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Abstract
Due to the significant growth in passenger numbers, higher vehicle load factors and crowding become
more and more of an issue in public transport. For safety reasons and because of an unsatisfactory
discomfort, standing of passengers is rather limited in high-speed long-distance trains. In case
of delays and (partially) cancelled trains, many passengers have to be rerouted. State-of-the-art
rerouting merely focuses on minimizing delay at the destination of affected passengers but neglects
limited vehicle capacities and crowding. Not considering capacities allows using highly efficient
shortest path algorithms like RAPTOR or the connection scan algorithm (CSA).

In this paper, we study the more complicated scenario where passengers compete for scarce
capacities. This can be modeled as a piece-wise linear, convex cost multi-source multi-commodity
unsplittable flow problem where each passenger group which has to be rerouted corresponds to a
commodity. We compare a path-based integer linear programming (ILP) model with a heuristic
greedy approach. In experiments with instances from German long-distance train traffic, we quantify
the importance of considering vehicle capacities in case of train cancellations. We observe a tradeoff:
The ILP approach slightly outperforms the greedy approach and both are much better than capacity
unaware rerouting in quality, while the greedy algorithm runs more than three times faster.
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1 Introduction

Recent years have shown significant growth in passenger numbers on public transport services
in many countries. Due to political efforts to increase utilization of public transport in
support of sustainability goals, further growth is to be expected. While congestion in metro
systems of mega-cities during peak hours has been recognized as a challenge for many years,
awareness of increased in-vehicle density as a problem also for the management of passenger
flows in long-distance trains started only recently.
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7:2 Vehicle Capacity-Aware Rerouting

In this paper, we combine delay and disruption management with scarce vehicle capacities.
In large and complex public transportation systems delays as well as disruptions occur
frequently. Typical reasons are technical defects, construction work, bad weather conditions,
exceptionally many passengers, accidents, and the like. As a consequence, passengers miss
planned transfers which results in a significant delay at their destinations, in considerable
dissatisfaction, and ultimately in economic loss for the railway company. In delay management,
train dispatchers have to decide which trains shall wait for delayed incoming trains in order to
maintain connections for passengers. Such problems are challenging for several reasons: One
has to deal with large-scale networks subject to dynamically changing, partially incomplete
and imprecise information about current delays and their propagation, and solutions are
required in almost real-time. In an on-going joint research project with Deutsche Bahn, we
are working on the development of a decision support system for dispatchers which shall
help to find optimal waiting decisions from a passenger’s point of view. A key assumption is
that detailed information about passenger flows is available, that is, for each passenger the
planned route is known. Such passenger flows can be based on sold tickets or statistically
validated demand models. In our long-term project, we have built a prototype for an
optimized passenger-friendly disposition system, named PANDA [16, 19]. The acronym
PANDA abbreviates Passenger-Aware Novel Dispatching Assistance. It is designed to provide
train dispatchers with detailed real-time information about the current passenger flow and the
multi-dimensional impact of waiting decisions in case of train delays and cancellations. If trains
are cancelled or connections cannot be maintained, passengers have to be rerouted. State-of-
the-art solutions determine new routes for passengers that are optimized subject to earliest
arrival at the planned destination with few transfers as a secondary criterion. Technically,
this requires the efficient solution of large-scale multi-criteria shortest path problems in
suitably designed event-activity networks. Recent progress in shortest path algorithms for
such applications allows to solve such problems in a few milliseconds per instance, for example
by using RAPTOR [5] or the connection scan algorithm (CSA) [6, 7]. Capacity constraints,
however, are widely neglected in previous work. Considering the available free capacity
to avoid overcrowded trains leads to several, more challenging combinatorial optimization
problems. With respect to capacities, we may distinguish between hard and soft capacities.
For each vehicle, there is a designated number of available seats. This gives a soft capacity
beyond which it becomes more and more uncomfortable to travel. At a certain threshold, the
hard capacity, a vehicle becomes so crowded that it is not allowed to run anymore for security
reasons.1 Key drivers for crowding discomfort of passengers are dissatisfaction with standing
and not being seated, fewer opportunities to make use of the time during the journey, and
the physical closeness of other travellers per se [13].

