness search that runs a shortest path search
starting at u on the overlay graph. The overlay graph consists of all vertices not yet removed
and all edges incident to these vertices. The witness search can be restricted to stop after
settling a small amount of vertices. This might add unnecessary shortcuts but does not affect
correctness, while having the potential to speed up the algorithm. Vertex importance is
usually determined by a combination of different measures. Metrics successfully implemented
in previous work (and used in the implementation we compare against in our evaluation)
are the amount of shortcuts added when a vertex were removed next, the number of hops
represented by these shortcuts and an additional level metric that helps removing vertices
uniformly throughout the graph. These numbers have in common that they only change
when a neighbor of a vertex is removed from the graph. The algorithm therefore maintains
all vertices in a priority queue with their importance as key. When a vertex is removed, the
importance of its neighbors are updated. The query algorithm is a bidirectional Dijkstra
search that only relaxes edges that connect a vertex to a more (less) important vertex in the
forward (backward) search. Due to this, edges only need to be stored at the end point that
is removed first.

3 More Related Work

There has been a lot of work on route planning. Refer to [3] for a recent overview. Here
we only give selected references to place EHs into the big picture. Besides hierarchical
route planning techniques there are also techniques which direct the shortest path search
towards the goal (e.g., landmarks [13], precomputed cluster distances [18], arc flags [19]). On
road networks goal directed techniques are usually inferior to hierarchical ones since they
need considerably more query or preprocessing time. However, combining goal directed and
hierarchical route planning is a useful approach [13, 6]. We expect that this is also possible
for EHs using the same techniques as used before. Other techniques allow very fast queries
by building shortest paths directly from two (hub labeling [1]) or three (transit node routing
[4, 2]) precomputed shortcuts without requiring a graph search. However, these methods
require considerably more space than EHs.

4 Edge Hierarchies

The main idea of EHs is to provide a precomputed data structure that allows queries similar
to those of CHs: All shortest paths can be found by a bidirectional Dijkstra search that only
searches “upwards”. In contrast to CHs, which build a hierarchy of vertices, EHs build a
hierarchy of edges. Let r(u, v) denote the rank assigned to the edge (u, v). Then, paths found
by an EH query have the form (s = v0, . . . , vm, . . . , vn = t) with r(vi−1, vi) ≤ r(vi, vi+1) for
0 < i ≤ m and r(vi−1, vi) ≥ r(vi, vi+1) for m < i < n (allowing s = m or t = m). In line
with the terminology from CHs, we call such paths up-down paths.

The EH query is a modified version of the bidirectional variant of Dijkstra’s algorithm:
In addition to the distance label dist, we maintain a rank label r at every node, set to 0 for s
and t. When settling a vertex u, only edges with r(u, v) ≥ r(u) are relaxed. Whenever dist(v)
is updated while relaxing an edge (u, v), r(v) is set to r(u, v). For a stopping condition, the
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Figure 1 Search space of an EH Query. Blue edges are in the search space of the forward search,
orange edges are in the search space of the backward search. Boxed numbers are edge ranks, unboxed
numbers are edge weights.

Algorithm 1 BuildEdgeHierarchy.

currentRank ← 0;
while Unranked edges remain do

Pick unranked edge (u, v);
r(u, v)← currentRank++;
for all unranked edges (u′, u) do

for all unranked edges (v, v′) do
if dist(u′, v′) = w(u′, u) + w(u, v) + w(v, v′) then

Add shortcut (u′, v) or (u, v′); // Or adjust weight + unset rank
end

end
end

end

algorithm maintains an upper bound d for dist(s, t) (initially ∞) which is updated whenever
a vertex is settled that has already been settled from the other direction. No edges leaving
vertices with dist(v) > d are relaxed. Figure 1 illustrates the search space of an Edge
Hierarchy Query. Note how the edges ranked 2 and 3 are not in the search space of the
backward search, even though their target vertex is settled.

