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Abstract
Delay management is concerned with making decisions if a train should wait for passengers from
delayed trains or if it should depart on time. Models for delay management exist and can be adapted
to capacities of stations, capacities of tracks, or respect vehicle and driver schedules, passengers’
routes and further constraints. Nevertheless, what has been neglected so far, is that a train cannot
depart as planned if passengers from another train trickle in one after another such that the doors
of the departing train cannot close. This effect is often observed in real-world, but has not yet been
taken into account in delay management.

We show the impact of this “trickle-in” effect to departure delays of trains under different
conditions. We then modify existing delay management models to take the trickle-in effect into
account. This can be done by forbidding certain intervals for departure. We present an integer
programming formulation with these additional constraints resulting in a generalization of classic
delay management models. We analyze the resulting model and identify parameters with which it
can be best approximated by the classical delay management problem.

Experimentally, we show that the trickle-in effect has a high impact on the overall delay of public
transport systems. We discuss the impact of the trickle-in effect on the objective function value and
on the computation time of the delay management problem. We also analyze the trickle-in effect for
timetables which have been derived without taking this particular behavioral pattern of passengers
into account.
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1 Introduction

Delays constitute a major source of uncertainty when operating a railway or bus system. If
a train is delayed, many rescheduling decisions have to be made, disturbing the nominal
schedule of a public transport system. The question, whether an otherwise punctual train
should wait for a delayed feeder train in order to allow transferring passengers to reach their
connections, is known as delay management problem and has been studied extensively in the
literature. The first papers dealing with this kind of question date back to [21, 23]. Integer
programming models have been developed in [22, 5]. In order to make them more realistic,
capacities along tracks have been included in [18], capacities at stations have been included
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in [7] and passenger re-routing has been studied in [9, 20, 17]. Rescheduling of timetables,
rolling stock and crew is studied in [8]. For all these cases algorithms have been developed,
see [10] for a recent survey on the state of the art.

Delay management aims at minimizing passengers’ delays by taking dependencies between
delays into account (see [4]). Delays propagate along driving activities, i.e., if a train departs
with some delay, then it also arrives at its next station with some delay – reduced by buffer
time possibly included in the timetable. Delays also propagate along waiting activities in
stations: If a train arrives at a station with some delay, it will probably also depart with some
delay which again might have been reduced by buffer time. Finally, delays can propagate
along changing activities as well. This is the case if a dispatcher decides that a connection
from one train to another train should be maintained. Then the outgoing train will receive
some delay by waiting for the delayed feeder train.

Nevertheless, there is an effect that has been neglected in the literature so far: A dispatcher
may decide that a train should depart on time, but it may not be possible for the train to
do so. To illustrate this issue, suppose a delayed train A arrives at a station and some of
its passengers want to transfer at this station to another train B. The delay management
problem requires a decision, whether train B should depart on time or wait for the passengers
from train A.

If train B is supposed to depart before train A has arrived, the delay management models
work correctly. In this case, no delay propagates from train A to train B.
If train B is supposed to wait long enough, the delay management models also work
correctly and the delay propagates along the changing activity to the departure of train B.
If, however, train B is supposed to depart shortly after train A has arrived without
waiting for the passengers from train A, then the models fail. This is the case because
normal delay management models assume that there is one common time that passengers
need for walking from train A’s platform to train B’s platform. Instead, there may be
quick and slow passengers. If the fastest passenger reaches train B before its departure,
she can board. While getting onto train B, another fast passenger might arrive and while
he boards, the next one will arrive, and so forth. In this way, all passengers might enter
the train in a continuous stream preventing the train doors to close. Train B hence has
to wait until finally even the slowest passengers from train A arrive and board train B.
This effect has been simulated in [1] where it is called trickle-in effect.
The same effect may also prolong the waiting time of train B in the case that B is
supposed to wait for the passengers of train A since it may take longer to allow all
passengers to trickle in than the lower bounds on the changing times suggest.

