
Maximizing the Number of Rides Served for
Dial-a-Ride
Barbara M. Anthony
Southwestern University,
Georgetown TX 78626, USA
anthonyb@southwestern.edu

Ricky Birnbaum
Connecticut College,
New London CT 06320, USA

Sara Boyd
Southwestern University,
Georgetown TX 78626, USA

Ananya Christman
Middlebury College,
Middlebury VT 05753, USA
achristman@middlebury.edu

Christine Chung
Connecticut College,
New London CT 06320, USA
cchung@conncoll.edu

Patrick Davis
Connecticut College,
New London CT 06320, USA

Jigar Dhimar
Connecticut College,
New London CT 06320, USA

David Yuen
Kapolei HI 96707, USA
yuen888@hawaii.edu

Abstract
We study a variation of offline Dial-a-Ride, where each request has not only a source and destination,
but also a revenue that is earned for serving the request. We investigate this problem for the uniform
metric space with uniform revenues. While we present a study on a simplified setting of the problem
that has limited practical applications, this work provides the theoretical foundation for analyzing
the more general forms of the problem. Since revenues are uniform the problem is equivalent to
maximizing the number of served requests. We show that the problem is NP-hard and present a
2/3 approximation algorithm. We also show that a natural generalization of this algorithm has an
approximation ratio at most 7/9.

2012 ACM Subject Classification Theory of computation → Routing and network design problems

Keywords and phrases dial-a-ride, revenue maximization, approximation algorithm, vehicle routing

Digital Object Identifier 10.4230/OASIcs.ATMOS.2019.11

Acknowledgements The authors would like to thank Khanh Nghiem for helpful conversations
regarding components of this work.

1 Introduction

Due to their practical applicability, Dial-a-Ride Problems (DARP) have been studied from
the perspective of operations research, management science, combinatorial optimization, and
theoretical computer science. There are numerous variants of the problem, but fundamentally
all DARP variants require the scheduling of one or more vehicle routes and associated times to
satisfy a collection of pickup and delivery requests, or rides, from specified origins to specified
destinations. Each ride can be viewed as a request between two points in an underlying
metric space, with the ride originating at a source and terminating at a destination. These
requests may be restricted so that they must be served within a specified time window, they
may have weights associated with them, details about them may be known in advance or
only when they become available, and there may be various metrics to optimize. For most
variations the goal is to find a schedule that will allow the vehicle(s) to serve requests within

© Barbara M. Anthony, Sara Boyd, Ricky Birnbaum, Ananya Christman, Christine Chung, Patrick
Davis, Jigar Dhimar, and David Yuen;
licensed under Creative Commons License CC-BY

19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2019).
Editors: Valentina Cacchiani and Alberto Marchetti-Spaccamela; Article No. 11; pp. 11:1–11:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2493-1251
mailto:anthonyb@southwestern.edu
https://orcid.org/0000-0001-9445-1475
mailto:achristman@middlebury.edu
https://orcid.org/0000-0003-3580-9275
mailto:cchung@conncoll.edu
mailto:yuen888@hawaii.edu
https://doi.org/10.4230/OASIcs.ATMOS.2019.11
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

11:2 Maximizing the Number of Rides for DARP

the constraints, while meeting a specified objective. Much of the motivation for DARP
arises from the numerous practical applications of the transport of both people and goods,
including delivery services, ambulances, ride-sharing services, and paratransit services.

We study offline DARP on the uniform metric (i.e. where the distance between any
pair of locations is the same for all pairs) with a single server where each request has a
source, destination, and revenue. The server has a specified deadline after which no more
requests may be served, and the goal is to find a schedule of requests to serve that maximizes
the total revenue. We furthermore assume uniform revenues, and refer to this problem as
URDARP. URDARP is thus equivalent to maximizing the number of rides served by the
deadline. Although this form of the problem has fewer practical relevance than more general
forms, it can be applied to urban settings where it is reasonable to assume that a driver
would like to serve as many requests as possible and these requests take roughly the same
amount of time to serve. Our motivation for analyzing this basic form of the problem is
that doing so would allow us to extend the analysis to more general versions, which have
more practical applications, unlike this simplest form. However, we found in the course of
our work that analyzing this basic form was challenging in itself. We found that even this
fundamental variant is in fact NP-hard, and its analysis elusive. We expect it will provide
the theoretical foundation for analyzing the more general forms of the problem.

In particular, we have found that any DARP algorithm for the nonuniform revenue variant
that greedily chooses one request at a time to serve can be at best a 1/2-approximation.
Lemma 1 in Section 2 details what happens when, for example, the greedy strategy is
based on largest revenue. We have found a similar outcome for the variant of DARP on
a non-uniform metric with uniform revenues. Lemma 2 in Section 2 details what happens
when the greedy strategy is based on shortest request.

We therefore consider algorithms that give preference to sequences of requests that are
“chained” together, i.e. such that each request in a sequence is served immediately after the
previous request of that sequence. More formally, a chain of requests is defined as a sequence
of requests such that (1) for all requests except the first, the source is the destination of
the previous request and (2) for all requests except the last, the destination is the source
of the next request. Specifically, we consider an algorithm we call twochain that gives
preference to requests that are in chains of length at least two. We focus on this algorithm
and URDARP because, with an understanding of this fundamental setting, we can then
work to break the barrier of 1/2 in the setting with general revenues.

In sum, the focus of this work is on offline URDARP (i.e. DARP with a single vehicle, on
the uniform metric, with uniform revenues). We begin by showing even this basic problem
is NP-hard by a reduction from the Hamiltonian Path problem. We then show that our
twochain algorithm yields a 2/3-approximation, and exhibit an instance where twochain
serves exactly 2/3 the optimal number of requests. Since twochain yields a tight 2/3-
approximation, with a matching lowerbound instance that is quite simple and clean, we
expected that the natural generalization of the algorithm, an algorithm we call k-chain,
would yield a k/(k + 1)-approximation. Surprisingly, it does not. We exhibit an instance of
URDARP where k-chain earns at most 7/9 times the revenue of the optimal solution. We
conclude with a discussion of how the (non polynomial-time) algorithm that greedily always
chooses the longest chain gives at most a 5/6-approximation.

