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—— Abstract

Sorting with stacks is a collection of problems that deal with sorting a sequence of numbers by
pushing and popping the numbers to and from a given set of stacks. Multiple concrete decision or
optimization questions are formed by restricting the access to the stacks. The motivation comes,
e.g., from shunting train wagons in shunting yards, shunting trams in depots, or in stacking cargo
containers on cargo ships or storage yards in transshipment terminals.

We consider the problem of sorting a permutation of n integers 1,2,...,n using k > 2 stacks. In
this problem, elements from the input sequence are pushed one-by-one (in the order of the elements
in the sequence) to one of the k stacks. At any time, an element from a stack can be popped and
pushed to another stack; such an operation is called a shuffle. Also, at any time, an element can be
popped from a stack and placed to the output sequence. We can only place the elements to the
output in the increasing order of their value such that at the end the output is the ordered sequence
of the elements. The problem asks to minimize the number of shuffles in the process.

It is known that for £ > 4, the problem is NP-hard, and that there is no approximation algorithm
unless P=NP. For k > 3, it is known that at most O(nlogn) shuffles are needed for any input
sequence. For the case when k = 2, there exist input sequences that require Q(n?¢) shuffles,
for any € > 0. Nothing substantially more is known for the case of k& = 2. In this paper, we
study the following variant of the problem with k = 2 stacks: no shuffle and no placement to the
output sequence can happen before every element is in one of the two stacks. We show that our
problem can be seen as the MINUNCUT problem by providing a polynomial-time reduction, and thus
we show that there exists a randomized O(y/logn)-approximation algorithm and a deterministic
O(log n)-approximation algorithm for our problem.
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1 Introduction

In computer science, a stack is a fundamental list-based data structure. Stacks allow item
insertions and removals at one end of the list, known as the last-in, first-out (LIFO) principle.
For stacks, insertions and removals are, respectively, called push and pop operations. A queue
is another fundamental list-based data structure. Item insertions and removals happen at
opposite ends in a queue, and this operation modus is known as the first-in, first-out (FIFO)
principle.

Besides being a fundamental data structure in computer science, both stacks and queues
model a wide range of applications in the real world, and in logistics and production planning
in particular. An example is reordering of train wagons on a shunting yard, which can be
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seen as sorting (reordering) with stacks (rail tracks). Typically, a set of n wagons, each
having a unique identifier, need to be coupled to form a train that visits several customers
along a fixed route. For every visit, the wagons determined for the respective customer need
to be at the very end of the train, so that the wagons can be decoupled from the train and
left at the customer. Thus, the n wagons need to be ordered according to a specific order
(given by the order of the customers along the fixed route). The ordering of the wagons
happens at a railway switching network, commonly known as a shunting yard, switch yard,
marshalling yard, or classification yard. Typically, there are several so-called classification
tracks, which can be accessed from only one end. The wagons can be pushed from a main
track over a network of switches to any of the classification tracks. Subsequently, some of
the wagons from a classification track can be pulled back to the main track, and the process
can be repeated. Because the tracks can only be accessed from one end, the tracks can be
modeled as stacks.

Inspired by such real-world scenarios, Knuth initiated the study of the problem of deciding
what input sequences © = (71, ..., T,) — permutations of the integers 1,2, ...,n — are sortable
by a single stack or a queue [14]. In his setting, the elements of the input sequence are
accessed sequentially (from 7 to m,), and are placed to the stack. At any time, either an
element from the input sequence is pushed to the stack, or an element from a stack is popped,
and then placed to the output sequence. The goal is to provide a sorted sequence at the
output. In this setting, some sequences cannot be sorted, and the main focus of Knuth’s
work was to characterize input sequences that can be sorted. Knuth also touched upon the
question of using more than one stack and especially the question of the number of stacks
that are needed to sort any input sequence [15].