Note that the trickle-in effect is not only triggered by passengers not moving with the same
speed, but also by the fact that passengers are not able to unboard train A instantaneously.
Most readers will have experienced the situation of standing in a train corridor while waiting
a decent amount of time for the passengers in front of them to unboard. This can result in a
different transfer time of two passengers, even though they are able to walk with similar speed.

As a consequence, there exists a time interval in which train B is not able to depart,
namely between the arrival of the fastest passenger and the arrival of the slowest passenger
(assuming that there is no gap in speed of the passengers big enough to allow the doors of
train B to close). We will call this interval trickling interval.

[1] show that the trickle-in effect, which can also be observed in many real-world situations,
is in fact relevant. Our experiments (see Section 5) show that delay management decisions,
which are optimal in the sense of classical delay management models, often schedule trains
to depart in the “forbidden” trickling interval. If, for example, the trickling interval is (2, 5)
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minutes and if all changing activities are distributed uniformly in [2, 62) minutes (assuming
a time period of 60 minutes), we can expect about 5% of all train departures to lie in the
trickling interval. These departures are most likely not realizable and will cause additional
delays. Hence, it is necessary to add this additional constraint to delay management models
which is exactly what we do in this paper. We show how such an additional constraint can
be included in classical delay management models, subsequently analyze the mathematical
relation between the classical model and the one with the additional constraints, and finally
show in experiments that delay management strategies change if the trickle-in effect is
considered. We believe that by adding this detail we take a further step in bringing delay
management models closer to practice.

The remainder of the paper is structured as follows. In Section 2 we recap the classical
model for delay management. Section 3 models the trickle-in effect by introducing an
additional constraint to the classical delay management model. We investigate theoretical
consequences when adding the trickle-in effect to the classical delay management model in
Section 4. Section 5 studies its practical effects in an experimental study on close-to-real-
world data from LinTim [11, 19]. Integrating the trickle-in effect in models for (periodic)
timetabling is identified as an extension and briefly discussed in Section 6, where we also
conclude the contributions, discuss limitations of our work as well as venues of future research.

2 The Classical Delay Management Model

The delay management problem is defined as follows: Given an event-activity network, a
timetable and some source delays, decide which connections should be maintained and which
should be dropped such that the average delay of all passengers at their final destinations is
minimal. The delay management problem was first introduced in [21], a recent overview is
given in [10].

We hence have to first introduce the concept of event-activity networks (see [14] for its
application in timetabling and [22] for its application in delay management). An event-
activity network is a directed graph N = (E ,A), where E consists of arrival and departure
events Earr and Edep, respectively. A timetable π ∈ N|E| assigns each event i ∈ E to a time
πi ∈ N. If a delay occurs, the given timetable π has to be updated to a so-called disposition
timetable x ∈ N|E|. To represent the constraints that have to be satisfied by a (disposition)
timetable, we need the following types of activities, A = Adrive ∪ Await ∪ Achange. Each of
them is assigned to a minimal duration La > 0. The meaning of these activities is given as
follows (see also Figure 1).

Driving activities Adrive ⊂ Edep×Earr model the driving of a train between two consecutive
stations, i.e. a driving activity connects a departure event of some train with its next
arrival event. The duration La > 0 of a driving activity a = (i, j) represents the minimal
necessary driving time between the departure event i and the arrival event j. Note that
turnaround edges may be handled in the same way as driving activities.
Waiting activities (also called dwelling activities) Await ⊂ Earr × Edep represent the time
period in which a train is waiting at a station to let passengers get on or off; a waiting
activity hence connects an arrival event of some train with its next departure event. Its
duration La > 0 describes the minimal time required to allow boarding and unboarding;
sometimes it also includes exchanging train crews or other actions.
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Figure 1 An event-activity network with three trains and four stations. The solid (black) arcs
represent driving and waiting activities of the trains. The dashed (blue) arcs represent changing
activities which are possible between Train 2 and Train 3 at Station 3 and between Train 1 and
Train 2 at Station 2.