1.1 Related Work
DARP has been extensively studied and there are numerous variations on the problem,
including the number of vehicles, the objectives, the presence or absence of time windows,
and how the request sequence is issued (i.e. offline or online). The 2007 survey The dial-

B.M. Anthony et al. 11:3

a-ride problem: models and algorithms [8] provides an overview of some of the models and
algorithms, including heuristics, that have been studied. A decade later, Typology and
literature review for dial-a-ride problems [9] focuses on classifying the existing literature based
upon applicability to particular real-world problems, again including both algorithms with
theoretical guarantees and heuristics. To our knowledge, despite its relevance to modern-day
transportation systems, the version of the problem we investigate in this paper has not been
previously studied, neither for the uniform nor general metric space.

However, there are a few variants that have similarities to our version. Our DARP
variant is closely related to the Prize Collecting Traveling Salesperson Problem (PCTSP)
where the server earns a revenue (or prize) for every location it visits and a penalty for
every location it misses, and the goal is to collect a specified amount of revenue while
minimizing travel costs and penalties. PCTSP was introduced by Balas [3] and studied by
many others including Awerbuch et al. [2], who gave the first approximation algorithms with
polylogarithmic performance. Bienstock et al. developed a 2-approximation for a version of
PCTSP where there is a cost for each edge and a penalty for each vertex, and the goal is
to find a tour on a subset of the vertices that minimizes the sum of the cost of the edges
in the tour and the vertices not in the tour [4]. Blum et al. gave the first constant-factor
approximation algorithm for the Orienteering Problem where the input is a weighted graph
with rewards on nodes and the goal is to find a path that, starting at a specified origin,
maximizes the total reward collected, subject to a limit on the path length [5]. The online
variant of the PCTSP, where the cities arrive over time, has also been studied by Ausiello
et al. [1] who presented a 7/3-competitive algorithm.

The online revenue-maximization variant of DARP, where requests have non-uniform
revenue and a release time at which they become known to the server and the goal is to
serve requests so as to maximize total revenue by a specified deadline, was also studied for
the uniform metric in [7] and a non-uniform metric in [6], where Christman et al. presented
competitive algorithms with ratios 1/2, and 1/6, respectively.

2 Preliminaries

The input to URDARP is a uniform metric space, a set of requests, and a time limit T . Each
request has a source point and a destination point in the metric space, and a revenue, where
the revenues are uniform. A unit capacity server starts at a designated location in the metric
space, the origin. The goal is to move the server through the metric space, serving requests
one at a time so as to maximize the revenue earned in T time units, which, with uniform
revenues, is equivalent to maximizing the number of requests served. For an URDARP
instance I, opt(I) denotes an optimal schedule on I.

We refer to a move from one location to another as a drive. If a request is being served
then we refer to it as a service drive (sometimes referred to in the literature as a carrying
move). If the drive is not serving a request and solely for the purpose of moving the server
from one location to another we refer to it as an empty drive (sometimes referred to in the
literature as an empty move). We refer to a sequence of one or more requests that are served
without any intermediary empty drives as a chain and a sequence of two requests that are
served without an empty drive in between as a 2-chain.

We now provide two lemmas regarding a more generalized version of URDARP, where
the revenues are nonuniform; we refer to this variant as RDARP. By an analysis similar
to that of the online Greatest Revenue First (GRF) algorithm, studied by Christman and
Forcier [7], it can be shown that the simple greedy algorithm that repeatedly finds and serves

ATMOS 2019

11:4 Maximizing the Number of Rides for DARP

the highest-revenue request of those remaining is a 1/2-approximation for RDARP as well.
We now give the matching bound, showing that this greedy algorithm can yield at best a
1/2-approximation.

I Lemma 1. The approximation ratio of the greedy algorithm that repeatedly chooses a
maximum-revenue request to serve for RDARP is no greater than 1/2.

Proof. Consider an instance with x requests chained together each with revenue r, and x
individual requests, none of which are connected to other requests, each with revenue r + ε

for some small ε > 0. No requests start at the origin o. Let T = x+ 1. opt will serve all of
the x requests that are chained together, earning xr revenue. An algorithm that greedily
chooses one request at a time to serve will serve only the requests with revenue r + ε, and
can serve only bx/2c of them in time T , earning bx/2c(r + ε). J

We assume for the remainder of this work that revenues are uniform. We now show that
if we instead consider a non-uniform metric, the approximation ratio of a similar greedy
algorithm is at most 1/2.

I Lemma 2. The approximation ratio of the algorithm that greedily chooses the shortest
request to serve for DARP with uniform revenues on a non-uniform metric is no greater
than 1/2.

Proof. Let a, b, and c denote three points on a non-uniform metric space such that the
distance between a and b and b and c is T/k for some positive even integer k such that T
mod k = 0, and the distance between a and c is T/k − ε, for some small ε > 0. Let a be the
origin. Consider an instance on this space with k/2 requests from a to b, k/2 requests from
b to a, and k/2 requests from a to c. opt will alternately serve the k/2 requests from a to b
and the k/2 requests from b to a, i.e. as a chain of k requests. An algorithm that greedily
chooses the shortest request at a time to serve will serve only the requests from a to c while
spending T/k − ε time on an empty drive from c to a between each serve, thereby serving
k/2 requests in total. J

2.1 Hardness
While it was already shown in [6] that the problem of offline RDARP on a general metric is
NP-hard, we now show that even URDARP, where the metric is uniform and the requests
have uniform revenue, is NP-hard by reduction from the Hamiltonian Path problem. The
reduction proceeds as follows.

Given a directed Hamiltonian Path input G = (V,E) where n = |V |, build a uniform
metric space G′ with 2n+ 2 points (see Figure 1): one point will be the server origin o, one
will be a designated “sink” point t, and the other 2n points are as follows. For each node
v ∈ V , create a point v′ and a point v′′ in G′. Create a URDARP request in G′ from point
v′ to point v′′ for each v ∈ V , which we will refer to as a node request. Further, for each edge
e = (u, v) in E of G, create a URDARP request from point u′′ to point v′ in G′, which we
will refer to as an edge request. Additionally, for each v ∈ V , create an edge request from
v′′ to the designated sink point t in G′. Set T = 2n+ 1. Finally, make the server origin a
separate point that is one unit away from all other points.

I Lemma 3. There is a Hamiltonian Path in G if and only if 2n requests can be served
within time T = 2n+ 1 in the URDARP instance.