Algorithm 1 shows an algorithm template for constructing an EH. Initially, all edges are
unranked (which we will treat as rank ∞). In iteration i, we pick an unranked edge (u, v)
and set its rank to i . We then iterate over all unranked edges (u′, u) and (v, v′) and test
whether (u′, u, v, v′) is a shortest path. If yes, we add either (u′, v) or (u, v′) as a shortcut.
If either of these two edges already exists, we instead adjust its weight and reset its rank to
∞, if it was already ranked before.

I Theorem 1. For every pair of vertices s and t, such that there is a path from s to t in
the input graph, Algorithm 1 assigns ranks and adds shortcuts such that there is a shortest
up-down path from s to t.

Proof. We prove this by showing the following: If at the beginning of iteration i, there is a
shortest path from s to t that only uses unranked edges, then in iteration j > i, there exists
an up-down-path p from s to t that only uses edges of rank ≥ i. As at the beginning of the
first iteration, all edges are unranked, this proves the theorem.

In iteration i, an edge e gets ranked. Let p be a shortest path from s to t consisting
only of unranked edges. If e is not part of p, then p is still a shortest path that only uses
unranked (rank ∞) edges (which is an up-down path by definition).
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Figure 2 Example showing that EH construction needs to calculate distances on the complete
graph. Boxed numbers are edge ranks, unboxed numbers are edge weights.

If e is at neither end of p, then a shortcut is inserted that replaces two edges of p, so
there still is a shortest path only using unranked edges from s to t.

If e = (s, v) (the case e = (v, t) is analogous) we distinguish two cases:
1. There still exists a shortest path of unranked edges from s to v: Then there is also a

shortest path of unranked edges from s to t.
2. There is no shortest path of unranked edges from s to v: Then (s, v) gets assigned rank i

and can never change its rank (note for this, that edges can only be inserted or assigned
to a different rank if there is a shortest path of unranked edges between their endpoints).
Furthermore, there is a shortest path of unranked edges from v to t. By induction, in
every iteration j > i, there will be an up-down-path from v to t that uses only edges of
rank ≥ i. By adding the edge (s, v) to the beginning of that path, we get an up-down
path from s to t.

As the induction basis, note that at the end of the algorithm, no edges are unranked, so the
claim holds trivially. J

Note that from the induction in the proof above, it follows that we can use the EH query
for the distance calculation in Algorithm 1.

The algorithm can also be slightly altered by only adding a shortcut if (u′, u, v, v′) is the
only remaining unranked shortest path from u′ to v′. However, preliminary experiments
showed that the version presented here yields better results.

An important difference to CH construction is that Algorithm 1 has to calculate distances
in the complete graph, whereas CH construction only has to query the overlay graph. See
Figure 2 for an example why using the overlay graph does not suffice for EHs: If (b, d) is
assigned rank 2, we need to check whether p = (a, b, d, c) is a shortest path. If only the
overlay graph were used for the distance calculation, then we would falsely assume that p is
a shortest path and add a shortcut.

4.1 Shortcut Selection
The choice of the shortcut that is added in the inner loop of Algorithm 1 can make a
significant impact on the total number of shortcuts added. For example, in Figure 3, we
could either add the shortcut (u, v′) or all of the shortcuts (u′i, v) (assuming (u′i, u, v, v′) is
a shortest path for all u′i). In contrast, in CHs there is no choice of which shortcut to add.
We minimize the number of shortcuts added using a solution to a minimum bipartite vertex
cover problem for every iteration of the outer while-loop of Algorithm 1.

The problem (U ∪ V,E) is constructed as followed: Instead of directly adding one of the
two possible shortcuts, we add the vertices u′, v′ to U, V respectively (if they have not been
added before) and an edge between them.

ATMOS 2019
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Figure 3 When ranking (u, v), we could either add all shortcuts (u′
i, v) or just (u, v′).