If two events i, j ∈ E are connected by an activity (i, j) ∈ Adrive ∪ Await, then event i has to
be performed before event j can take place. In particular, the disposition timetable x has
to satisfy

xj − xi ≥ La

for all a = (i, j) ∈ Adrive ∪ Await.
Changing activities Achange ⊂ Earr × Edep allow passengers to transfer from an incoming
train to an outgoing train. Hence, a changing activity connects an arrival event of some
train at some station with a departure event of another train at the same station. The
lower bound La > 0 refers to the minimum time a passenger needs to transfer between
both trains. In order to solve the delay management problem we have to decide for each
changing activity if it should be kept or if it can be deleted. In case that a changing
activity a = (i, j) is kept, the disposition timetable x must satisfy xj − xi ≥ La. If
the changing activity is deleted, the outgoing train can depart without waiting for the
incoming train and this inequality does not need to be satisfied anymore.

We remark that other types of activities such as headway activities or turnaround activities
may be added, see [10] for the respective models. Notwithstanding that, in this work we
focus on the classical model.

To formulate an integer programming model of the delay management problem, we next
have to formally introduce the delays. We assume that a set of unexpected source delays
is known, e.g., caused by signaling problems, construction work, accidents, or bad weather
conditions. These source delays cause secondary delays, e.g., for the same train at subsequent
stations or for other trains that wait for the delayed train. In our work we allow two types
of source delays: The first type is a delay di ∈ N at an event i ∈ E (e.g., staff coming too
late to their duty) referring to a fixed point of time. In this case, xi ≥ πi + di is required.
The second type of source delay is a delay da which increases the duration of an activity
a = (i, j) ∈ Adrive ∪ Await, e.g., an increase of traveling time between two stations due to
construction work. Such a delay da has to be added to the minimal duration La of activity
a. If an event or an activity has no source delay, we assume di = 0 or da = 0, respectively, to
simplify the notation.

In the objective function we evaluate the disposition timetable from the passengers’ point
of view. To this end, let wi be the number of passengers unboarding the train at event
i ∈ E (thus, wi = 0 for all i ∈ Edep) and wa be the number of passengers who want to use
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a changing activity a ∈ Achange. We assume wa > 0 for all a ∈ Achange – otherwise, the
changing activity could be removed from the network, since nobody uses it. We further
assume that all lines have a common period T , i.e., every line is served by a train every T
minutes. Note that this assumption can be relaxed by introducing periods Ta for all changing
activities a ∈ Achange.

We can now state the integer programming formulation for the basic version of the delay
management problem. To model the wait-depart decisions, i.e., whether some train should
wait for some other train at a station or not, we introduce binary variables

za =
{

0 if changing activity a is maintained
1 otherwise

for all changing activities a ∈ Achange. The integer programming formulation then reads as
follows:

min
∑
i∈E

wi(xi − πi) +
∑

a∈Achange

zawaT (DM)

s.t. xi ≥ πi + di ∀i ∈ E (1)
xj − xi ≥ La + da ∀a = (i, j) ∈ Adrive ∪ Await (2)

Mza + xj − xi ≥ La ∀a = (i, j) ∈ Achange (3)
xi ∈ N ∀i ∈ E
za ∈ {0, 1} ∀a ∈ Achange

where M is a fixed constant. The meaning of the objective function and of the constraints
is explained next.

The first term of the objective function minimizes the sum of all delays of all events. If
all connections were maintained, this would be the sum of delays for all passenger at their
final destination. The second term adds the weighted sum of all missed connections with a
penalty of one time period T (or Ta if we drop the assumption of a common period of all
lines) a passenger has to wait for the next train of the same line. The objective function is
hence an approximation of the sum of all delays over all passengers. It has been shown in
[22] that it is not an approximation, but exactly computes the sum of all passengers’ delays
if the so-called never-meet property holds.

Constraints (1) and (2) ensure that the delay is passed on correctly along driving and
waiting activities. (3) does the same for maintained changing activities (i.e. if za = 0). If,
however, za = 1, constraints (3) get redundant if M is chosen big enough. If no capacity
constraints are considered and da = 0 for all a ∈ A, [22] shows that choosing M as the
largest source delay maxi∈E di is sufficient. Solution methods for (DM) mainly rely on integer
programming, see [10] and references therein.