B.M. Anthony et al. 11:5

Figure 1 An example instance G of the Hamiltonian Path problem where n = 5 (left), and its
corresponding instance for URDARP where T = 2n + 1 (right). Any Hamiltonian path on a graph
of n vertices has length n− 1, which would correspond to a sequence in the corresponding URDARP
instance of 2n− 1 requests (since a URDARP request is created for each vertex and each edge of
G). But note that here there is no Hamiltonian path in G, yet the URDARP instance still has a
sequence of requests of length 2n− 1 which starts from e′. The extra edges we add from each point
v′′ to t in the URDARP instance prevent such false positives by ensuring that any Hamiltonian path
in G will in fact correspond to a URDARP sequence of length 2n.

Proof. Let p = (v1, v2, . . . , vn) be a Hamiltonian Path in G. Construct the sequence of 2n
URDARP requests in G′ by the node request from v′1 to v′′1 , the edge request from v′′1 to v′2,
the node request from v′2 to v′′2 , the edge request from v′′2 to v′3, and so forth, through the
edge request from v′′n−1 to v′n, the node request from v′n to v′′n, and finally the edge request
from v′′n to the designated sink t. This sequence can be executed in time T = 2n+ 1 since it
requires one unit of time for the server to drive from the origin to v′1 and 2n units for the
remaining drives.

Conversely, consider a URDARP sequence in G′ of length 2n. Note that by construction
of G′, any sequence of URDARP requests must alternate between node requests and edge
requests, where any edge to the sink is counted as an edge request (and must be a terminal
request). Since destinations in G′ can be partitioned into the sink, single-primed points, and
double-primed points, we can thus analyze the three possibilities for the destination of the
final URDARP request.

If either the sink or a single-primed point is the destination for the final URDARP request,
the URDARP sequence must end with an edge request. The alternating structure ensures the
URDARP sequence begins with a node request, and thus contains exactly n node requests
and n edge requests. If a double-primed point is the destination for the final URDARP
request, the URDARP sequence must end with a node request. The alternating structure
ensures the URDARP sequence begins with an edge request, and contains exactly n edge
requests and exactly n node requests. Thus, the URDARP sequence always contains n node
requests. This ensures that the length n path in the original graph G includes all n vertices
in the original graph G, and thus the existence of a Hamiltonian Path. J

Due to the above reduction procedure along with Lemma 3, we have the following theorem.

I Theorem 4. The problem URDARP is NP-hard.

For the remainder of the work we focus strictly on URDARP (uniform metric, uniform
revenues).

ATMOS 2019

11:6 Maximizing the Number of Rides for DARP

3 Algorithms

We begin by presenting our twochain algorithm that is a 2/3-approximation for URDARP
(please see Algorithm 1 for details). The idea of this polynomial-time algorithm is that it
simply looks for chains of requests of length at least 2 whenever a drive is required. At each
time unit if there is a request that starts at the current location of the server, the server
will always serve that request (continuing the chain) rather than driving away to a different
request. We note that this subtlety makes the algorithm differ from the algorithm that
simply chooses any 2-chain to serve; the approximation ratio of this latter algorithm is an
open problem. In addition, the server is never “idle” in that if there are remaining requests
to serve that can be served before the deadline, the server will drive to serve one of them.

While the analysis of twochain we provide requires many detailed cases, we were
surprised to discover that simpler more elegant approaches all failed in subtle ways, indicating
to us the problem is more nuanced than what one expects at first blush. We believe that
the interplay between requests and the possibility for numerous criss-crosses of chains of
requests prevents simpler analyses. We note that our proof actually yields a guarantee of not
only 2/3 of the optimal number of requests, but instead 1/3(|OPT |+ T − 1), where T is the
time limit.

3.1 The TWOCHAIN Algorithm

Algorithm 1 The twochain algorithm.

1: Input: Set S of requests, time limit T , origin o
2: Set t := T

3: Let S′ denote the subset of requests (a, b) ∈ S where b is the source of another request
in S.

4: while t > 0 do
5: if there exists a request starting from o in S then
6: Choose one such request (o, b), with preference given to requests from S′.
7: Serve (o, b).
8: t := t− 1
9: Remove (o, b) from S (and S′ if (o, b) was in S′).
10: o := b, and update S′ based on the new S.
11: else if t ≥ 2 and requests remain in S then
12: Choose one such request (a, b), with preference given to requests from S′.
13: Drive from o to a, then serve the request (a, b).
14: t := t− 2
15: Remove (a, b) from S (and S′ if (o, b) was in S′).
16: o := b, and update S′ based on the new S.
17: else . no requests remain (that we have enough time to serve)
18: t := t− 1

Let S, T , and o denote the set of requests, time limit, and origin, respectively. Let
OPT (S, T, o) and ALG(S, T, o) denote the schedules returned by OPT and twochain,
respectively, on the instance (S, T, o) and let |OPT (S, T, o)| and |ALG(S, T, o)| denote the
number of requests served by OPT and twochain, respectively.

We begin by showing that in the special case where the deadline is more than twice the
number of requests, twochain is optimal.

B.M. Anthony et al. 11:7

I Lemma 5. If T ≥ 2|S| then |OPT (S, T, o)| = |ALG(S, T, o)| = |S|.

Proof. By induction on |S|. If |S| = 1, then clearly twochain can serve the request if
T ≥ 2. If |S| ≥ 2, then within the first two time units twochain serves at least one request.
So there are at most |S| − 1 remaining requests to serve within T − 2 time. Since T ≥ 2|S|,
then by the inductive hypothesis, T − 2 ≥ 2(|S| − 1), so twochain can serve the remaining
requests within the remaining time. J

In the next lemma, we tackle the general case where the deadline T is tighter. We
prove a lower bound on what twochain earns, that will suffice for later showing it yields a
2/3-approximation.

I Lemma 6. Let m = |OPT (S, T, o)|. If T < 2|S|, then |ALG(S, T, o)| ≥ 1
3 (m+ T − 1).