Goals and contribution. The main use case and focus of this work are cancelled or par-
tially cancelled trains where many (up to several hundred) passengers have to be rerouted
simultaneously. A second use case are passengers with missed connections due to wait-depart
decisions in delay management. For the most important train connections, also large numbers
of passengers are affected by a single decision.

A crucial issue concerns the model how passengers behave. If we assume that passengers
behave selfishly and inform themselves individually and independently about alternative
routes, we have only limited capabilities to avoid overcrowded trains. All we can do in such a

1 According to Richard Lutz, Chief Executive Officer (CEO) of Deutsche Bahn, overfull long-distance
trains of Deutsche Bahn have to be stopped and evacuated half a dozen times a week (Handelsblatt of
April 19, 2018).
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scenario is to only recommend trains which have enough free capacity and to put preference
on connections with lower seat occupation. To support such a goal, one can still solve shortest
path problems. In an attempt to avoid violations of hard capacities, we can simply forbid
all arcs in the event-activity model which would lead to overfull vehicles. Moreover, the
objective function can be modified so that it prefers trains with larger free capacity.

Different optimization problems arise if we take the perspective of a recommending
system which tries to achieve a system optimum, that is, a solution which minimizes the
overall inconvenience for all affected passengers. Inconvenience can be expressed in several
ways, the simplest version being the total delay at the destination, summed up over all
passengers. Overcrowding of trains can be penalized with the help of convex cost functions.
For such scenarios, we have to solve some large-scale integral minimum cost multi-commodity
flow problems, where each group of passengers sharing the same origin and destination
corresponds to some commodity. Since passengers groups want to travel together, we have
to consider versions of unsplittable flow problems. Such problems are well-known to be
NP-hard optimization problems. The most common approach to solve them is integer
linear programming (ILP) with a path-based formulation and column generation. While the
underlying network is fairly large, the number of commodities to be considered is typically of
moderate size. Moreover, for each commodity, there is only a limited number of “reasonable”
alternative paths to which one can heuristically restrict the search. We follow this general
approach, and in addition, we will also consider a fast greedy rerouting scheme. With this
work we want to tackle the following research questions:
1. How relevant is crowding-aware rerouting in long-distance trains already today? How

much more important will it be with rising numbers of passengers?
2. Comparing a capacity-aware greedy rerouting with a minimum cost multi-commodity

flow model, how much do we lose in quality if we use a greedy algorithm?
3. Can we solve the instances of unsplittable flow problems fast enough in practice?

Due to our cooperation with DB Fernverkehr, we concentrate on long-distance trains.
Our main results are as follows. First, we observe that ignoring vehicle capacities would
guide many passengers into overfull trains. This effect will become more severe with rising
passenger numbers. Conversely, with our models we can reduce passenger inconvenience to a
large amount. Second, the ILP solution is slightly better in quality than the greedy approach,
but the greedy approach is about three times as fast. Third, while the ILP problems can be
solved very easily within milliseconds, the required computation of alternative paths turns
out to be the bottleneck. Severe cases of train cancellations with several hundred passenger
groups require on average less than 85 seconds of computation time for our ILP approach.

Related work. Delay management has been studied very intensively in the literature, see
the recent survey [10]. Based on event-activity networks most of these approaches model
delay management by integer linear programming (ILP) and consider offline versions of the
problem, where all delays are known before the optimization process starts [21, 22]. First
approaches considered simplified versions and assumed that passengers who miss a connection
wait for the next connection on the same line. Integrated passenger rerouting has been
considered by [9, 10, 20]. The integration of passenger rerouting into an ILP formulation leads
to a considerable blow-up, making these formulations very large. With today’s techniques
for integer programming, the handling of several hundred thousands of passenger routes
seems to be impossible in an online setting. Dollevoet and Huisman [8] propose several fast
heuristics and introduce an iterative ILP approach which comes close to the exact solution
but is significantly faster. However, it remains open whether their iterative ILP approach