3 Modeling the Trickle-in Effect

In this section we adapt the classical delay management model (DM) by taking the following
two phenomena into account:
1. Passengers do not change with the same speed. There may be fast and slow passengers

and a decision for keeping a changing activity means practically that the train waits for
all (even for the slowest) passengers.

2. Due to the trickle-in effect, trains are not able to depart while passengers are still boarding.

ATMOS 2019
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The first point is modeled by using a time interval (Lmin
a , Lmax

a ) instead of a fixed time
La to describe the duration of the changing activities. We hence replace La in constraints
(3) by Lmax

a . The second point implies that a train can either depart before the fastest
passenger has arrived or after the slowest one has boarded, i.e., it cannot depart in the interval
(xi + Lmin

a , xi + Lmax
a ). This restriction is modeled by adding new constraints as follows.

I Lemma 1. Let a = (i, j) ∈ Achange. There exists za ∈ {0, 1} such that

Mza + xj − xi ≥ Lmax
a (4)

M(za − 1) + xj − xi ≤ Lmin
a (5)

are both satisfied if and only if

xj 6∈ (xi + Lmin
a , xi + Lmax

a ). (6)

Proof. Let (4) and (5) hold for some za ∈ {0, 1}. If za = 0, (4) reduces to xj ≥ xi + Lmax
a .

On the other hand, if za = 1 then (5) reduces to xj ≤ xi + Lmin
a . In both cases, xj 6∈

(xi + Lmin
a , xi + Lmax

a ).

Vice versa, let xj 6∈ (xi + Lmin
a , xi + Lmax

a ). If xj ≤ xi + Lmin
a we choose za = 1 to see

that both, (4) and (5) hold. On the other hand, if xj ≥ xi + Lmax
a then za = 0 guarantees

that (4) and (5) are satisfied. J

The proof of Lemma 1 specifies two possible cases for a dispatcher:
The changing activity is maintained (za = 0) if and only if the train departs after the
last passengers have boarded xj ≥ xi + Lmax

a .
The changing activity is dropped (za = 1) if and only if the train departs before the first
passengers have boarded xj ≤ xi + Lmin

a .

The resulting model (DM-trick) is hence given as

min
∑
i∈E

wi(xi − πi) +
∑

a∈Achange

zawaT (DM-trick)

s.t. xi ≥ πi + di ∀i ∈ E (7)
xj − xi ≥ La + da ∀a = (i, j) ∈ Adrive ∪ Await (8)

Mza + xj − xi ≥ Lmax
a ∀a = (i, j) ∈ Achange (9)

M(za − 1) + xj − xi ≤ Lmin
a ∀a = (i, j) ∈ Achange (10)

xi ∈ N ∀i ∈ E
za ∈ {0, 1} ∀a ∈ Achange

We remark that (DM-trick) contains (DM) as a special case by setting Lmax
a := La and

Lmin
a := La − 1 for all a ∈ A, i.e., it is a proper extension of the classical delay management

model: Constraint (10) may not be contained as an explicit constraint in (DM), but is
implicitly contained. This is the case because for every transfer a = (i, j) ∈ A that is missed
(za = 1) it needs to hold that xj −xi ≤ La− 1 since otherwise there would have been enough
time to connect event i with event j and due to the objective function za would have been
set to 0.

Trickle-in constraints can also be combined with all other extensions known for delay
management, i.e., it is possible to consider headway constraints as in [18], station capacity
constraints as in [7], or passenger routing constraints as in [9]. For the sake of simplicity we
compare (DM) and (DM-trick) in their basic versions as given above.
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4 Analyzing the New Model

As already mentioned in Section 2, for the classical delay management problem it suffices
to choose M as large as the largest source delay D := maxi∈E di if all da = 0. This does
not hold any more for (DM-trick), but still the size of M can be bounded. To this end, we
need the following two lemmas, both dealing with the original timetable πi, i ∈ E . For this
chapter, we assume that the original timetable π is feasible, i.e., that

πj − πi ∈ [La, Ua] ∀a = (i, j) ∈ Adrive ∪ Await, (11)

for all driving and waiting activities. For the changing activities we assume that the trickling
constraints (6) applied to the original timetable π

πj 6∈ (πi + Lmin
a , πi + Lmax

a ) ∀a = (i, j) ∈ Achange (12)

are satisfied, i.e., either nobody can change or everybody can. However, changing activities
are the ones that allow passengers to change, so the case πj − πi ≤ Lmin

a cannot hold. We
hence may assume that

πj − πi ∈ [Lmax
a , T + Lmin

a ] ∀a = (i, j) ∈ Achange (13)

where the upper bound T +Lmin
a holds since every line runs at least once per time period T .