Proof. Since T < 2|S|, S 6= ∅. Let k denote the number of requests in the first chain
served by twochain and denote this chain as (u0, u1), (u1, u2), . . . , (uk−1, uk). Let c denote
the number of drives twochain makes to get to the first request, that is, either c = 0
if there is a request starting at o and c = 1 if not. After twochain serves the first
chain, we are left with a smaller instance of the problem (Snew, Tnew, onew) where Snew =
S − {(u0, u1), (u1, u2), . . . , (uk−1, uk)}, Tnew = T − c− k, and onew = uk.

We proceed by strong induction on T . If T = 0, 1, or 2, then the lemma is trivially
true. If T ≥ 3, then since |S| > T/2, twochain serves at least one chain. We assume
inductively that |ALG(Snew, Tnew, onew)| ≥ 1

3 (|OPT (Snew, Tnew, onew)|+Tnew − 1) and will
show |ALG(S, T, o)| ≥ 1

3 (|OPT (S, T, o)|+ T − 1).

Case 1: k = 1.
Case 1.1: c = 1. Then there is no ride starting at o and the first chain has length 1, so

we know that there must be no 2-chains in S. Then all solutions require an empty
drive after each service drive, so |ALG(S, T, o)| = m = bT/2c ≥ T

2 −
1
2 and hence,

m ≥ 1
3 (m+ T − 1).

Case 1.2: c = 0. Then there is a ride starting at o but there is no 2-chain that starts at
o. Let OPT (S, T, o) return the path (o, v1), (v1, v2), . . . , (vT−1, vT). Therefore (o, v1)
and (v1, v2) cannot both be rides. Then the path (v2, v3), . . . , (vT−1, vT) has at least
m− 1 rides from S and therefore at least m− 2 rides from Snew = S − {(o, u1)}. So
the path (onew, v2), (v2, v3), . . . , (vT−1, vT) also has at least m − 2 rides from Snew.
Thus |OPT (Snew, T − 1, u1 = onew)| ≥ m − 2. By induction, |ALG(S, T, o)| ≥
1 + 1

3 (|OPT (Snew, T −1, u1)|+ (T −1)−1) ≥ 1 + 1
3 (m−2 +T −1−1) = 1

3 (m+T −1).
Case 2: k ≥ 2. There are two subcases.
Case 2.1: Tnew ≥ 2|Snew|. In this case, by Lemma 5 we have |ALG(Snew, Tnew, onew)|

= |Snew| = |S| − k. So we have:

|ALG(S, T, o)| = k + |ALG(Snew, Tnew, onew)| = k + |S| − k = |S|

Hence, |OPT (S, T, o)| = |S| as well, so recalling that T < 2|S|, we have, as desired:

|ALG(S, T, o)| = |S| = 1
3 (|S|+ 2|S|) > 1

3 (|OPT (S, T, o)|+ T − 1).

Case 2.2: Tnew < 2|Snew|. Let the path P ∗ of length T + 1 − c be the path that
traverses OPT (S, T, o) starting from onew. More formally, if c = 0, P ∗ is
(onew, o), (o, v1), (v1, v2), . . . (vT−1, vT). If c = 1, then since (o, v1) is not in S, P ∗ is
(onew, v1), (v1, v2), . . . (vT−1, vT).

ATMOS 2019

11:8 Maximizing the Number of Rides for DARP

Let r denote the number of requests in (u0, u1), (u1, u2), . . . , (uk−1, uk) that are also in
OPT (S, T, o) and note that r ≤ k. So P ∗ has m requests from S and m − r requests
from Snew. Note that Tnew = T − c− k = (T + 1− c)− (k + 1) = |P ∗| − (k + 1).
We modify P ∗ to create a path P by deleting the last k + 1 drives from P ∗. Then
|P | = Tnew and P has at most k + 1 fewer requests from Snew than P ∗ so P has at least
m− r − (k + 1) requests from Snew. Hence, we have:

|OPT (Snew, Tnew, onew)| ≥ m− r − k − 1 (1)

There are two subcases.
Case 2.2.1: If −r + k − 1− c ≥ 0, then we have:

|ALG(S, T, o)| = k + |ALG(Snew, Tnew, onew)|
≥ k + 1

3 (|OPT (Snew, Tnew, onew)|+ Tnew − 1) by ind. hyp.
≥ k + 1

3 (m− r − k − 1 + Tnew − 1) by eqn.(1)
≥ 1

3 (m+ T − 1− r + k − 1− c)
≥ 1

3 (m+ T − 1)

which is the desired equation.
Case 2.2.2: If −r + k − 1− c < 0, then k − r ≤ c and there are two subcases.
Case 2.2.2.1: k = r. Please see the Appendix where we show that in all subcases of Case

2.2.2.1, P starts at onew, has at least m− r − k + 1 requests from Snew, and has length
Tnew. Thus:

|OPT (Snew, Tnew, onew)| ≥ m− r − k + 1 (2)

Then, since c = 0 or c = 1, we have:

|ALG(S, T, o)| ≥ k + 1
3 (|OPT (Snew, Tnew, onew)|+ Tnew − 1) by ind. hyp.

≥ k + 1
3 (m− r − k + 1 + Tnew − 1) by eqn.(2)

≥ k + 1
3 (m− 2k + 1 + T − k − c− 1) since k = r

≥ 1
3 (m+ T − c) ≥ 1

3 (m+ T − 1) since c = 0 or 1

So we are done with Case 2.2.2.1 and must now prove Case 2.2.2.2 to complete the proof.
Case 2.2.2.2: k 6= r. Recall that since k − r ≤ c, it must be that k = r + 1. Please see the

Appendix where we show that in all subcases of Case 2.2.2.2, P starts at onew, has at
least m− r − k requests from Snew, and has length Tnew. Thus:

|OPT (Snew, Tnew, onew)| ≥ m− r − k (3)

So we have:

|ALG(S, T, o)| ≥ k + 1
3 (|OPT (Snew, Tnew, onew)|+ Tnew − 1) by ind. hyp.

≥ k + 1
3 (m− r − k + T − k − c− 1) by eqn.(3)

= 1
3 (m+ T − 1− r + k − c)

= 1
3 (m+ T − 1− r + (r + 1)− c)

≥ 1
3 (m+ T − 1)

This completes the proof. J

B.M. Anthony et al. 11:9

I Theorem 7. twochain gives a 2/3 approximation for URDARP.