After all shortcut candidates for an iteration of the outer loop have been added to the
bipartite graph, we compute a minimum Vertex Cover C. Note that this can be done in
polynomial time via maximum cardinality bipartite matching using König’s Theorem. We
then add the shortcuts (u′, v) for every u′ ∈ U ∩C and (u, v′) for every v′ ∈ V ∩C. It is easy
to verify that for every pair of candidate shortcuts, one is added. Also, every set of shortcuts
added implies a Vertex Cover for the graph above, so finding a minimum Vertex Cover
minimizes the number of shortcuts added in every iteration of the construction algorithm,
given the edge that is assigned a rank.

To further minimize the number of shortcuts added, we always prefer edges already
present in the graph: if (u′, v) or (u, v′) is already in the graph (ranked or unranked), we
change its weight accordingly and reset its rank. The pair (u′, v′) is then not added to the
minimum Vertex Cover problem described above.

4.2 Edge Selection

In every iteration of Algorithm 1, an edge is selected to rank. Our heuristic to select these
edges is guided by two goals: Adding a small number of shortcut edges to the graph, and
ranking edges uniformly throughout the graph. Here, we present the version that produced
the best results in our preliminary experiments. Other versions that resemble the vertex
selection strategies used for CHs resulted in worse preprocessing and query times.

Our heuristic works in rounds: in the beginning of each round, a set of edges to rank is
selected and fixed. Only when all edges selected are ranked, a new round is started and a
new set of edges is selected. Edges are selected by counting for each unranked edge e the
number of new shortcuts that would be added if e was ranked. This is done by simulating
an iteration of the outer while-loop of Algorithm 1 without actually adding any shortcuts to
the graph and resetting r(u, v) to ∞ afterwards. Then, we select all edges that cause the
minimum number of shortcuts among all their incident edges.

4.3 Stalling

A technique that significantly reduces query times for CHs is called Stall on Demand. The
idea is to stall the search at vertices that do not lie on a shortest path from s to t by checking
whether a shorter path can be found via incoming (outgoing) downward edges in the forward
(backward) search. This can happen because CHs only guarantee shortest up-down paths
between any pairs of vertices. The same is true for EHs. We present two stalling techniques
that can be used with EHs.
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Stall on Demand. In EHs any edge can be a downward or an upward edge depending on
the rank of the edges leading to the source vertex of that edge. Stall on Demand checks
all incoming (outgoing) edges in the forward (backward) search.

Stall in Advance. Stall on Demand may relax every edge twice: Once when settling the
source (target) vertex and once for stalling when settling the target (source) vertex in
the forward (backward) search. Stall in Advance relaxes every edge at most once: when
settling a vertex u, we not only relax all outgoing (incoming) edges that are ranked
higher than the path to u, but also all edges that are ranked lower. However, we do not
update dist with the distance computed via the low ranked edges. Instead, we store it
in a separate stallDist label. To check whether we can stall the search at vertex v, we
compare dist(v) with stallDist(v). If stallDist is smaller, we can stall at v.

5 Experimental Evaluation

We implement EHs in C++ and compile with gcc 7.4.0 using full optimizations (-O3). Our
implementation of the construction algorithm is relatively straight forward without much
emphasis on optimizations. For queries, we use adjacency arrays for incoming and outgoing
edges and sort all edges incident to a vertex in descending order of their rank. This way
we can stop iterating over a vertex’s neighborhood once we find an edge with a lower rank
than allowed for the current path. Additionally, we reorder the vertices in depth-first-search-
preorder for better memory locality. The EH construction algorithm uses CH queries to find
the distance between two vertices. The source code is available on GitHub1.

For comparison with CHs, we use the implementation from RoutingKit2 [9] where queries
use Stall on Demand.

The machine used for all experiments is equipped with 4 x Intel Xeon E5-4640 at 2.4
GHz and 512 GiB DDR3-PC1600 RAM but only a single core is utilized.

5.1 Data Sets
We evaluate EHs on two benchmark graphs from the DIMACS Challenge on Shortest Paths [8]:
The road network of Western Europe from PTV AG with 18 million vertices and 42 million
directed edges, and the TIGER/USA road network with 23 million vertices and 29 million
undirected edges (resulting in 58 million directed edges), as well as smaller subsets of the
TIGER/USA graph. Both graphs are available with edge weights corresponding to travel
times or geographic distance.