In order to simplify the notation, we will sometimes use the delay yi of an event i ∈ E in
its disposition timetable, which is defined as

yi := xi − πi.

I Lemma 2. Let πi, i ∈ E be a feasible timetable. If all da = 0, then there exists an optimal
solution with yj ≤ D for all a = (i, j) ∈ A.

Proof. The proof works by induction. Since the event-activity network does not contain any
directed cycles, we can sort the events i ∈ E topologically. Let i1, . . . , i|E| be the resulting
order. Then the delay yi1 of the first event i1 is given by di1 ≤ D. Now take any other event
j and consider all of its incoming activities (i, j) ∈ A. We now estimate how large the delay
of event j can be. Note that there exists an optimal solution in which no disposition time
can be reduced (i.e., which does not contain any unnecessary delays). This means one of the
inequality constraints (7), (8), (9) is sharp.

If (7) is sharp we get xj = πj + dj , hence yj = xj − πj = dj ≤ D.
If (8) is sharp for (i, j) ∈ A we have that xj = xi + La, i.e., the delay of event j can be
computed as

yj = xj − πj = La + xi − πj

= La + yi + πi − πj︸ ︷︷ ︸
≤−La

≤ yi ≤ D by induction hypothesis
where we have used feasibility of the timetable, see (11) and that event i is topologically
smaller than event j.
If (9) is sharp for (i, j) ∈ A we analogously have that xj = xi + Lmax

a , i.e., the delay of
event j can be computed as

yj = xj − πj = Lmax
a + xi − πj

= Lmax
a + yi + πi − πj︸ ︷︷ ︸

≤−Lmax
a

≤ yi ≤ D by induction hypothesis
where we have used the second feasibility constraint for the timetable, see (13) and again
that event i is topologically smaller than event j. J
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Under the same conditions as in the above lemma we can hence estimate the size of big M ,
which is a bit larger than in (DM) but still of moderate size.

I Lemma 3. If da = 0 for all a ∈ A, then M = T + D is large enough to correctly solve
Model (DM-trick).

Proof. We have to find M that satisfies the following two conditions:
1. Constraint (4) should get redundant if za = 1, i.e., for an optimal solution we require

that M ≥ Lmax
a + xi − xj . We hence look for an upper bound of the right hand side:

Lmax
a + xi − xj = Lmax

a + πi + yi − πj − yj

= Lmax
a + πi − πj︸ ︷︷ ︸

≤−Lmax
a

+ yi︸︷︷︸
≤D

−yj︸︷︷︸
≤0

≤ D,

where we again used feasibility of the timetable, see (13).
2. Constraint (5) should get redundant if za = 0, i.e., for an optimal solution we require

that M ≥ xj − xi − Lmin
a . We again need an upper bound of the right hand side:

xj − xi − Lmin
a = πj + yj − πi − yi − Lmin

a

= πj − πi︸ ︷︷ ︸
≤T +Lmin

a

+ yj︸︷︷︸
≤D

−yi︸︷︷︸
≤0

−Lmin
a ≤ T +D,

this time using the upper bound in (13).
We conclude that M = D + T suffices for both constraints (4) and (5). J

In the case of da > 0, delays can increase for single trains and have to be bounded. This
can theoretically be done by summing up all delays da or (better) by finding a longest path
P in the event-activity network with respect to the weights da, see [18].