Subsequently, Even and Itai [6] and Tarjan [21] picked-up from Knuth and studied how
to sort an input sequence using several stacks or queues. Tarjan introduced and studied a
general model for sorting that contains several stacks and queues [21]. In the model, the
stacks and queues are connected by an underlying directed graph that additionally contains
the input node s and the output node ¢, such that s contains the input sequence and ¢
contains the output sequence. Initially, s contains a permutation = = (mq, ..., 7,) of the first
n integers, and t contains an empty sequence. Vertex s has no incoming edge, and vertex ¢
has no outgoing edge. At any time, an element (an integer) can be taken from any vertex u
(obeying the access rules of the underlying data structure — a stack or a queue), moved along
any outgoing edge (u,v) of the graph, and stored to the data structure at v. In this context,
the elements from s are obtained in the order my, 7, ..., m,. The goal is to decide whether
the input sequence can be sorted, i.e., whether there is a sequence of moves of the elements
along the edges such that the elements arrive at ¢ in the order 1,2,...,n. This is not always
possible, and the posed question initiated the study of permutation classes, see, e.g. [4].
Much of the work along these questions have focused on structural results, characterizing
and counting permutations that are sortable by a given acyclic network of stacks and queues.

However, as Tarjan observes, whenever the underlying graph contains a cycle (and the
cycle is reachable from s, and vertex ¢ is reachable from the cycle), any input permutation
can be sorted. Thus, for the question “what permutations are sortable?”, such underlying
graphs are trivial and thus not considered in the research along the question.

Optimization Variant

Much later, the observation of Tarjan was picked up, and two related optimization questions
were asked for underlying graphs containing cycles [7, 17]: “How many moves do we need
to sort a given input sequence?” and “What is the complexity of sorting with a minimum
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number of moves?”. These questions have mainly been studied in the setting where the
underlying graph is a complete graph, with the exception of the vertices s and ¢, which only
have outgoing and incoming edges, respectively.

Felsner and Pergel show that for k£ > 3 stacks, any input sequence can be sorted with
O(nlogy_, ) many moves [7]. This is asymptotically tight, as the worst-case inputs require
at least % log; n — ©(1) moves [7]. This is in strong contrast to the case when k = 2, as
for this case, Felsner and Pergel show that for any € > 0 there exists an input sequence
which needs Q(n?~¢) many moves. Interestingly, their example is also valid if we restrict
the movements such that no move to ¢t can be made before all elements from s are in one of
the stacks. This restriction is called a midnight constraint, as it mimics the situation when
trams need to be parked in a depot (tracks in the depot are the stacs in our model) at the
end of the day, and can leave the depot only in the morning.

Konig and Liibbecke study the optimization version of the sorting problem [17]. Naturally,
in any solution to the sorting problem, every item needs to move along an arc from s
exactly once, and along an arc to ¢ exactly once, so Konig and Liibbecke study the following
optimization problem: sort the input sequence by a minimum number of shuffles, where
a shuffle is a move along an arc that is not incident to s and also not incident to t. For
this problem, a p-approximation algorithm, for p > 1, is a polynomial-time algorithm that
sorts any input sequence 7 using at most p - OPT(7w) many shuffles, where OPT(7) is the
minimum number of shuffles needed to sort the sequence w. Konig and Liibbecke show
that it is NP-hard to approximate the minimum number of shuffles within O(n!~¢), for any
non-trivial,> even constant, & > 4. Their work is based on the work of Evan and Itai [6], and
the relation of the problem of deciding whether a proper k-coloring of a given circle graph
exists to the problem of deciding whether the input permutation can be sorted with k-stacks

without shuffles. The former problem has been shown NP-complete for k > 4 by Unger [23].

We note that since for £ > 4 deciding whether one can sort with zero shuffles is NP-hard,
it follows that, for k > 4, there is no approximation algorithm for the problem of minimizing
the number of shuffles, unless P=NP.

Optimization with Midnight Constraint

We further note that the optimization problem with k& > 4 stacks remains NP-hard also for
the midnight-constraint, since the midnight constraint can be imposed by appending the
integer 0 to the input permutation 7 of integers 1,2,...,n, and considering the new problem
on the resulting permutation 7’ of integers 0, 1, ..., n without midnight constraint. Since the
smallest integer 0 comes at the end of the input sequence 7/, no move to ¢ can happen before
0 is moved from s, and thus before all elements of 7’ are in one of the k stacks. However,
the problem of deciding whether one can sort with zero shuffles becomes polynomial-time
solvable for any k in the case of midnight constraint, since this problem is equivalent to the
k-coloring of permutation graphs [6], which can be solved in polynomial time. Hence, the
inapproximability result for the general case (i.e., no midnight constraint) and k > 4 does
not carry over to the case with the midnight constraint.