ATMOS 2019



7:4 Vehicle Capacity-Aware Rerouting

scales well to large-scale networks. All previous delay management models have in common
that they do not consider vehicle capacities and crowding. Models and algorithms for efficient
passenger routing in public transport (timetable information) have intensively been discussed
in the literature, see for example the surveys by Müller-Hannemann et al. [17] and the more
recent one on efficient shortest path algorithms by Bast et al. [4]. Among the many recent
approaches for shortest path computation in public transportation networks, most relevant
for this work are those which are well suited to a dynamic online scenario. As they require
no heavy preprocessing, the above-mentioned approaches RAPTOR [5] and an extension of
CSA [6, 7] serve very well for minimizing earliest arrival time and the number of transfers.
RAPTOR can be extended to determine the Pareto set of optimal solutions for additional
criteria, for example reliability and ticket price (McRaptor). Discomfort of crowding as an
additional criterion has to the best of our knowledge not been considered in a multi-criteria
setting. There has been, however, related work, in load balancing of passenger flows. For
example, Huang et al. [14] study route guidance for passengers as a means to reduce in-vehicle
congestion. The problem of finding alternative routes has found quite some attention before.
One possibility is to search for the top k shortest paths. Since event-activity networks are
directed acyclic graphs, these paths can be found and output by Eppstein’s algorithm in
O(n logn+m+ kn) time in networks with n vertices and m arcs [11]. As the top k shortest
paths may be too similar, several attempts have been done to find sets of paths with limited
overlap. One such approach is first to compute a large set of candidate paths and then to
filter candidates with respect to some similarity measure, for example [1].

Multi-commodity flows and unsplittable flow problems have been extensively studied
in the literature [2, 23]. In general, they are strongly NP-hard since many combinatorial
problems, including disjoint paths, can be reduced to it. Classical applications of unsplittable
flow problems include, for example, bandwidth packing problems in telecommunication
networks or express package delivery problems in logistics [3]. For solving large-scale
instances of unsplittable flow problems, path-based formulations have advantages over arc-
based formulations [3]. Since the number of paths grows exponentially with the size of
the graph, exact solutions usually require column generation. Barnhart et al. [3] provide
seminal work on column generation and branch-and-price-and-cut algorithms for unsplittable
flows. Fortz et al. [12] discuss models for piecewise linear cost versions of the unsplittable
multi-commodity flow problem. Wang [23] provides a recent survey on solution methods for
multi-commodity network flow problems.

Overview. The remainder of this paper is organized as follows. In Section 2, we present our
multi-commodity flow model. We start with general considerations and model assumptions.
Afterwards, we develop and explain step-by-step the underlying event-activity network,
our modelling of capacities and cost functions, and the resulting integer programming
formulation. Then, we present a fast greedy heuristic and, finally, we describe our approach
for the computation of candidates for alternative paths. Our computational study with many
instances from Deutsche Bahn is reported in Section 3. Finally, we summarize and conclude
with future work.

2 Multi-Commodity Flow Model

In this section, we develop our approach for the simultaneous rerouting of passengers with
respect to limited vehicle capacities.
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2.1 Basic considerations and assumptions
Our model is based on the following considerations and assumptions:

In case of a disruption, our task is to find valid alternative routes for all affected passengers
whose planned connection becomes invalid. If we cannot find an “acceptable” alternative
(say, with at most two hours of delay at the destination), this imposes a high cost for
compensation.
Only directly affected passengers are rerouted. We assume that all others who are not
forced to change plans keep their planned route. In some cases, delayed trains may offer
new opportunities for passengers to optimize their routes, but this issue is ignored in our
model.
Groups of passengers have planned to travel together (for instance, couples, families,
school classes). They certainly have to stay together also in their new route. This implies
that we have to consider unsplittable flow models. Moreover, many passengers share the
same origin and destination even if they are personally unrelated. They may be treated
as a group since recommending different alternatives to them might be hard to explain
and communicate without personalized route guidance.
Rerouting of passengers comes with several disadvantages. Passengers may lose their
seat reservation and have to enter more crowded trains. The valuation of discomfort
is very subjective and varies widely between passengers. It depends individually on
personal circumstances (like age and healthiness), the reason for traveling, and several
other factors [15]. Nevertheless, to keep the model simple enough, we use the same general
utility functions for all passengers.
For simplicity, we do not make a distinction between first and second class travelers.
Train tickets are often bound to a specific connection for which they are booked. In case
of disruption, we assume that passengers may choose any train and any connection (no
restrictions due to ticket regulations apply).
We restrict the set of eligible alternative paths to “reasonable” ones: i.e. we consider only
paths where passengers arrive at their final destination at most 120 minutes after the
earliest feasible arrival time. We also exclude paths with too many train changes, and
the upper limit is at most six transfers.
Train cancellations or missed transfers only become known at short notice, at a certain
event-specific release time. Since passengers can react only after they become aware of a
need to find an alternative route, we require that replanning can alter the original route
only after this release time. Several cases are possible:
1. The passenger has not yet started traveling. In this case, we assume that the passenger

arrives at the station where the original route would have started more or less just
in time for the planned train. Thus, an alternative route may not start earlier and
should begin at the same station (although an initial footpath is allowed).

