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Preface

Programming languages exist to enable programmers to develop software effectively. But
programmer efficiency depends on the usability of the languages and tools with which they
develop software. The aim of the Workshop on Evaluation and Usability of Programming
Languages and Tools (PLATEAU) is to discuss methods, metrics, and techniques for evalu-
ating the usability of languages and language tools. The supposed benefits of such languages
and tools cover a large space, including making programs easier to read, write, and maintain;
allowing programmers to write more flexible and powerful programs; and restricting programs
to make them more safe and secure. The 10th Workshop on Evaluation and Usability of
Programming Languages and Tools (PLATEAU 2019) was held on October 24, 2019 in
New Orleans, Louisiana, USA, and collocated with UIST 2019. The workshop gathered the
intersection of researchers in the programming languages and human-computer interaction
communities to share their research and discuss the future of evaluation and usability of
programming languages.

It is our pleasure to present this year’s proceedings. Together, these papers demonstrate
the remarkable scope and applicability of the workshop, with topics that include software
development techniques, software evolution, programming by example, and empirical studies
in human-computer interaction. Our thanks go to the authors, reviewers, speakers, and
attendees, without whom this workshop would not have been possible.

Joshua Sunshine, Elena Glassman, and Sarah Chasins PLATEAU 2019 Co-Chairs
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Approaching Polyglot Programming: What Can
We Learn from Bilingualism Studies?
Rebecca L. Hao
Department of Computer Science and Department of Linguistics, Harvard University,
Cambridge, MA, USA
rhao@college.harvard.edu

Elena L. Glassman
Department of Computer Science, Harvard University, Cambridge, MA, USA
glassman@seas.harvard.edu

Abstract
Today’s programmers often need to use multiple programming languages together, enough that this
practice has been given the name “polyglot programming.” However, not much is known about how
using multiple programming languages affects programmers, despite its increasing ubiquity. If we want
to better design programming languages and improve the productivity of programmers who program
in multiple programming languages, we should seek to understand the user in this context: we need
to better understand the impact that polyglot programming has on programmers. In this paper, we
pose several open research questions to begin to approach this question, drawing inspiration from
psycholinguistic studies of bilingualism, because despite the differences between natural languages
and programming languages, the questions considered in natural language bilingualism studies
are relevant to programming languages, and the existing findings may prove useful in guiding our
intuitions, methods, and priorities as we begin to explore this topic. In particular, we pay close
attention to the implications that code switching (switching between languages within a conversation)
and interferences (ways an unintended language may influence one’s use of an intended language)
may have on our understanding of how using programming languages may impact a programmer.

2012 ACM Subject Classification Human-centered computing → HCI design and evaluation meth-
ods; Software and its engineering → General programming languages

Keywords and phrases Programming languages, polyglot programming, bilingualism

Digital Object Identifier 10.4230/OASIcs.PLATEAU.2019.1

1 Introduction

Programmers today are often expected to use multiple programming languages at once,
engaging in polyglot programming. Perhaps they are developing for the web, and using some
mixture of HTML, CSS, Javascript, SQL, and others. They could be using a virtual platform
like JVM or .NET, using a number of programming languages and libraries together. Maybe
they require a more expressive, higher-level scripting language or domain specific language,
embedding it into a lower-level one with better run-time performance like C or C++. On a
project level, they could build separate programs and let them interact and send data to each
other using pipes, cross-compile one language into another, or use a language’s ability to
interface with other languages. Even within a single file, they may need to mix programming
languages [1].

The advantages of polyglot programming include the cost-effective ability to reuse code
already written in other languages, and using programming languages that are better suited
to one’s goals. After all, programming languages are not created equally – each has its
characteristics and strengths, and is more useful in certain domains and tasks than others.

Given the commonality of programmers writing code in multiple programming languages,
we think that it is important to know more about the impact that using multiple programming
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1:2 Approaching Polyglot Programming

languages has on the programmer, and how the knowledge and use of multiple programming
languages affects the code the programmer writes. Intuitively, we may think that knowing
multiple programming languages strengthens one’s understanding of programming concepts,
or that switching between languages is difficult and may incur some cognitive cost, but how
well do these intuitions hold and how can we go about studying them?