Proof. We again proceed by considering two cases.
Case 1: T ≥ 2|S|: Then by Lemma 5, |ALG(S, T, o)| = |OPT (S, T, o)|, and we are done.
Case 2: T < 2|S|: Then by Lemma 6, |ALG(S, T, o)| ≥ 1

3 (|OPT (S, T, o)|+ T − 1).
As in Lemma 6, let m = |OPT (S, T, o)|. There are two subcases.

Case 2.1: Ifm < T , then |ALG(S, T, o)| ≥ 1
3 (m+T−1) > 1

3 (m+m−1). Since |ALG(S, T, o)|
is an integer, this implies |ALG(S, T, o)| ≥ 2m/3.

Case 2.2: If m = T , then an OPT (S, T, o) solution must be (o = v1, v1), (v1, v2), . . . ,
(vm−1, vm) where every drive must be a service drive, serving a request from S.
We use the same definitions of k, r, and c as in Lemma 6 and note that c = 0 in this case.
Denote the first chain served by twochain as (o = u0, u1), (u1, u2), . . . , (uk−1, uk). Note
that twochain would start with a service drive right from o because in this case there
is a 2-chain starting at o. If k = T = m then |ALG(S, T, o)| = |OPT (S, T, s)| so we are
done. If m = 1 or m = 2 then, k = m, so we are done. If m = 3 then k = 2 or 3, and in
both cases we have k > 2m/3, so we are also done.
So we consider the case where m ≥ 4 (so k ≥ 2) and k < m. After twochain serves
the first chain, the server is at uk and there is T − k time remaining, so in the smaller
instance of the problem, Tnew = T − k, and onew = uk.
Since |OPT (S, T, o)| = m, then |OPT (Snew, T + 1, uk)| ≥ m − r, since in time T + 1,
opt can drive from uk to the origin, and then follow the path of OPT (S, T, o) to serve
m− r requests (recall that r is the number of requests in OPT (S, T, o) that are also in
the first chain of ALG(S, T, o)). So recalling that Tnew = T − k, we have,

|OPT (Snew, Tnew, uk)| ≥ m− r − k − 1 (4)

And thus:

|ALG(S, T, o)| = |ALG(Snew, Tnew, uk)|+ k

≥ 1
3 (|OPT (Snew, Tnew, uk)|+ Tnew − 1) + k by Lemma 6

≥ 1
3 (m− r − k − 1 + T − k − 1) + k by eqn. 4

= 1
3 (2m) + 1

3 (−r + k − 2) ≥ 2m/3 unless k = r or k = r + 1

For the cases of k = r and k = r + 1, we follow the same steps we did for these cases in
the proof of Lemma 6 to modify the opt path.

Case k = r: Then by Case 2.2.2.1 of the proof of Lemma 6, we have
|OPT (Snew, Tnew, onew)| ≥ m− r − k + 1. So:

|ALG(S, T, o)| = |ALG(Snew, Tnew, uk)|+ k

≥ 1
3 (|OPT (Snew, Tnew, uk)|+ Tnew − 1) + k by Lemma 6

≥ 1
3 (m− r − k + 1 + T − k − 1) + k

≥ 1
3 (2m− 3k) + k since T = m and r = k

≥ 2m/3

Case k = r + 1: Then by Case 2.2.2.2 of the proof of Lemma 6, we have
|OPT (Snew, Tnew, onew)| ≥ m− r − k. So:

|ALG(S, T, o)| ≥ 1
3 (m− r − k + T − k − 1) + k

≥ 1
3 (2m− 3k) + k since T = m and r = k − 1

≥ 2m/3
We have shown that for all cases, |ALG(S, T, o)| ≥ 2m/3, so the proof is complete. J

ATMOS 2019

11:10 Maximizing the Number of Rides for DARP

We now show that the approximation ratio of 2/3 for twochain is tight.

I Theorem 8. The approximation ratio of twochain for URDARP is no greater than 2/3.

Proof. Consider an instance with three requests in a single chain with no requests starting
at the origin o. Let T = 4. twochain may select the second and third requests of the chain
as its first two requests. For twochain to drive to and then serve the two requests takes
three time units. It then drives and runs out of time. On the other hand, opt starts at the
first request of the chain and completes all three requests by time T = 4. J

3.2 The k-CHAIN Algorithm
We now show that a natural generalization of twochain, which we refer to as k-chain (see
Algorithm 2) yields at most a 7/9-approximation. This polynomial-time algorithm (which is
exponential in the fixed k that is selected) proceeds analogously to twochain, but rather
than prioritizing requests that are the first in a 2-chain, instead it prioritizes requests that are
the first in a k-chain. One might expect that this algorithm yields a k/(k+ 1)-approximation
but we show that, surprisingly, there exists an instance of URDARP where k-chain earns at
most 7/9 times the revenue of the optimal solution.

Algorithm 2 The k-chain algorithm.

1: Input: Set S of requests, time limit T , origin o
2: Set t := T

3: For i = 1 . . . k, for each request r ∈ S, add r to Si if request r is followed by a chain of
requests of length i− 1. So r ∈ Si means r is the start of a chain of length i. Note that
if r ∈ Si then we also have r ∈ Sj for all j < i.

4: while t > 0 do
5: Let j be the highest value for which Sj has a request starting at o.
6: if j > 0 then
7: Choose one such request (o, b) from Sj and serve it.
8: t := t− 1
9: Remove (o, b) from S and update the sets Si for i = 1 . . . k as needed.

10: o := b

11: else if t ≥ 2 and requests remain in S then
12: Let j be the highest value for which Sj is non-empty.
13: Choose one request (a, b) from Sj .
14: Drive from o to a, then serve the request (a, b).
15: t := t− 2
16: Remove (a, b) from S and update the sets Si for i = 1 . . . k as needed.
17: o := b

18: else . no requests remain (that we have enough time to serve)
19: t := t− 1

I Theorem 9. The k-chain algorithm yields at most a 7/9-approximation.

Proof. In the input instance (see Figure 2) there is a chain of c+ k requests, for two positive
integers c and k, and the origin, o, is at the start of this chain. Denote these c+ k requests
as (v0, v1), (v1, v2), (v2, v3), . . . , (vc−1, vc), . . . , (vc+k−1, vc+k), so o = v0. In addition, for each

B.M. Anthony et al. 11:11

Figure 2 An instance showing that the k-chain algorithm has approximation ratio at most 7/9.

point vi, for i = 1, 2, . . . , c, there is another pair of requests: one that leaves from vi to a
point not on the chain, call it v′i, and another that leaves from v′i and returns to vi, forming
a total of c loops each of length 2.