Let us now consider the case that the timetable is feasible according to its traditional
definition without the trickle-in effect, i.e., it satisfies πj − πi ∈ [La, T + La − 1] instead
of (13) for some La < Lmax

a . Then the trickle-in effect may generate delays.
Let us illustrate this on a small example: Given a timetable π that schedules train A to

arrive at 10:00 and train B to depart at 10:02 and given a trickling interval of (1, 3) minutes,
then the trickle-in effect is observable. The first passengers only need a little bit more than
one minute to catch the train, but then a continuous stream of passengers boards the train
leading to a delayed departure of train j at 10:03, i.e., to a delay of one minute. Thus, there
may occur delays due to the trickle-in effect without the existence of any source delays.

However, even in this situation we can use (DM-trick) to find optimal wait-depart decisions
dealing with both, source delays and delays occurring due to trickling constraints, and even
in this situation we can bound M . To this end, assume a changing activity a = (i, j) from
event i to event j for which we have La < πj−πi < Lmax

a . Then the transfer of all passengers
may take longer than the timetable allows. Hence, the trickle-in effect leads to a new type of
“source delay” on this changing activity, namely a delay of Lmax

a − (πj − πi). In order to find
a bound for M we hence need to search for a longest path P ′ with respect to the weights

w′a :=
{

max(0, da) if a ∈ Await ∪ Adrive
max(0, da, L

max
a − (πj − πi)) if a = (i, j) ∈ Achange

and add its length to M .
Hence, we receive a bound of

M = D + T + length(P ′)

in this case. The computational experiments show that M = D + T + length(P ′) is of
reasonable size and hence a sufficient upper bound for M .
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We now analyze the new model (DM-trick) with respect to the intervals [Lmin
a , Lmax

a ] for
the changing activities. Varying both, the lower and the upper bound on the duration of the
changing activities gives the following result.

I Lemma 4. Let Ia(k) = [Lmin
a (k), Lmax

a (k)] for all a ∈ Achange be a sequence of nested
intervals with

Lmin
a (1) ≤ Lmin

a (2) ≤ · · · ≤ La and La ≤ · · · ≤ Lmax
a (2) ≤ Lmax

a (1)

and let z∗(k) be the optimal objective function value for (DM-trick) with respect to the interval
Ia(k) and z∗ be the optimal objective function value of (DM). Then

z∗(1) ≥ z∗(2) ≥ · · · ≥ z∗.

Proof. Since Ia(k + 1) ⊆ Ia(k) for all a ∈ Achange, (DM-trick) with respect to the intervals
I(k + 1) is a relaxation of (DM-trick) with respect to the intervals I(k) and the result
follows. J

As a consequence, (DM) is a relaxation of (DM-trick) whenever the changing times La

in the classical model (DM) satisfy La ∈ [Lmin
a , Lmax

a ] for all a ∈ Achange. Hence, solving
(DM) gives a lower bound on (DM-trick). In the experiments in Section 5 we compare the
gap between this lower bound and the real solution. The best approximation of (DM-trick)
by (DM) is given if we set La := Lmax

a for all a ∈ Achange, i.e., making sure that also the
slow passengers are able to board their next train. This is shown in the next Lemma.

I Lemma 5. Let [Lmin
a , Lmax

a ] for all a ∈ Achange be the given data for (DM-trick). Let
z∗(La) be the optimal objective function value for (DM) with data La for all a ∈ Achange.
Then an optimal solution to

max{z∗(La) : La ∈ [Lmin
a , Lmax

a ] for all a ∈ Achange}

is provided by setting La = Lmax
a for all a ∈ Achange, i.e., the best lower bound obtainable

from the classical model (DM) is provided by setting La := Lmax
a for all a ∈ A.

Proof. From Lemma 4 we already know that all La ∈ [Lmin
a , Lmax

a ] provide lower bounds.
We hence have to show that the largest of them is obtained by setting La := Lmax

a for all
a ∈ A. To this end, let L′a ≤ Lmax

a for all a ∈ A. Let (x, z) be a solution of (DM) with
respect to Lmax

a . It hence satisfies (3) with Lmax
a on the right hand side and hence also with

L′a ≤ Lmax
a on the right hand side. Hence, (x, z) is also feasible for (DM) with respect to L′a.