Though programming languages and natural languages have their differences, there
are still a number of compelling parallels. One such parallel that is relevant to polyglot
programming is that there are many polyglots of natural language, who use different languages
in different domains. Similarly to programming languages, natural language speakers may
switch languages at multiple scales, a practice known as code-switching, substituting words
and phrases in one base language with those of another, or switching languages altogether
depending on who they are speaking to and in what context.

There have been a number of interesting findings in psycholinguistics, the study of the
relationship between linguistic behavior and psychological processes, that deal with the
learning, use, and switching of multiple languages [7, 8, 9]. In this paper, we examine how
psycholinguistic studies of natural language bilingualism may relate to that of programming
languages, and argue that a psycholinguistic lens of polyglot programming may be useful
towards guiding the questions that we ask, the priorities that we set, and the methodologies
that we use. We choose to focus specifically on the case of the use of multiple programming
languages, which involves code switching (switching between two language systems), and
the direct impact that knowledge of multiple programming languages has on programming.
However, this psycholinguistic lens may also prove to be useful in other polyglot programming
topics, including programming language learning and the effects that the knowledge of multiple
programming languages has on programming concept understanding.

In this way, by learning more about how programmers use and are affected by their use of
multiple programming languages, we can inform programming language design in the context
of its use with other languages, and also inform the practice of using multiple programming
languages, working towards increasing programmer productivity and efficiency.

2 Related work

2.1 HCI for programmers
HCI methods have already been used to examine programming languages and environments.
This work seeks to better use the knowledge, principles, and methods of human computer
interaction (HCI) in programming language design, showing that gathering data on and
considering programming language usability leads to better design [15, 17]. Similarly, we
seek to understand the impact of knowing and using multiple programming languages on
users: the programmers.

2.2 Related work in programming languages
Work in the psychology of programming and the HCI-based approach toward programming
language design has made major strides. For example, there are investigations of how a
programmer’s experience level impacts how they reason about, read, and/or debug programs
[6, 13, 21]. However, the question of polyglot programming is less thoroughly explored.

Most of the work that addresses multiple languages focuses on the learning and teaching
of programming languages. This work includes justifying and exploring the impact of using
specific languages (like Python or Java) in introductory computer science courses [10, 11],
and effective methodologies for learning subsequent languages [16, 19].
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There is some literature surrounding the design of multi-language systems like .NET that
discuss ways to support polyglot programming and its design [14], but it does not focus on
the effects that these multi-language systems have on programmers and their productivity.

However, there is evidence that suggests that using multiple programming languages
within a project may result in decreases in code quality. Kochhar et al [12] investigated
the impact of multiple programming languages on software quality, applying a method of
looking into code quality across Github projects proposed by Ray et. al [18]. In this study,
Kochhar et al. looked for the effects of using different programming languages on the number
of bug fix commits in a dataset of popular projects from Github. They found that in general,
projects that used more programming languages were more bug-prone, especially for memory,
concurrency, and algorithmic bugs, and that specific languages like C++, Objective-C, and
Java were more bug-prone [12].

2.3 Related work in natural languages
Studies regarding natural language polyglots are more numerous. A central observation is
that bilinguals operate using different language modes: the monolingual speech mode and the
bilingual speech mode [8]. In the monolingual speech mode, the bilingual almost completely
deactivates one language, while in the bilingual speech mode, they choose a base language
but activate another language occasionally in the form of code-switching and borrowing [8].
This deactivation when a language is not in use involves prefrontal brain activity associated
with cognitive control [2]. This cognitive cost may be due to task switching, as it has been
shown that in word-reading and picture-naming, a greater time delay occurs after a task
switch than a task repetition [20].

However, there is a nuance to when this cognitive cost occurs that may be relevant: a
recent study suggests that deactivating a language requires cognitive control, while activating
a new language may not [4]. This study used magnetoencephalography (MEG), and found
that American Sign Language (ASL)-English bilinguals had increased brain activity in brain
areas involved in cognitive control (the anterior cingulate cortex and dorsolateral prefrontal
cortex) when deactivating a language, but not when activating one [4]. Additionally, because
certain ASL-English bilinguals can sign and speak simultaneously, they also found that
using both languages simultaneously did not necessarily incur a greater cognitive cost than
producing one language on its own [4].