Since for k > 3, at most O(nlog, n) shuffles are needed [7], it follows that there exists a
O(nlogy, n)-approximation algorithm for the minimization problem with midnight constraint
and k£ > 3. For k = 2 and midnight constraint, no non-trivial approximation algorithm is
known. (It is easy to see that for k = 2, no more than O(n?) shuffles is needed, which gives
a trivial O(n?)-approximation algorithm.)

1 E.g., k = n is trivial, as every item can be placed on a unique stack, and thus no shuffle is required.
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The complexity of the minimization problem for £ = 2 and k = 3, however, is an open
problem also for the optimization problem with the midnight constraint. Both Felsner and
Pergel [7] and Konig and Liibbecke [17] asked, as an open problem, whether the sorting
problem with midnight constraint is computationally easier. (There is a light evidence that
the problem with the midnight constraint might be easier: recall that deciding whether
one can sort with zero shuffles is NP-hard for k£ > 4 in general, but becomes solvable in
polynomial-time for the midnight constraint.)

Our Contribution

In this paper, we address the open problems for the case with & = 2 stacks and make a
progress for a special case of the midnight constraint. We study the minimization problem
with the strong midnight-constraint, which we define as the midnight constraint, with an
additional constraint where no shuffles are allowed before all items are moved away from s.

We show that the problem of minimizing the number of shuffles with the strong midnight-
constraint can be seen (by a certain polynomial-time reduction) as the MINUNCUT problem on
certain graphs, and thus inherits the same approximation-algorithm guarantees. In particular,
as a corollary, we show that there exists a randomized O(+/logn)-approximation algorithm,
and a deterministic O(logn)-approximation algorithm for the minimization problem with
k = 2 stacks and with the strong midnight-constraint.

The result thus substantially improves upon the trivial O(n?)-approximation algorithm
for k = 2. We note that the O(nlogn)-approximation algorithm for k¥ > 3 and for the
midnight constraint carries over also to the case with the strong midnight-constraint. Our
result thus gives, for the variant with the strong midnight-constraint, a better approximation
algorithm for the case k = 2 than for the case k > 3.

Additionally, we show that in the setting with the strong midnight-constraint and k = 2
there exists an input sequence for which every algorithms needs Q(n?) shuffles. This improves
upon the lower bound of Q(n?~¢) shuffles that holds for any & > 0, and was shown by Felsner
and Pergl for the (normal) midnight constraint and & = 2, and that also applies to the setting
with the strong midnight constraint [7].

We note that relating the number of shuffles to the number of edges that need to be
deleted such that some auxiliary graph becomes bipartite (as is the case of the MINUNCUT
problem) is not new. Motivated by the result of Evan and Itai [6] which states that one can
sort with zero shuffles using k stacks if and only if there exists a k-coloring of the underlying
circle graph, Konig and Liibbecke consider the question whether the number of shuffles is
equal to the number of monochromatic edges in a k-coloring of the underlying circle graph,
and provided an example demonstrating that this is not case [17]. In our work, we use a
different auxiliary graph than the circle graph.

1.1 Further Related Work to Stack Sorting

Albeit Tarjan defined the problem of sorting with a network of stacks and queues for any
underlying graph [21], mainly the following two graph classes have been studied: (i) a directed
path from s to t; this case is also referred to as sorting with stacks/queues in series, and (ii)
graphs where every node other than s and ¢ is connected only to s (in the direction from s)
and to ¢ (in the direction to t); this setting is also known as sorting with stacks/queues in
parallel. Observe that the question “can we sort the input sequence with zero shuffles” where
the underlying graph induced by the stacks is a complete graph is equivalent to the setting
with stacks in parallel. Even and Itai study the setting with stacks in parallel and with
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queues in parallel [6]. Besides the general setting, Even and Itai also study the variant where
no movement to ¢ can precede any movement from s. In their setting, this is equivalent to
both the strong midnight-constraint and the midnight constraint.