Let T = 3c. Then opt(S, T, o) = opt(S, 3c, v0) = 3c since opt can serve all the loops
“on the way” as it proceeds across from v1 to vc+k. I.e., the optimal schedule is

(v0, v1), (v1, v
′
1), (v′1, v1), (v1, v2), (v2, v

′
2), (v′2, v2), (v2, v3), . . . , (vc+k−1, vc+k).

On the other hand, Algorithm 2, which prioritizes chains of length k, may choose one
request at a time from the “spine” of this input instance, and end up serving all the requests
along the straight path first, rather than serving the loops along the way. In this event at
time c+ k it must then go back and serve as many loops (chains of length 2) as it can in the
remaining 3c− (c+ k) = 2c− k units of time, expending one unit of time on an empty drive
to the next loop after serving each loop. Hence:

|alg(S, T, o)| = c+ k +
⌊ 2

3 (2c− k)
⌋

And note that

lim
c→∞

|alg(S, T, o)|
|opt(S, T, o)| = lim

c→∞

c+ k +
⌊ 2

3 (2c− k)
⌋

3c = 7
9 . J

3.3 The LONGEST-CHAIN-FIRST Algorithm
We now provide a brief discussion of the greedy algorithm that serves the longest chain of
requests first, removing these requests from the instance, then serves the longest chain among
the remaining requests and removes these, and continues this way until time runs out. We
refer to this algorithm as the Longest-Chain-First (lcf) algorithm.

Implementation of this algorithm requires a solution to the longest trail problem, where
a trail is defined as a path with no repeated edges, i.e., a chain of DARP requests. Although
the longest trail problem is NP-hard [10, 11], a standard poly-time algorithm that simply
requires a topological sort on the vertices of the acyclic graph as a pre-processing step can
be employed for finding the longest trail in acyclic graphs. We use the term request-graph to
refer to the directed multigraph where each request is represented by an edge in the graph
and each vertex in the graph is the source or destination of a request. So if we consider the
space of inputs where the request-graphs are acyclic, we can employ the poly-time algorithm
for finding the longest trail in an acyclic graph to implement the greedy lcf algorithm.

It turns out that even when restricting to acyclic graphs, uniform revenues and a uniform
metric space, the lcf algorithm yields an approximation ratio of at most 5/6.

I Theorem 10. The approximation ratio of the lcf algorithm for URDARP on acyclic
request-graphs is at most 5/6.

ATMOS 2019

11:12 Maximizing the Number of Rides for DARP

Figure 3 An instance showing that the lcf algorithm has an approximation ratio of at most 5/6.

Proof. Please refer to Figure 3. The instance depicts a request graph for which T = 8 and
the origin is one unit away from the source of all requests. An optimal solution is to serve the
top 3-chain followed by the bottom 3-chain for a total revenue of 6. The lcf algorithm may
instead start with (v1, v2), but then take (v2, v7), finishing with (v7, v8). lcf would then
require an empty drive to a remaining 2-chain, but after serving the 2-chain, there would be
no time left to drive to and serve any more requests, so lcf earns a revenue of only 5. J

We expect that in future work we will be able to prove that lcf does indeed yield a 5/6
approximation for URDARP on acyclic request graphs.

References
1 Giorgio Ausiello, Vincenzo Bonifaci, and Luigi Laura. The online prize-collecting traveling

salesman problem. Information Processing Letters, 107(6):199–204, 2008.
2 Baruch Awerbuch, Yossi Azar, Avrim Blum, and Santosh Vempala. New approximation

guarantees for minimum-weight k-trees and prize-collecting salesmen. SIAM Journal on
Computing, 28(1):254–262, 1998.

3 Egon Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636, 1989.
4 Daniel Bienstock, Michel X Goemans, David Simchi-Levi, and David Williamson. A note on

the prize collecting traveling salesman problem. Mathematical programming, 59(1-3):413–420,
1993.

5 Avrim Blum, Shuchi Chawla, David R Karger, Terran Lane, Adam Meyerson, and Maria
Minkoff. Approximation algorithms for orienteering and discounted-reward TSP. SIAM
Journal on Computing, 37(2):653–670, 2007.

6 Ananya Christman, Christine Chung, Nicholas Jaczko, Marina Milan, Anna Vasilchenko,
and Scott Westvold. Revenue Maximization in Online Dial-A-Ride. In 17th Workshop on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2017), volume 59, pages 1:1–1:15, Dagstuhl, Germany, 2017. doi:10.4230/OASIcs.ATMOS.
2017.1.

7 Ananya Christman, William Forcier, and Aayam Poudel. From theory to practice: maximizing
revenues for on-line dial-a-ride. Journal of Combinatorial Optimization, 35(2):512–529, 2018.

8 Jean-François Cordeau and Gilbert Laporte. The dial-a-ride problem: models and al-
gorithms. Annals of Operations Research, 153(1):29–46, September 2007. doi:10.1007/
s10479-007-0170-8.

9 Yves Molenbruch, Kris Braekers, and An Caris. Typology and literature review for dial-a-ride
problems. Annals of Operations Research, 259(1):295–325, 2017.

10 Christos H Papadimitriou and Umesh V Vazirani. On two geometric problems related to the
travelling salesman problem. Journal of Algorithms, 5(2):231–246, 1984.

11 stackexchange.com. Is the longest trail problem easier than the longest path problem?
https://cstheory.stackexchange.com/questions/20682/is-the-longest-trail-problem
-easier-than-the-longest-path-problem. Accessed: 2019-02-19.

https://doi.org/10.4230/OASIcs.ATMOS.2017.1
https://doi.org/10.4230/OASIcs.ATMOS.2017.1
https://doi.org/10.1007/s10479-007-0170-8
https://doi.org/10.1007/s10479-007-0170-8
https://cstheory.stackexchange.com/questions/20682/is-the-longest-trail-problem-easier-than-the-longest-path-problem
https://cstheory.stackexchange.com/questions/20682/is-the-longest-trail-problem-easier-than-the-longest-path-problem

B.M. Anthony et al. 11:13

A Appendix

We first show that in all subcases of Case 2.2.2.1 of Lemma 6, P starts at onew, has at least
m− r − k + 1 requests from Snew, and has length Tnew.