Psycholinguistic studies have shown that even though it is not conscious or intentional,
code switching behavior is often rule-based: there are systematic patterns to how and when
speakers code switch. Speakers may code switch by substituting single words from one
language into a sentence with the grammar of the base language, or alternate between
languages on sentence boundaries [7].

It has also been found that infants demonstrate cognitive load through involuntary pupil
dilation and eye-tracking fixations when they listen to language switches. These effects,
however, were reduced when going in a non-dominant to dominant language direction, and
when switching languages when crossing sentence boundaries [5].

Additionally, even when in a monolingual speech mode and trying to speak one language
(La), sometimes other languages that the bilingual knows (e.g. Lb) influence their speech in
the form of interferences. This is known as cross-linguistic influence, and comes in the form
of static interferences or transfers, which are more permanent traces of Lb in La (like with
accents), and dynamic interferences, which are brief intrusions of Lb in La (like accidentally
stressing the wrong syllable or momentarily using a word or grammatical structure in the
other language). Static interferences are linked to a person’s competence in Lb, while dynamic

PLATEAU 2019



1:4 Approaching Polyglot Programming

interferences are more likely to occur when one is stressed, tired, or emotional. A language
that is more closely related to the intended language has been found to have more of an
influence on the intended language than one that is are more distant [9].

3 Open questions and potential approaches

We pose four guiding questions regarding the use of multiple programming languages that
are inspired by the hypotheses, methods, and work within the psycholinguistic study of
bilingualism.

1. How does knowledge of certain programming languages influence programming
in another language?

Is there cross-linguistic influence [9] between programming languages? Do programmers ever
accidentally use an unintended programming language syntax or concept while trying to
program in a specific programming language? This could occur on a number of levels, taking
on forms like: using a function word or symbol incorrectly in the desired language because of
that symbol’s use in another language, using an incorrect construct (e.g. for loop constructs
look and act differently between C and Python), and approaching a function or program
using logic that is clearly inspired by another language (e.g. trying a “Pythonic” way in a
language where it is less conventional, or not even possible).

This may be challenging to isolate and quantify especially in existing projects and code,
so studying programmers while they are programming may be of interest. We can observe
and look out for errors that programmers run into and corrections that they make as they
program, and their approaches to certain programming problems, paying particular attention
to what programming language, if any, these errors come from and approaches are inspired
by. This resembles the collection of linguistic data, which often involves utterances from
native speakers, which are then analyzed by linguists for patterns and structures. To better
understand the influences programming languages may have on each other, it may also
be useful to investigate how much programmers seek equivalences between languages, for
example, how often questions are asked about equivalent keywords or constructs from one
language to another on forums like Stack Overflow.

2. Are certain kinds of languages more prone to influencing other kinds?

From there, it also seems important to determine which languages influence and are influenced
by others, and if there are patterns in terms of the characteristics of the languages involved,
or in terms of the relationships between the languages. For example, do similar languages
influence each other more, as we find with natural language? Does knowledge of languages
that use certain paradigms (e.g. static versus dynamic, functional versus object-oriented)
have greater influence over the use of other programming languages?

In order to approach this question, we may need a more concrete way of describing a
programming language polyglot’s knowledge of their programming languages, since proficiency
is likely closely related to the ability for a certain language to influence another. Natural
language bilingualism studies have generally used two main factors to characterize bilinguals
– language proficiency and language use – and have used these two variables as axes in a
grid approach to map the language history of a polyglot [9]. In this approach, a language is
represented on this grid as a datapoint of proficiency and use, and multiple grids may be
used to show proficiency and use in specific domains, or across time. A similar approach
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may prove useful for programming languages as well, because in this way we can investigate
the time course of programming language learning, and have an improved ability to study
how code quality and performance change with time, without requiring a study to be set
up around a specific computer science course and structured learning. However, this may
require that we determine what variables are relevant in programming language knowledge,
and what data we would like to and can collect from our participants.

3. How and when do programmers code switch?

As programmer “code switching” seems to occur at several distinct levels of granularity, it
may be useful to look into the occurrences of “code switching” at these different levels. An
example delineation of these levels could be: switching within a line, switching for each
line, switching at “logical blocks” of the code (e.g. where the author decided to stylistically
include a new line for readability), and switching between files. We could learn more about
the contexts in which code switching occurs in practice, to better understand the motivations
of why programmers code switch in the first place.