2. The passenger is already traveling. Then, based on the current location (in some
specific train or at a station) and time, an alternative connection must be compatible
with the initial part of the original route.

Event-activity network

The given train schedule and the set of passenger routes can be modeled with the help of
a so-called event-activity network (EAN) N = (V,A), a directed acyclic graph with vertex
set V and arc set A. The vertices of the network correspond to the set of all arrival and
departure events of the given schedule. Arcs of the network model order relations between
events. We distinguish between different types of arcs (“activities”):

ATMOS 2019



7:6 Vehicle Capacity-Aware Rerouting

driving arcs, modeling the driving of a specific train from one stop to its very next stop,
dwelling arcs, modeling a train standing at a platform and allowing passengers to deboard
or board the train, and
transfer arcs, modeling the possibility for passengers to switch between two trains at the
same or nearby stations.

Passenger routes correspond to paths in N from a departure event to some arrival event.
Let K be the set of passenger groups which have to be rerouted due to a train cancellation
or broken transfer. For k ∈ K, denote by dk the size of group k. Denote by tk the intended
destination, i.e. the final station of the planned route. Likewise, denote by sk the origin
(“source”) of this group with respect to the time of replanning. The origin is the first station
of the planned route if the journey has not yet started. Otherwise, it denotes the station
where the group is currently waiting or the very next station at which they will arrive with
their current train.

We extend the event-activity network N by adding a source and a target “event” for each
passenger group k ∈ K. Each source sk is connected to all departure events at the same
station which can be reached by the group. If footpaths to nearby stations exist, we also
connect sk to the reachable departure events at these stations. At the target station, we
connect all arrival events with tk. In summary, we seek for each group a path which starts at
source sk and and ends at target tk. For instances with very high load and in particular for
large groups of passengers, no feasible capacity-respecting path may exist. To make sure,
that every instance has a feasible solution, we add for each pair (sk, tk) some direct “no-route”
arc of infinite capacity but very high costs, so that such arcs are only chosen if no other path
is available.

Capacities and cost functions

With every arc a which corresponds to a driving or dwelling activity of a train, we can
associate a nominal seat capacity cap(a). Recall that we do not distinguish between first
and second class seats for simplicity. The hard capacity for such an arc is set as β · cap(a)
where β ≥ 1 is a parameter specifying the maximal overload acceptable for security reasons.
For high-speed trains, choosing β = 1.2 may be a reasonable choice (and is used in our
experiments).

For rerouting, we have to consider the free capacity which remains if we subtract the
number of those passengers which are not affected by rerouting. Thus, if load(a) denotes the
current number of passengers on arc a, we obtain an upper bound ua = max{0, β · cap(a)−
load(a)}. (Arcs of overloaded segments with ua = 0 are excluded from the model.) All arcs
in A not corresponding to driving or dwelling activities of trains have unlimited capacity.

For arc a ∈ A, let Ca(xa) be a piece-wise linear convex cost function. For simplicity in
notation, we assume that each cost function has exactly b linear segments, but we allow
empty segments to model cost functions with fewer breakpoints. With 0 = u0

a ≤ u1
a ≤ u2

a ≤
· · · ≤ ub

a = ua we denote the breakpoints of the function. The cost varies linearly in the
interval [ui−1

a , ui
a] with slope ci

a. Slopes are strictly increasing, i.e. c1
a < c2

a < · · · < cb
a (unless

they are +∞).
As a cost function, we use a kind of generalized or perceived travel time which penalizes

transfers and crowding discomfort. For the latter, we use the time-multiplier method [18].
The cost function’s basic unit is travel time in minutes. Traveling, dwelling and transfer arcs
each have a certain duration dur(a). Train changes are penalized with α extra minutes per
transfer. Traveling in the train (i.e. being on traveling or dwelling arcs) is penalized with
respect to the load. For the segment of the piecewise linear cost function, we have penalty
factors γ1 < γ2 < · · · < γb. Cost parameters are set as follows.
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For traveling and dwelling arcs we set:

c1
a = (1 + γ1) · dur(a), c2

a = (1 + γ2) · dur(a), . . . , cb
a = (1 + γb) · dur(a).