In addition to these graphs, we also evaluate the performance on graphs that model the
cost for taking turns at a crossing. We follow the approach used in [7, 3] to define simple
turn costs that reportedly yield performance characteristics similar to truly realistic values:
For the travel time metric, we assign costs of 100 seconds for U-turns (meaning an edge
pair (u, v), (v, u)) and 0 for all other turns. For the distance metric, all turns are free. We
explicitly model turns into our graphs. This can be done by splitting every vertex v into a
number of vertices equal to its degree and connecting each new vertex to one of v’s incident
edges. Then, edges between the new vertices are added: For each vertex incident to one of
v’s incoming edges, an edge is added to each of the vertices incident to one of v’s outgoing
edges. The weights of these new edges are set to the turn costs. We use a more compact

1 https://github.com/Hespian/EdgeHierarchies
2 https://github.com/RoutingKit/RoutingKit
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Figure 4 Left: Original graph. Right: Graph with added turns. 100 seconds are added to the
edge corresponding to a U-turn.

representation of the same concept: We only split a vertex into a number of vertices equal to
its outgoing degree and connect incoming edges directly to these new vertices, adding the
turn costs to the edge weights. Figure 4 shows an example for travel times. Table 1 lists all
instances and their sizes used in our evaluation.

The distance metric as well as adding turn information are cases in which CHs were
shown to perform significantly worse than with the travel time metric and without turn
information (e.g. [7]).

Table 1 Instances used in our evaluation. With turns are original instances with added turns.

Original With turns
Graph |V | |E| |V | |E|

USA.BAY 321 270 794 830 794 830 2 279 208
USA.W 6262 104 15 119 284 15 119 284 41 815 474
USA.CTR 14 081 816 33 866 826 33 866 826 93 609 832
USA 23 947 347 57 708 624 57 708 624 159 734 066
EUROPE 18 010 173 42 188 664 42 188 664 113 953 602

5.2 Choosing the Right Stalling Technique
In this section we evaluate the stalling techniques explained in Section 4.3. To get some
insight in how stalling performs for other techniques, we compare to Stall on Demand for
CHs. Tables 2 and 3 compare the query times, number of vertices settled and edges relaxed
for different stalling techniques averaged over 100 000 random queries. The number of edges
actually relaxed and the number of edges “relaxed” to check whether the search can be stalled
are shown separately. We also count the number of vertices that are settled at their actual
distance to the source vertex (min. vertices). This gives an insight into how many vertices
would be settled with a perfect stalling technique. For the travel time metric, EHs with both
Stall on Demand and Stall in Advance perform more stall checks than CHs, outweighing the
savings in number of vertices settled and leading to longer query times than without any
stalling. For the distance metric, Stall on Demand reduces the number of vertices settled
for EHs to less than for CHs. The total of number of edges touched is also less for EHs.
However, running times are still faster without stalling because less edges are relaxed (or
considered for stalling) and thus less distance labels are touched. Due to the additional
distance label, Stall in Advance significantly increases query times. The last column also
shows that stalling holds more potential for CHs than for EHs. However, we also see that
EHs already perform relatively well without stalling: CHs on the travel time metric would
have to settle more than twice as many vertices as EHs if no stalling was used and even
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Table 2 Query results for different stalling techniques for Edge Hierarchies and Contraction
Hierarchies on the EUROPE road network with the travel time metric and turns.

Algo. Stalling time [µs] settled relaxed stall checks min. vertices
E
H

- 199 906 1734 -
361S. on Demand 250 604 958 11920

S. in Advance 471 614 982 10563

C
H S. on Demand 130 533 1969 2888 253

- 338 1996 15500 -

Table 3 Query results for different stalling techniques for Edge Hierarchies and Contraction
Hierarchies on the EUROPE road network with the distance metric and turns.