As mentioned before, much of the previous work focused on structural results concerning
permutations that can be sorted by stacks/queues in series/parallel. Béna surveys much of
the progress made till about 2003 [4]. Among the newer research that is of algorithmic flavor
is the study by Smith that compares two greedy algorithms for sorting with stacks in series
[20], the paper by Pierrot and Rossin that shows that deciding whether a given permutation
is sortable by two stacks in series in polynomial-time solvable [18], and the paper by Biedl
et al. [2] which studies the question of how the number of stacks influences the number of
shuffles needed to sort any input sequence.

1.2 Related Work in the Application Domain

Over the years, optimization theory literature has mentioned numerous problems related to
sorting with stacks. A few examples are: assigning trains, trams or buses to positions in a
depot [3, 11, 9]; storing integrated steel slabs in order of processing [16]; sorting car bodies
for paint processing [12]; and storage yard operations in container terminals [5, 22]. Each
of these problems require items to be placed on stacks such that they can be retrieved in a
desired order with minimum effort or shuffles. In practice it is not uncommon that additional
constraints exist such as stack height or item placement.

2 The Setting and Preliminaries

We study the RESTRICTEDBI-STACKSORTING problem, which is defined as follows, and
illustrated in Figure 1. We are given a directed graph G = (V, E) on four vertices and
an input sequence m, which is a permutation of the numbers 1,...,n. Each number in the
permutation is also called an element of m. Vertex set V represents the four possible locations
for items 7y, ..., m,, which are a source vertex s, two stack vertices v; and vs, and a target
vertex t. The two stacks v; and vy exhibit the LIFO behavior. Edge set E consists of directed

edges (i, j) to represent actions that move the first available item from vertex ¢ to vertex j.

These actions are push, represented by edge (s,v1) and by edge (s,v2), shuffle, represented

by edge (v1,v2) and by edge (v2,v1), and pop, represented by edge (v1,t) and edge (vs,t).

There are no other edges in E. Items (71, ..., m,) arrive sequentially from s and may only
traverse edges in E along the direction of the edge. The problem asks to move the elements
in 7 from s to ¢ such that at any time, only one item traverses along an edge, the items at vq
and vy respect the LIFO behavior, the items leave s in the given order by 7, and the items
arrive at t in increasing order of value. Furthermore, we require that while there are items
in s, no shuffle and no pop appears. We call this the strong midnight-constraint. The goal

of RESTRICTEDBI-STACKSORTING is to minimize the number of shuffles along the process.

The number of made shuffles by an algorithm is called the shuffle count (of the algorithm).

2.1 Useful State Representation

At any time of the sorting procedure, the state is fully determined by the remaining elements
in s, and by the content of the two stacks in vertices v; and vy. We now describe an
alternative description of a state, which is the crucial element in showing our main result.
We view any sorting procedure as an iterative process, which at any time step k =1,2,...,
moves an element along an edge of G. A state Si at time step k describes the situation
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Figure 1 Illustration of the underlying graph for sorting with two (fully connected) stacks.

S = | Tg 7 T8

Figure 2 Creating state representation Sy = (g, lk, k).

after the k-th move. State Sy is a tuple (sg,lg,pr), where s is the remaining input at
vertex s, li is a list (array) that is the union of the two stacks, and py is a pointer to the
list i, called shuffler indexer, which specifies the tops of the two stacks in the list [;. To
create list I3, we concatenate the stacks vi = (v1,1, ..., V1,|y,|) and va = (V2,1, ..., V2 |u,|) as list
Ik = (V1,15 s V1 j0y |5 V2, [s]s > U2,1), Such that v;; is the bottom-most item of stack v; and
Vi |v;| 18 the top-most item of stack v;. Alternatively, I = v1v8, where vl is the reverse of
vy. Finally, we set shuffler indexer pj at location py = |v1|, representing the top of both
of our stacks. Figure 2 depicts our alternative state representation for RESTRICTEDBI-
STACKSORTING. Figure 3 provides an example of how our state representation transitions
during a push, a pop, and a shuffle action. State Sy describes the situation before any move
is made, and thus Sy = (, (),0), where () denotes the empty list.