Case 2.2.2.1: If k = r then every request (ui−1, ui) is in P ∗, and in particular both
(uk−2, uk−1) and (uk−1, uk) are in P ∗. Either (uk−1, uk) is the last drive of P ∗ or it
is not.

Case 2.2.2.1.1: (uk−1, uk) is the last drive of P ∗. Then there is a drive (uk−1, y) immediately
following (uk−2, uk−1) in P ∗. There are three subcases.

Case 2.2.2.1.1.1: (uk−1, y) = (uk−1, uk) Then we delete the last k + 1 drives from P ∗ to
make P . Since the k + 1 drives include (uk−2, uk−1) and (uk−1, uk), which are not in
Snew, then P loses at most k− 1 requests from Snew and is a total k+ 1 shorter than P ∗.
So P has at least m− r − (k − 1) = m− r − k + 1 requests from Snew and has length
|P ∗| − (k + 1) = Tnew.

Case 2.2.2.1.1.2: (uk−1, y) 6= (uk−1, uk) and (uk−1, y) /∈ Snew. We make P from P ∗ as
follows. We first make P̂ from P ∗ by deleting (uk−1, uk) and replacing (uk−2, uk−1) and
(uk−1, y) by the shortcut (uk−2, y). So P̂ has at least m− r requests from Snew (since
none of the deleted requests are requests from Snew) and length two shorter than P ∗.
Then we make P from P̂ by deleting the last (k − 1) drives from P̂ . So P has at least
m− r − (k − 1) requests from Snew and length Tnew.

Case 2.2.2.1.1.3: (uk−1, y) 6= (uk−1, uk) and (uk−1, y) ∈ Snew. Note that uk−1 is not the
source of a request in S′new (those requests in Snew that start a 2-chain, as defined in line
3 of Algorithm 1) since if it were, twochain would have chosen that request instead of
(uk−1, uk) as the next request. So y cannot be the source of a request in Snew. Let (y, z)
be the next drive in P ∗ after (uk−1, y), and we know (y, z) is not in Snew. Then we make
P from P ∗ as follows. We first make P̂ from P ∗ by deleting (uk−1, uk) and replacing
(uk−2, uk−1), (uk−1, y) and (y, z) by the shortcut (uk−2, z). Then P̂ has at least m− r− 1
requests from Snew (since the only request from Snew P̂ lost was (uk−1, y)) and length
three shorter than P ∗. We then make P from P̂ by deleting the last k − 2 drives from P̂ .
So P has at least m − r − 1 − (k − 2) = m − r − k + 1 requests from Snew and length
|P ∗| − 3− (k − 2) = Tnew.

Case 2.2.2.1.2: (uk−1, uk) is not the last drive of P ∗ so there is a drive (uk, x) in P ∗. Note
that (uk, x) cannot be in Snew since if it were, then twochain would have served it after
(uk−1, uk) There are several subcases.

Case 2.2.2.1.2.1: (uk−2, uk−1) is the last drive of P ∗ and (uk−2, uk−1) = (uk, x). Then we
make P by deleting the last k + 1 drives from P ∗. Then P loses at most k − 1 requests
from Snew since at least 2 of the k + 1 drives (namely, (uk−2, uk−1) and (uk−1, uk)) are
not in Snew. So P has at least m− r − (k − 1) requests from Snew and length Tnew.

Case 2.2.2.1.2.2: (uk−2, uk−1) is the last drive of P ∗ and (uk−2, uk−1) 6= (uk, x). Then we
make P from P ∗ as follows. We first make P̂ from P ∗ by deleting (uk−2, uk−1) and
replacing (uk−1, uk) and (uk, x) by the shortcut (uk−1, x). So P̂ has at least m − r

requests from Snew (since none of (uk−2, uk−1), (uk−1, uk), and (uk, x) are in Snew)
and has length two shorter than P ∗. We then make P from P̂ by deleting the last
k − 1 drives from P̂ . So P has at least m− r − (k − 1) requests from Snew and length
|P̂ | − (k − 1) = |P ∗| − 2− k + 1 = Tnew.

ATMOS 2019

11:14 Maximizing the Number of Rides for DARP

Case 2.2.2.1.2.3: (uk−2, uk−1) is not the last drive of P ∗ so there is a drive (uk−1, y) in P ∗
and (uk−1, y) = (uk−1, uk). Then we make P̂ from P ∗ by replacing (uk−2, uk−1),
(uk−1, uk) and (uk, x) by the shortcut (uk−2, x). So P̂ has at least m− r requests from
Snew and length two shorter than P ∗. We then make P from P̂ by deleting the last k− 1
drives. So P has at least m− r − (k − 1) requests from Snew and length Tnew.

Case 2.2.2.1.2.4: (uk−2, uk−1) is not the last drive of P ∗ so there is a drive (uk−1, y) in P ∗
and (uk−1, uk) 6= (uk−1, y) and (uk−1, y) /∈ Snew. Then we make P̂ from P ∗ by replacing
(uk−1, uk) and (uk, x) by (uk−1, x) and replacing (uk−2, uk−1)
and (uk−1, y) by (uk−2, y). So P̂ has at least m − r requests from Snew (since none
of (uk−1, uk), (uk, x), (uk−2, uk−1) and (uk−1, y) are in Snew) and length two shorter
than P ∗. Then we make P from P̂ by deleting the last k − 1 drives. So P has at least
m− r − (k − 1) requests from Snew and length Tnew.

Case 2.2.2.1.2.5: (uk−2, uk−1) is not the last drive of P ∗ so there is a drive (uk−1, y) in P ∗
and (uk−1, uk) 6= (uk, y) and (uk−1, y) ∈ Snew. Note that uk−1 is not the beginning of a
request in S′new, (since if it were, twochain would have chosen that request instead of
(uk−1, uk) as the next request. Thus y cannot be the start of a request in Snew. Either
(uk−1, y) is at the end of P ∗ or let (y, z) denote the next drive in P ∗ after (uk−1, y) and
observe that (y, z) is not in Snew. There are three subcases.