We conclude that (DM) with respect to L′a is a relaxation of (DM) with respect to Lmax
a ,

and hence

z∗(L′a) ≤ z∗(Lmax
a ). J

The computational results underline that using (DM) as a relaxation for (DM-trick) impose
a good trade-off between computation time and (DM)’s quality as a lower bound.

5 Experiments

In this section we investigate the effects of the trickle-in effect computationally. To this
end, we implemented (DM-trick) in LinTim, an open source software framework for public
transport optimization, see [19, 11]. We focus on solving the bahn dataset, consisting of 250
nodes and 326 edges, modeling the German ICE network, see Figure 3 in the appendix.
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For quickly determining the timetable we use the MATCH heuristic as described in [16]
since it is faster than the modulo simplex [12, 15] or integer programming approaches [13].
We roll out the periodic timetable for 4 hours and receive an aperiodic event-activity-network
with around 20000 events and 40000 activities. For generating delays we use a LinTim
procedure which is parameterized to choose 1000 activities and to generate source delays
uniformly distributed between 1 and 900 seconds for each of the chosen activities. In order
to calculate a sufficiently big M as described in Section 4, we calculate length(P ) = 3500
seconds and D = 0 (because we generate source delays only on activities) and T was chosen
to be 3600 seconds, leading to a choice of M = 7100. We implemented (DM-trick) using
Gurobi 8.0 with a relative optimality gap of 1% and run the experiments on a compute server
with 12 cores of Intel(R) Xeon(R) CPU X5650 @ 2.67 GHz and 78 GB RAM.

In our first experiment we compare different trickling intervals with the lower bound
Lmin

a ranging from 60 to 180 seconds and Lmax
a ranging from 180 to 300 seconds. The default

minimum changing time La is assumed to be 180 seconds. The objective values, given in
passengers times seconds, for solving (DM-trick) with these different intervals are depicted
in Figure 2a.

(a) objective values in passengers × seconds. (b) runtimes in seconds.

Figure 2 (DM-trick) for different trickling intervals (Lmin
a , Lmax

a ) in seconds.

We see that the instance with the smallest trickling interval ([180, 180] seconds) has the
lowest objective value of about 2.9·109, whereas the instance with the largest trickling interval
([60, 300] seconds) has the largest objective value (3.3 ·109). This is consistent with the theory
since small trickling intervals are a relaxation of larger trickling intervals, see Lemma 4. A
higher objective value is equivalent to higher passenger delays in the event-activity-network
which makes sense as a larger trickling interval potentially leads to longer waiting times for
trains. In general, one can observe that a larger interval correlates with a higher objective
value, and furthermore that a change in Lmax

a has a higher impact on the objective value
than a change in Lmin

a .
Figure 2b now depicts the runtimes for different choices of the trickling interval.
Interestingly, also the instance with the smallest trickling interval has the lowest runtime

and the instance with the largest trickling interval has the highest runtime. Also for the other
instances the runtimes correlate primarily with the size of the trickling interval (although
not as smoothly as the objective value) and a change in the upper bound Lmax

a has again a
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higher impact on the runtime than a change in Lmin
a . The correlation between size of the

trickling interval and runtime can be explained by the nature of integer programming. If the
size of the “forbidden” trickling interval is increased, we get a weaker linear relaxation of the
integer problem and hence need longer to solve it, e.g., via branch-and-bound.

The next experiment investigates the difference between a disposition timetable found by
(DM) and a disposition timetable that respects the trickle-in effect. To this end, Figure 4 (in
the appendix) depicts the number of changing activities of a disposition timetable from (DM)
(with La = 180 seconds) that lie in the trickling interval. Hence, Figure 4 illustrates the
difference between a disposition timetable found by solving (DM) and disposition timetables
found by solving (DM-trick) for different trickling intervals. As can be seen in the figure,
there exist up to 1194 infeasible change activities for a disposition timetable from (DM).
In other words, if a disposition timetable from (DM) is found, it can be the case that 1194
changing activities (or about 6% of all changing activities) cause new delays due to the
neglection of the trickle-in effect.