2.2 Relation of State with Shuffle Count

Recall that RESTRICTEDBI-STACKSORTING requires that all elements are first pushed from
s before any shuffle or pop operation can happen. Observe that after all n elements are
pushed from s, the shuffle count is determined: The first element that needs to be popped
is 1. For this, all elements that are above element 1 need to be shuffled to the other stack.
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Figure 3 State transitions when applying a push, pop, and shuffle action.

After that, 1 can be popped, and the same procedure continues with element 2: all elements

that are above 2 in the same stack need to be shuffled, and then element 2 can be popped.

After that, the same procedure continues with elements 3, 4, ..., n.

Using our alternative state representation, we can determine the shuffle count from the
list [,, of state S,,, i.e., the state after all n elements have been pushed from s, as follows: We
place an auxiliary value 0 at the position p,, in list [,,. Then, observe that to pop element 1,
we need to shuffle all elements that appear in [,, between element 0 and element 1. Similarly,
after we have popped element i > 1, we need to shuffle all elements that are the elements
that lie in I, between i and i + 1 and that are larger than ¢ + 1. This follows because: (i)
when element ¢ is popped to t, it is on top of a stack, and to pop the next element 7 + 1,
elements that lie above 7 + 1 need to be shuffled, and these lie between ¢ and ¢ + 1 in 1,; (ii)
any element in [,, that is smaller than ¢ 4+ 1 has been popped to ¢ and thus does not need to
be shuffled.

Let sc(i,i+ 1) denote the number of elements that lie in ,, between elements 4 and i + 1,
and that are larger than ¢ + 1. We have thus showed the following.

» Lemma 1. The shuffle count is equal to Z?:_Ol sc(i, i+ 1).

2.3 Worst-Case Number of Shuffles

We now show that the worst-case number of shuffles for RESTRICTEDBI-STACKSORTING
is 2(n?). For the strong midnight-constraint, this further strengthens the lower bound of
Q(n?7¢), for any constant & > 0, of Felsner and Pergel [7], which also holds for the (normal)
midnight constraint.

» Theorem 2. There exists an input sequence ™ for RESTRICTEDBI-STACKSORTING for
which every algorithm has a shuffle count of Q(n?).

Proof. Consider the input sequence 7* = (2,4,6,...,n,n — 1,n — 3,...,5,3,1) for any even

n. Notice that 7* consists of two sub-sequences: 77 » of all even values and 77 ,, , of all
5 g+1,
odd values.
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After 77’{% is pushed to the stacks, one of the stacks will contain the majority of the items

of 7rf7%7 and thus at least 7 many items. Without loss of generality, assume that stack v;
contains at least 7 items from 7f ..

Observe that every item in v; needs to be popped in the order from bottom to top. Also,

observe that for every even value e that we pop from vy, we then need to pop the odd value

%41, have been pushed to the

stacks, for every bottom value e of v, we need to shuffle at least the remaining even values

e+ 1 from 7%, ,. Now, regardless of how the items in m

on stack vy in order to pop value e+ 1. Given that we have at least 7 even values on stack vy,

we see that the shuffle count is at least Z?Zl(% —i) = ”23_% = Q(n?). Thus, any algorithm

for RESTRICTEDBI-STACKSORTING uses at least {(n?) shuffles. <

3 Relation to MinUnCut

We will now show that RESTRICTEDBI-STACKSORTING can be seen as MINUNCUT. The
problem MINUNCUT is given by an undirected graph H = (V, Eg), and asks for a partition
(S,T) of the vertices in Vg such that the number of edges with endpoints from the same
part is minimized. The problem is the complement of the more famous MAXCUT problem,
that asks for (S,7) such that the number of edges in the cut, i.e., edges with one endpoint
in S and one endpoint in 7', is maximized. It can be easily seen that an optimum solution
to MAXCUT is also an optimum solution to MINUNCuUT. MAXCUT was among the first
computational problems shown to be NP-complete [13].

The two problems differ with respect to approximability. While for MAXCUT there exists
a p-approximation algorithm where p is roughly 0.878 [10], the best approximation algorithm
for MINUNCUT is a randomized O(y/logn)-approximation algorithm by Agarwal et al. [1]
and a deterministic O(logn)-approximation algorithm by Garg et al. [8].