Case 2.2.2.1.2.5.1: (uk−1, y) is the last drive of P ∗. Then we make P̂ from P ∗ by replacing
(uk−1, uk) and (uk, x) by (uk−1, x) and deleting (uk−2, uk−1) and (uk−1, y). So P̂ has at
least m − r − 1 requests from Snew (since the only Snew request P̂ lost was (uk−1, y))
and length three shorter than P ∗. Then we make P from P̂ by deleting the last k − 2
drives from P̂ . So P has at least m− r− 1− (k− 2) = m− r− k+ 1 requests from Snew

and length Tnew = |P ∗| − 3− (k − 2) shorter than P ∗.
Case 2.2.2.1.2.5.2: (uk−1, y) is not the last drive of P ∗ so there is a drive (y, z) and (y, z) =

(uk−1, uk). Then to make P̂ from P ∗ we replace (uk−2, uk−1), (uk−1, y), (y, z), (uk, x) by
the shortcut (uk−2, x) . So P̂ has at least m − r − 1 Snew drives (since the only Snew

drive P̂ lost was (uk−1, y)) and length three shorter than P ∗. Then we make P from P̂ by
deleting the last k−2 drives from P̂ . So P has at least m− r−1− (k−2) = m− r−k+ 1
Snew drives and length Tnew = |P ∗| − 3− (k − 2) shorter than P ∗.

Case 2.2.2.1.2.5.3: (uk−1, y) is not the last drive of P ∗ so there is a drive (y, z) and (y, z) 6=
(uk−1, uk). Then we make P̂ from P ∗ by replacing (uk−1, uk), (uk, x) by (uk−1, x) and
replacing (uk−2, uk−1), (uk−1, y) and (y, z) by (uk−2, z). So P̂ has at least m − r − 1
Snew drives (since the only request from Snew P̂ lost was (uk−1, y)) and length three
shorter than P ∗. Then we make P from P̂ by deleting the last k − 2 drives from P̂ .
So P has at least m − r − 1 − (k − 2) = m − r − k + 1 requests from Snew and length
Tnew = |P ∗| − 3− (k − 2) shorter than P ∗.

This concludes all the subcases of Case 2.2.2.1 of Lemma 6. We now show that in all
subcases of Case 2.2.2.2 of Lemma 6, P starts at onew and has at least m− r − k requests
from Snew.

Case 2.2.2.2: k 6= r so it must be that k = r + 1. So all but one (ui−1, ui) from P is in P ∗,
thus at least one of (uk−2, uk−1) and (uk−1, uk) is in P ∗.

Case 2.2.2.2.1: (uk−1, uk) is in P ∗. There are two subcases.
Case 2.2.2.2.1.1: (uk−1, uk) is at the end of P ∗. Then to make P from P ∗ we delete the

last k + 1 drives (which include (uk−1, uk)). So we deleted at most k requests from Snew

from P ∗ (since (uk−1, uk) is not in Snew). So P has at least m − r − k requests from
Snew and length Tnew.

B.M. Anthony et al. 11:15

Case 2.2.2.2.1.2: (uk−1, uk) is not at the end of P∗. Then there is a next drive (uk, x) in
P ∗. So we first make P̂ from P ∗ by replacing (uk−1, uk) and (uk, x) by the shortcut
(uk−1, x). So P̂ has length one shorter than P ∗. Note that (uk, x) cannot be in Snew

since otherwise twochain would have continued with a request after (uk−1, uk). So P̂
has at least m− r requests from Snew. Now we make P by deleting the last k drives from
P̂ . So P has at least m− r − k requests from Snew and length Tnew = |P ∗| − 1− k.

Case 2.2.2.2.2: (uk−1, uk) is not in P ∗, and therefore (uk−2, uk−1) is in P ∗. There are
several subcases.

Case 2.2.2.2.2.1: (uk−2, uk−1) is at the end of P ∗. Then to make P from P ∗ we delete the
last k + 1 drives (which include (uk−2, uk−1)). So we deleted at most k requests from
Snew from P ∗ (since (uk−2, uk−1) is not in Snew). So P has at least m− r − k requests
from Snew and length Tnew.

Case 2.2.2.2.2.2: (uk−2, uk−1) is not at the end of P ∗ and has a next drive (uk−1, y) that
is not in Snew. We first make P̂ from P ∗ by replacing (uk−2, uk−1) and (uk−1, y) by the
shortcut (uk−2, y). So P̂ has at least m− r requests from Snew and is one shorter than
P ∗. We then make P from P̂ by deleting the last k drives from P̂ . So P has at least
m− r − k requests from Snew and length Tnew.

Case 2.2.2.2.2.3: (uk−2, uk−1) is not at the end of P ∗ and has a next drive (uk−1, y) that is in
Snew and (uk−1, y) is at the end of P ∗. We first make P̂ from P ∗ by deleting (uk−2, uk−1)
and (uk−1, y). So P̂ has at least m−r−1 requests from Snew (since the only request from
Snew P̂ lost was (uk−1, y)) and length two shorter than P ∗. We then make P from P̂ by
deleting the last k − 1 drives from P̂ . So P has at least m− r − 1− (k − 1) = m− r − k
requests from Snew and length Tnew = |P ∗| − 2− (k − 1).

Case 2.2.2.2.3.4: (uk−2, uk−1) is not at the end of P ∗ so there is a next drive (uk−1, y) that
is in Snew and (uk−1, y) is not at the end of P ∗ so there is a next drive (y, z) in P ∗. Then
by the same reasoning as in subcase 2.2.2.1.2.5, we have that (y, z) is not in Snew. To
make P̂ from P ∗ we replace (uk−2, uk−1), (uk−1, y) and (y, z) by the shortcut (uk−2, z).
So P̂ has at least m− r − 1 requests from Snew (since the only request from Snew P̂ lost
was (uk−1, y)) and length two shorter than P ∗. We then make P from P̂ by deleting the
last k − 1 drives from P̂ . So P has at least m − r − 1 − (k − 1) = m − r − k requests
from Snew and length Tnew = |P ∗| − 2− (k − 1).

This concludes all the subcases of Case 2.2.2.2 of Lemma 6.

ATMOS 2019

	Introduction
	Related Work

	Preliminaries
	Hardness

	Algorithms
	The TWOCHAIN Algorithm
	The k-CHAIN Algorithm
	The LONGEST-CHAIN-FIRST Algorithm

	Appendix