Algo. Stalling time [µs] settled relaxed stall checks min. vertices

E
H

- 608 2573 5586 -
638S. on Demand 642 1368 2276 29192

S. in Advance 1387 1439 2442 26959

C
H S. on Demand 634 1943 16849 25007 704

- 3403 12320 300758 -

when not counting the stall checks, CHs with Stall on Demand relax more edges than EHs.
For the distance metric, this is even more severe: Here, the search space for CHs without
Stall on Demand increases so much that query times increase to over 3 ms. EHs already
settle a reasonably small number of vertices without stalling.

These experiments show that the increased number of edges touched outweighs the
decreased number of vertices settled. Thus, a stalling technique that only touches some
more edges might lead to improved running times if it successfully stalls at enough vertices.
Figure 5 shows the performance when only a fraction of the edges incident to a vertex are
considered for Stall on Demand – going from high ranked edges to low ranked edges (note
that this can be done efficiently in our implementation as edges are stored ordered by their
rank). We are going to refer to this as partial stalling from here on. We see a slight increase
in running time due to the associated calculations (see the data point for x = 0.0) but all
instances shown benefit from partial stalling for some fraction (10% for travel times and 30%
for distances).

5.3 Main Results
As EHs share similarities with CHs, both using similar query algorithms, we compare the
two with respect to their preprocessing and query times as well as the number of vertices
settled and edges relaxed during queries. Another interesting property is the number of edges
in the hierarchy. Note however, that CHs only store each edge once, whereas EHs need to
store each edge at both endpoints. Tables 4 and 5 show these numbers averaged over 100 000
random queries. We execute queries without Stall on Demand and with partial stalling in
increments of 10%. The numbers reported here are for the best query times among these
stalling configurations as indicated by the last column. In a real-world system the optimal
configuration could be found as a part of the preprocessing step. Due to time restrictions,
the construction was only run once for each algorithm and instance. Checking whether the
search can be stalled at a vertex is essentially an edge relaxation (minus priority queue
operations), so we combine these numbers here. We can see that EHs suffer less from adding

ATMOS 2019
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Figure 5 Speedup of query with partial stalling over unstalled query with different fractions of
edges used for stalling. Times were measured on the EUROPE road network.

turns to the graphs than CHs. While the number of shortcuts added is comparable for EHs
and CHs on the original graphs (with CHs even adding slightly fewer), CHs add significantly
more when turns are added. This can also be seen in the number of edges relaxed: The
number of edges relaxed with and without turns are very similar for EHs. For the distance
metric, EHs perform even better when adding turns than on the original inputs. With turns,
EHs almost always relax less than half as many edges as CHs. This shows that the intuition
behind EHs – ranking roads (edges) rather than junctions (vertices) – helps to better prune
roads that are irrelevant for the query. However, CHs usually settle between 2 and 3 times
less vertices (except for the distance metric with turns where EHs often settle less vertices
than CHs). Overall this leads to longer query times for EHs in most cases. For the distance
metric with turns, query times for EHs are close to CHs – for the EUROPE instance EHs
even achieve faster queries. The preprocessing step is much faster for CHs, partially due to
our unoptimized implementation, but the CH vertex ranking also only updates the neighbors
of a vertex after it was ranked. The edge ranking we use, on the other hand, simulates
the ranking of every edge for each round of edge selection. The CH implementation in
RoutingKit also limits the number of steps done for the witness search, giving additional
speed up. As EHs have to find witnesses and (depending on the edge ranking technique)
calculate importance values for every edge, compared to CHs having to do the same for every
vertex, longer preprocessing times are to be expected.