Transfer arcs are uncapacitated and have only a single finite cost segment, thus we set

c1
a = dur(a) + α, c2

a = +∞, . . . , cb
a = +∞.

“No-route arcs” have very high costs, say c1
a = 10000, c2

a = +∞, . . . , cb
a = +∞.

All remaining arcs have zero costs.

2.2 Integer linear programming formulation
We are now ready to formulate the unsplittable flow problem as an integer linear program.
Denote by P (k) be the set of all paths from sk to tk from which the group has to select
exactly one. We use binary decision variables yk

p where yk
p = 1 if group k selects path

p ∈ P (k), and yk
p = 0 otherwise. Let δp

a be an arc-path indicator variable that equals 1 if arc
a is contained in path p. For arc a ∈ A, let xk

a be the size of the flow on arc a of commodity k,
and xa =

∑
k∈K xk

a be the total flow on this arc.
A classical transformation of piecewise convex flows to standard flow with linear costs is

to replace each arc a by a set of b parallel arcs [2]. The idea is to decompose the flow xa into
flows on the segments between neighboring breakpoints of the cost function. Define

f i
a =


0 if xa ≤ ui−1

a

xa − ui−1
a if ui−1

a < xa ≤ ui
a

ui
a − ui−1

a if xa ≥ ui
a.

This implies xa =
∑b

i=1 f
i
a and Ca(xa) =

∑b
i=1 c

i
af

i
a. The path flow formulation is then:

min
∑
a∈A

b∑
i=1

ci
af

i
a (1)

subject to ∑
p∈P (k)

yk
p = 1 for all k ∈ K (2)

∑
k∈K

∑
p∈P (k)

dky
k
pδ

p
a =

b∑
i=1

f i
a for all a ∈ A (3)

f i
a ≤ ui

a for all a ∈ A and all i = 1, 2, . . . , b (4)
f i

a ≥ 0 for all a ∈ A and all i = 1, 2, . . . , b (5)
yk

p ∈ {0, 1} for all k ∈ K and all p ∈ P (k) (6)

Equations (2) ensure that exactly one path has to be chosen for each commodity. Equa-
tions (3) express that the total flow xa =

∑b
i=1 f

i
a on arc a equals the sum of chosen paths

using this arc, weighted by the demands dk of the commodities. Capacity constraints of
all flow segments are given by Inequalities (4), while non-negativity of all flow variables
is provided by Inequalities (5). The integrality of all flow variables f i

a is implied by the
integrality of the left-hand-side of Equations (3) and the strict increase in slope values ci

a.

ATMOS 2019



7:8 Vehicle Capacity-Aware Rerouting

2.3 A fast greedy heuristic
The exact solution of the unsplittable flow problem is NP-hard, although the instances arising
in our applications seem to be quite well solvable by state-of-the-art ILP solvers (see our
experiments below). However, it requires the computation of many alternative paths in a
first step which is computationally expensive.

Therefore, we suggest a simple, but fast greedy heuristic: process the passenger groups
one after another (in some random order). For each group k ∈ K, compute the shortest
alternative path with respect to the perceived travel time, subject to current free capacities.
Assign the passengers of this group to the new route, update the capacities, and continue
with the next group.

2.4 Path set computation
The set of all s-t–paths can be exponentially large. However, only a small number of them
is sufficiently attractive for passengers so that they are actually used. Therefore, instead
of working with the full set of paths P (k) for each commodity, we heuristically restrict the
search to a carefully selected small set of paths.

To this end, we first compute the Pareto set of shortest paths with respect to three
criteria travel time, number of transfers, and some measure of inconvenience. We propose
two variants:
1. PARETO1: we use the same perceived travel time function as inconvenience measure as

in the greedy approach.
2. PARETO2: we consider a measure which focuses on load. The load of an arc with

capacity restrictions (a capacitated arc) is defined with the same cost parameters as in
the ILP. The load of a path is then defined as the sum of loads on its capacitated arcs.