Our main technical result is stated in the following theorem.

» Theorem 3. We can reduce any input instance of RESTRICTEDBI-STACKSORTING to an
instance of MINUNCUT in polynomial time, such that the number of edges with endpoints
in the same part of a solution (S,T) in the created instance of MINUNCUT is at most the
shuffle count of a corresponding solution to the instance of RESTRICTEDBI-STACKSORTING,
and the corresponding solution to RESTRICTEDBI-STACKSORTING can be computed in poly-
nomial time.

Proof. We create graph H = (Vy, Ey) for MINUNCUT as follows. We put all vertices
1,2...,n to Vg, corresponding to the elements (integers) in 7. Placing vertex i to S will
correspond to pushing the element ¢ to stack vy, and placing vertex ¢ to T will correspond to
pushing the element i to stack vs.

Recall that before any shuffle, we need to push all elements from s to the stacks. This
will lead to the state S, = (s, = 0,1, pn). Referring to Lemma 1, and especially to the
count sc(i,i+ 1) for i =0,1,...,n — 1, we want to create edges between vertices in H that
express the shuffles in sc(i,7 + 1).

Recall that sc(i,i + 1) is the number of elements between ¢ and ¢ + 1 in list [,, that are
larger than ¢ + 1. Let x be any element that is larger than ¢ + 1. Let us investigate the
positions of the elements x, i, and 7 + 1 as they appear in the permutation 7, and how these
positions influence sc(i, i 4+ 1). First, observe that whenever x appears before ¢ and i + 1
in 7, then for any state [,,, x will never be between i and 7 + 1, and thus x will never be
counted in sc(i, i + 1). In this case, we do not create any edge between = and ¢ nor any edge
between x and i + 1 in graph H (as there should be no cost in the MINUNCUT problem).
Second, assume now that x appears between elements ¢ and ¢ 4+ 1 in the input permutation
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. In this case, either element ¢ appears before x, or element i + 1 appears before x in 7.
Among i and i + 1, let z be the element that appears before z in 7. Observe now that x
appears between ¢ and ¢ + 1 in [, (and thus contributes one to sc(i,i + 1)), if and only if
x is placed on the same stack as z. Thus, in this case, we create an edge between z and x
to account for the cost of one in every solution that places z and = to the same part in a
partition (S, 7). Third, assume now that z appears after both elements ¢ and ¢ + 1 in the
input sequence w. Observe now that = appears between i and 7 + 1 in the list [,, if and only
if 4 and 7 + 1 are placed on two different stacks. For this reason, in this case, we create an
auxiliary vertex v(z,4,7 + 1) and connect it to vertex ¢ and to vertex i + 1 (and to no other
vertex). Observe now that whenever vertices ¢ and ¢ + 1 are placed such that one is in part
S and one is in part T, it does not matter to which part we place vertex v(z,4,7 + 1): any
placement will incur cost exactly one, which exactly corresponds for = appearing between ¢
and 7 + 1 in the list I,, (and thus corresponds for one count in sc(i,7 + 1)). Also, observe
that whenever 7 and i + 1 are placed to the same stack, there is no shuffle of  encountered
in the cost sc(i,7 4 1), and this can be reflected by placing the vertex v(z, 4,7 + 1) to the
opposite part in which vertices ¢ and ¢ + 1 are, which leads to zero count for MINUNCUT.
Now, to finish the proof, consider an instance of RESTRICTEDBI-STACKSORTING and
the corresponding graph H created by the reduction above. Consider a solution (5,7 to
MINUNCUT given by instance H. If in the solution there are vertices ¢, i + 1, and v(x,4,i+1)
placed in the same part, we modify the solution by moving v(x,,% + 1) to the other part.
This decreases the cost of the solution for MINUNCUT by two, and only affects the two
edges incident to v(x,4,i + 1). We repeat this process until no such three vertices i, i 4+ 1,
and v(x,4,i+ 1) can be found. This takes at most O(n?) many steps (one for every value
1 and every value z > i), and results in a new solution (S’,7") to MINUNCUT of cost not
larger than the original solution (S,7") to MINUNCUT. We can create a solution to the
RESTRICTEDBI-STACKSORTING as follows: push element 4 to stack v; if and only if 7 is in
S’ (and otherwise, when 4 is in 77, push it to stack vs). Observe now that every edge in
the new solution (S’,T”) that has both endpoints in the same part corresponds to exactly
one shuffle in the corresponding solution to RESTRICTEDBI-STACKSORTING, and thus the
number of shuffles in the created solution for RESTRICTEDBI-STACKSORTING is the cost of
the solution (S’,T") for MINUNCUT. <