The random queries used for the experiments above are long-ranged on average. However,
real-world queries tend to be short-ranged. For this reason, Sanders and Schultes [20]
introduce an evaluation methodology using Dijkstra Ranks. When running a Dijkstra query
starting at some vertex in the graph, the ith vertex removed from the priority queue is
assigned Dijkstra Rank i. Figures 6 and 7 show the number of vertices settled, number of
edges relaxed, and query times for vertices of Dijkstra Ranks 26, . . . , 2blog |V |c from 1 000
random starting vertices. This way, the performance of algorithms can be observed for both
short-ranged and long-ranged queries (and everything in between). EHs use 10% and 30%
partial stalling for travel times and distances, respectively. The comparison between number
of vertices settled and query time shows that the algorithm that settles less vertices has
the faster query time and edge relaxations play a less important role. This is likely due to
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Table 4 Running times and search space sizes of Edge Hierarchies and Contraction Hierarchies
on different graphs with the travel time metric.

Graph Prepr. [s] |E| [M] Query [µs] settled relaxed stall.
EH CH EH CH EH CH EH CH EH CH %

O
rig

in
al

USA.BAY 100 6 1.4 1.4 37 16 301 108 710 679 -
USA.W 1785 153 27.5 27.4 96 37 538 193 1299 1386 -

USA.CTR 4389 482 61.5 61.1 140 53 612 254 3132 2136 10
USA 7145 674 104.5 104.0 153 60 643 271 3320 2253 10

EUROPE 3171 453 70.3 70.3 138 75 607 356 2443 2967 10

W
ith

tu
rn
s USA.BAY 634 156 4.0 6.0 79 67 511 362 929 3253 -

USA.W 9403 2730 69.9 105.1 165 124 748 564 1365 4810 -
USA.CTR 25084 7316 159.3 239.2 240 172 885 700 3126 6530 10

USA 45904 15462 270.3 404.3 250 186 900 737 3217 6792 10
EUROPE 17822 4743 194.0 249.1 191 130 726 533 2662 4857 10

Table 5 Running times and search space sizes of Edge Hierarchies and Contraction Hierarchies
on different graphs with the distance metric.

Graph Prepr. [s] |E| [M] Query [µs] settled relaxed stall.
EH CH EH CH EH CH EH CH EH CH %

O
rig

in
al

USA.BAY 166 9 1.5 1.5 73 30 560 180 1440 1686 -
USA.W 3435 243 28.6 28.5 254 96 1002 446 8183 6045 20

USA.CTR 13062 1157 65.7 65.5 526 216 1697 832 20041 15561 30
USA 21041 1537 110.8 110.7 573 235 1769 897 21461 16787 30

EUROPE 14487 2152 79.6 79.6 538 355 1756 1179 19793 27807 30

W
ith

tu
rn
s USA.BAY 476 158 3.6 5.7 95 92 623 470 1149 4979 -

USA.W 8452 3338 64.9 102.3 278 250 1289 993 2564 13402 -
USA.CTR 30313 13629 148.5 235.7 556 537 1477 1743 15286 31629 40

USA 58025 30869 251.1 398.3 604 580 1605 1849 13712 33436 30
EUROPE 24757 13266 172.3 267.2 533 634 1543 1943 13355 41856 30

vertex accesses causing more cache misses than accesses to the edges of a singe vertex. If one
would improve the cache efficiency by better node orderings or other improvements, it seems
possible that EHs decreased number of relaxed edges can outweigh the increased number of
settled vertices.

6 Future Work

For CHs there is a lot of experience with configuring the preprocessing process. The additional
complications of EH preprocessing make it likely that much better versions are possible also
for EHs. Trying different ways of cleaning up the distance labels for new queries might lead to
some improvements as preliminary experiments showed some effect here. Due to EHs being
less cache-efficient than CHs right now, we expect them to profit more from such changes. On
the application side, we can look for networks with different characteristics where EHs might
have advantages. For road networks, we might harvest the advantage in number of relaxed
edges by looking at generalizations of static shortest path search where edge relaxations are
expensive, e.g., time-dependent edge costs [5, 17] or multicriteria shortest paths.

ATMOS 2019
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Figure 6 Number of vertices settled and edges relaxed, and query times for different Dijkstra
Ranks on EUROPE with the travel time metric and turns.
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Figure 7 Number of vertices settled and edges relaxed, and query times for different Dijkstra
Ranks on EUROPE with the distance metric and turns.
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