In PARETO1, the first and third criteria are highly correlated, resulting in relatively
small path sets. In contrast, the travel time and load are much less correlated (although the
load costs of an arc also depend on its duration), leading to slightly larger Pareto sets. To
increase the likelihood of finding feasible paths, we finally add the path set of the greedy
approach. As mentioned above, the Pareto sets are pruned in both variants such that only
paths with at most six transfers and at most two hours of extra delay are maintained. All
other paths are considered as unacceptable.

3 Experiments

In this section, we report our findings with experiments on many large-scale test instances.

3.1 Test instances, implementation details, and experimental setup
Test instances

Our experiments are based on the timetable of Germany in 2019. For each day, passenger
flow data for travelers using long-distance trains are provided by Deutsche Bahn. They are
based on sold tickets until the day before and an estimation of short-term ticket buyers.
Our capacity data is restricted to that of long-distance trains, for other trains we assume
infinite capacity. We selected five test days in April 2019, in the week from Monday 22 to
Friday 26. For the runtime measurements we only used the Friday. The average number of
passengers in our passenger flow data is about 410,000 passengers (minimum 280,000 and
maximum 540,000). In order to create meaningful and relatively hard test instances, we
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Figure 2 Vehicle load over time of long-
distance trains in Germany.

concentrate on train cancellations with many affected passengers and groups which have to
be rerouted. To this end, we randomly selected a subset of trains with the property that
their passenger load reaches at least 65% of its capacity. Each train cancellation is studied
in isolation as an independent test instance. Overall, we have a test set composed of 653
train cancellations. Figure 1 shows the distribution of the number of affected passengers and
groups per instance. The average number of affected groups is 351.4, the average number of
affected passengers is 922.84.

Specific cost functions and parameters

The following parameter settings are used in all experiments. In our basic model, we use
only three different segments for capacitated arcs. Recall that the hard limit ua is chosen
with respect to β = 1.2, i.e. 120% of the nominal vehicle capacity. The interval from 0 to
the hard upper limit ua is divided as follows:
1. The train is currently occupied by at most 65% of its capacity. We set u1

a = 65/120 · ua.
This is considered as a non-crowding scenario and imposes no crowding penalties, i.e.
γ1 = 0.

2. The current load is between 65% and 100% capacity. Every passenger finds a seat, but
with limited choice. We set u2

a = 100/120 · ua. Here we impose a crowding penalty of
γ2 = .2, i.e. we impose .2 extra minutes per minute of travel time.

3. The available capacity is exceeded, some passengers have to stand. The penalty for
standing is γ3 = 1, i.e. one extra minute per minute of travel time.

Experimental setup

Our code has been written in C++, it is compiled with gcc 8.3 and run under Arch Linux
x86_64 with packages from Mai 2019. All runs are executed on a four core plus hyper-
threading Intel(R) Xeon(R) CPU E3-1231 v3 @ 3.40GHz machine. Shortest path problems
in the event-activity network are computed by an implementation of RAPTOR. ILPs are
solved with Gurobi Optimizer 8.12.

2 http://www.gurobi.com

ATMOS 2019

http://www.gurobi.com
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Figure 3 The number of passengers ending
up without a valid route. For NOCAP, we
have to distinguish passengers with no route,
and others with a route which violates hard
capacities (last column, right scale).
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We compare the following four approaches:

1. NOCAP: this refers to the approach of capacity-unaware rerouting. Passengers are
simply rerouted to a path with earliest arrival time at their destination. Capacity
constraints may be violated.

2. GREEDY: passenger groups are rerouted greedily as described in Section 2.3.

3. ILP1: this refers to the ILP model where the path set is chosen as PARETO1.

4. ILP2: the same ILP model is used but the path set is chosen as PARETO2.

3.2 Experimental Results

Question 1: How relevant is the consideration of scarce vehicle capacities in
rerouting?

Considering the initial load (before rerouting) of long-distance trains, the average vehicle
load of 44.71% (within the interval from 6am to 10pm) may falsely suggest that there is
probably no severe problem with scarce capacities. However, if we look more carefully into
the distribution we observe that the average load changes considerably during the course of
the day, see Figure 2. Many of the most crowded trains run in the afternoon hours and close
to their maximum seat capacity.