Furthermore, we investigate the results of Lemma 5, i.e., that solving (DM) with La :=
Lmax

a yields the best approximation to (DM-trick).
One can see in Figure 5 (in the appendix) that the objective value indeed increases

when La increases, culminating in a gap of only 3% if La is chosen to be Lmax
a . Hence, we

get a reasonably good approximation of (DM-trick) by only solving an instance of (DM).
Furthermore, it should be noted that solving (DM) takes only around 1 second, whereas
solving (DM-trick) with trickling interval [60, 300] seconds took around 77 seconds to solve.
Hence, we indeed get a decent trade-off between computation time and solution quality.

Finally, we investigate the difference between the disposition timetables from (DM) and
(DM-trick) (with a trickling interval of [60, 300] seconds). We observe that the solution
from (DM) schedules trains such that 566 connections are missed, whereas in the solution of
(DM-trick) there are 684 missed connections. Interestingly, 513 of the missed connections
coincide such that in this case considering the trickling effect yields to a change in 224
wait-depart-decisions. Thus, not only the objective values of the two models (DM) and
(DM-trick) varies, but also the structure of the resulting delay management strategy.

As a final note, we also run the model (DM-trick) for the case if no source delays exist
and received an objective value of around 5 · 108. This is roughly 15% of the objective value
we encountered while working with the aforementioned 1000 source delays. Put differently,
in this instance up to 15% of the delays might not be caused by source delays, but by
the mere structure of the underlying periodic timetable and the trickle-in effect. Hence,
the trickle-in effect has high relevance beyond delay management and should already be
considered when planning a periodic timetable (which is not the case when using, e.g.,
MATCH for timetabling).

6 Conclusion and Suggestions for Further Research

In this paper we introduced the trickle-in effect, an observation on passenger behavior at
train stations that highly influences delays in public transport. We introduced models for
incorporating the trickle-in effect into standard delay management models and also showed
how it already influences the periodic timetabling problem. We investigated mathematical
properties of the resulting model and showed how (DM-trick) can be approximated best using
the classical delay management problem. This allows to use approaches for classical delay
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management (such as [3, 17, 8, 6]) for heuristically solving (DM-trick). The computational
experiments underlined our hypothesis that the trickle-in effect has a high impact on delay
management: Here, the objective value of (DM-trick) exceeds the objective value of (DM)
up to 15%. Finally, since the computation times for (DM-trick) rise significantly, we still can
get a decent approximation of (DM-trick) by solving a modified version of (DM).

Further research includes simulation approaches to better understand the behaviour of the
passengers and to derive practically relevant trickling intervals. To this end, an agent-based
simulation as in [2] is currently developed. We are also interested in adding the trickling
constraints to more sophisticated delay management models including passengers’ routing
and capacity constraints.

Finally, there is another line of research, namely adding trickling constraints to the
timetabling problem. In Section 4 we have already seen that considering the trickle-in effect
in a timetable that is not feasible with respect to (13) might cause source delays. The
experiments justify this theoretical observation: a timetable might get significant delays
just because of the trickle-in effect, i.e., even if no other source delays occur. We hence
suggest to consider the trickle-in effect already in the timetabling phase. This means to
add constraints of type (12) in timetabling such that either all passengers or none of the
passengers can make a transfer. Hence, πj − πi ∈ [Lmax

a , T + Lmin
a ] needs to be respected for

all changing activities (i, j) and even more general for all activities (i, j) from an arrival event
of an incoming train to a departure event of (another) outgoing train. These constraints
can be transferred also to periodic timetabling and considered as additional constraints in
the periodic event scheduling problem (PESP). The analysis of them (runtime, impact on
resulting timetable) are an interesting topic for future research which seems to be challenging
and highly relevant from a practical point of view.
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A Figures

Figure 3 bahn dataset.

Figure 4 number of infeasible changing activities for a timetable from (DM)
for different trickling intervals.
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Figure 5 objective values for (DM) for different La.

ATMOS 2019


	Introduction
	The Classical Delay Management Model
	Modeling the Trickle-in Effect
	Analyzing the New Model
	Experiments
	Conclusion and Suggestions for Further Research
	Figures