The construction from the proof is illustrated in Figure 4. The existence of approximation
algorithms for RESTRICTEDBI-STACKSORTING with the claimed approximation ratios now
comes as a direct corollary.

» Corollary 4. There exists a randomized O(v/logn)-approxzimation algorithm for the prob-
lem RESTRICTEDBI-STACKSORTING. There exists a deterministic O(logn)-approximation
algorithm for the problem RESTRICTEDBI-STACKSORTING.

3.1 Beyond Two Stacks

It is a natural question to try to adapt our approach also to the cases k > 3. However, this
is not possible (in a direct way). Our approach crucially depends on the alternative state
representation introduced in Section 2.2 and on its relation to the shuffle count as expressed
by Lemma 1. In our alternative state representation, we heavily used the fact that two stacks
after step k£ can be merged into a linear list [;. For three or more stacks, it is not clear how
such a list could be created. Clearly, it is one of the interesting open problems to provide
better approximation algorithms for the case k = 3.
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Figure 4 Graph H for the input m = (2,4,3,6,1,8,7,5). The circles denote the vertices of the
permutation, the squares denote the auxiliary vertices v(x,4,7 + 1), and the edge labels denote the
multiplicity of the edges between the vertices. The white vertices are in part S and grey vertices are
in part 7. Such a partition induces an uncut of size 5, and thus a solution to the sorting problem
with 5 shuffles. This is optimum for this permutation.

3.2 Shuffling Before Midnight

Clearly, for k = 2, one can use our alternative state representation not also for the strong
midnight-constraint, but also for the (normal) midnight constraint, where one can shuffle even
if not all elements are pushed from s to the two stacks. For the strong midnight-constraint,
the first n moves are only pushes from s, which results in some state .S,,, which then uniquely
induces what the algorithm does and the shuffle count the algorithm requires. In some sense,
for the strong midnight-constraint, the only decisions to be made are to which stack shall we
push element i, ¢ = 71,73, ...,7,. These decisions can be reflected by the auxiliary graph
H that we create in the proof of Theorem 3. However, if we allow to shuffle before all n
elements are pushed from s to the stacks, it is not clear how to create an auxiliary graph H
which would reflect (via the MINUNCUT problem) the shuffle count for this case. In some
sense, allowing shuffles before all elements from s are pushed would move the position of
the shuffler index while the push operations are made, possibly changing the shuffle count
impact of past and future push operations. To reflect this in H, it seems that we would need
to update, add, and remove labeled edges in graph H. It is not clear that we can create H
that would reflect such a dynamic behavior. A more extensive discussion on this topic can
be found in the Master thesis of Pont [19]. We leave it a prominent open problem to settle
the complexity of the sorting problem with k£ = 2 stacks and midnight constraint.

4  Conclusions

Motivated by the open problem of addressing the complexity of minimizing the shuffles
when sorting with two stacks with or without the midnight constraint, we introduced the
restricted midnight-constraint and studied the resulting RESTRICTEDBI-STACK SORTING
problem. We showed that our problem is closely related to the MINUNCUT problem. This
shows that the problem admits non-trivial approximation algorithms, which is in strong
contrast to known approximability and inapproximability results to the other variants of the
optimization problems that have been considered so far.

There are several open problems left by our paper. One of the most important ones is to
settle whether the problem is NP-hard. Beyond the topic of this paper, i.e., sorting with two
stacks with the strong midnight-constraint, one of the most interesting open problems is to
investigate whether non-trivial approximation algorithms exist for the general, unrestricted
case of k = 2 stacks.
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