The problem with scarce capacities becomes apparent when we evaluate the traditional
capacity-unaware rerouting scheme. Figure 3 shows the number of passengers for which
we cannot find a (valid) route. For capacity-unaware rerouting (NOCAP), we have a few
cases without any route (column 4), and many more cases, about 15% of all passengers, with
an alternative route violating hard train capacities (column 5). In other words, that many
affected passengers will by routed into some overfull train whenever capacities are ignored!
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Question 2: How large is the improvement for passengers if we apply
capacity-aware routing?

With the capacity-respecting variants, we can strongly reduce the number of passengers
without a valid route, see again Figure 3. For less than 0.01% of the passengers no valid
route exists (for all four algorithmic variants). Such cases occur for some rare connections
without a feasible alternative within the next 24 hours.

We also evaluated the improvement in inconvenience costs over the NOCAP baseline
version. Concentrating only on the subset of cases where all variants find valid routes for
all passenger groups, we see that GREEDY reduces the total inconvenience costs by more
than 10.5% in comparison with NOCAP. Even better mean improvements of about 11% and
11.5% over the baseline NOCAP are obtained with ILP1 and ILP2, respectively, see Figure 4.

The better average quality of ILP2 over ILP1 can be partially explained by the underlying
path sets. As Figure 5 shows, the mean size of the PARETO1 path set is smaller than
PARETO2, thus leading to fewer rerouting options within ILP1 in comparison with ILP2.
Even better solutions can be expected if we further increase the path sets.

Question 3: What happens if passenger numbers increase by 20%?

To answer this question, we take the original passenger flows and scale them up by 20%.
Figure 6 shows that the ILP2 solution is continuing to outperform the NOCAP solution
on average by 15.0%. The change in total discomfort by passengers, however, is significant.
Adding 20% more passengers increases the discomfort experienced in the NOCAP strategy
by 9% while the ILP2 model does only produce 5% more discomfort for the same passengers.
Thus, we conclude that capacity-aware routing will become more important with rising
passenger numbers.

ATMOS 2019
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Figure 7 Runtime distributions of single runs of RAPTOR (left) and for whole trains (right) for
the four different variants NOCAP, GREEDY, PARETO1, and PARETO2.

Question 4: How efficient are the proposed approaches?

Let us start with some good news: When the underlying path sets are generated, it turns
out that solving the ILP resulting instances is very easy for state-of-the-art solver gurobi,
since all of them can be solved in few milliseconds.

The expensive part, however, is the computation of candidate paths for all passenger
groups. Figure 7 shows runtime distributions as violin plots for single runs of RAPTOR
for the four different variants NOCAP, GREEDY, PARETO1 and PARETO2. The mean
runtimes are 42ms for NOCAP, 53ms for GREEDY, 166ms for PARETO1, and 228ms for
PARETO2. The mean runtime to compute the path sets for all affected groups of a train
cancellation is 19s for NOCAP, 20s for GREEDY, 62s for PARETO1 and 85s for PARETO2.
We consider such runtimes as feasible for practical use. Improvements of running times are
possible by further fine-tuning our implementations.

4 Conclusions and Future Work

In this paper we study the impact of limited vehicle capacities on the rerouting of passengers
in case of train cancellations. We propose a convex cost unsplittable flow formulation. First
experiments with restricted path sets already show significant improvements over previous,
capacity unaware approaches.

In the present work, we solve the unsplittable flow problems with respect to a carefully
selected fixed choice of paths. This could be extended by column generation (which amounts
to solving a single-criterion shortest path problem for each commodity). The computational
bottleneck is the efficient computation of path sets. With respect to our implementation
there is certainly room for further improvement for the multi-criteria versions of RAPTOR.
While the set of greedy paths has to be computed sequentially, the path set for passenger
groups in the multi-criteria setting are independent and can be easily parallized.

We plan to extend our work in several ways. A first natural extension is to study different
convex cost functions. Since our focus has been on the most extreme cases (up to several
hundred affected passenger groups), a second extension concerns evaluations of real train
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cancellations and wait-depart decisions, and similar use cases. Third, we are interested in
the price of restricting to unsplittable flows. By how much can we improve solutions if we
allow splitting of groups? We could either consider the linear programming relaxation of our
ILP models as a lower bound or a closely related classical multi-commodity flow formulation.
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