From there, we can then look at the impacts of code switching on programmers. It
may be useful to try out switching tasks inspired by psycholinguistic studies that, require
speakers to name images in different languages in a controlled manner, measuring reaction
time differences or neuroimaging studies [2]. The equivalent of having speakers name images
could be having programmers name constructs for short code snippets. Alternatively, to
study whether reading and understanding multilingual code incurs a cognitive cost, we could
present programs in different languages and observe eye tracking or pupil dilation to indicate
the presence of cognitive control.

4. What is the degree of cognitive control being exerted when switching between
programming languages? Are there cases where we can reduce the cognitive cost
of switching and thereby increase productivity?

Additionally, investigating programming in different languages using MEG may provide
information of whether switching programming languages has a similar effect on prefrontal
areas of cognitive control. This can be investigated when programming in a language-agnostic
way (e.g. writing pseudocode), or when activating and deactivating languages (e.g. writing a
program or code for a project that requires switching between programming languages).

Does the degree of cognitive control depend on the programmer’s proficiency in a language?
Is the cognitive cost higher in novices and lower in experts?

From there, inspired by natural language, we can investigate whether there are cases
where the effects of code switching are reduced. Like how the effect is reduced in natural
language when going from nondominant to dominant language and on sentence boundaries
[5], for programming languages, are effects reduced in certain directions, like going from
programming languages one is less familiar with to those one is more familiar with? Are effects
reduced more on boundaries of a certain granularity, like between “sentences”? Like how
cognitive cost is reduced in ASL-English bilinguals when using both languages simultaneously
[4], is there a difference between when trying to program exclusively in one language or when
actively harnessing knowledge from multiple languages simultaneously (e.g. pseudocode)?

PLATEAU 2019



1:6 Approaching Polyglot Programming

4 Conclusion

We have proposed several open questions and next steps for the study of polyglot programming,
inspired by findings and methodologies in natural language bilingualism. Even though
programming languages likely do not rely on the same language faculty attributed to natural
language and instead on different programming concepts, natural language bilingualism still
serves as a useful model to guide foundational decisions to more concretely approach polyglot
programming questions, and provide an intuition for possible phenomena related to the use
of multiple programming languages.

This approach may also be extended beyond the use of programming languages, to areas
like programming language learning and whether there are benefits of knowledge and use
of multiple programming languages. For example, does knowing more languages improve
your understanding of programming concepts? Bilingualism studies demonstrate a bilingual
advantage in non-linguistic tasks that require cognitive control [3] – is polyglot programming
beneficial to a programmer’s general programming skills?

With an improved understanding of the use of multiple programming languages, we may
be better equipped to design programming languages and tools given this growing polyglot
programming landscape and improve programmer efficiency and polyglot programming
workflows.
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Abstract
Although blockchains have been proposed for building systems that execute critical transactions,
security vulnerabilities have plagued programs that are deployed on blockchain systems. The
programming language Obsidian was developed with the purpose of statically preventing some of the
more common of these security risks, specifically the loss of resources and improper manipulation of
objects. The question then is whether Obsidian’s novel features impact the usability of the language.
In this paper, we begin to evaluate Obsidian with respect to usability, and develop materials for a
quantitative user study through a sequence of pilot studies. Specifically, our goal was to assess a)
potential usability problems of Obsidian, b) the effectiveness of a tutorial for participants to learn
the language, and c) the design of programming tasks to evaluate performance using the language.
Our preliminary results tentatively suggest that the complexity of Obsidian’s features do not hinder
usability, although these results will be validated in the quantitative study. We also observed the
following factors as being important in a given programmer’s ability to learn Obsidian: a) integrating
very frequent opportunities for practice of the material – e.g., after less than a page of material at a
time, and b) previous programming experience and self-efficacy.
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1 Introduction

Blockchains have a myriad of applications, including shipping, supply chain, auctions, storing
health records, and voting [8]. A blockchain is used when a central authority cannot be
trusted; instead of a singular ledger (as is used by an entity like the Federal Reserve), a
distributed ledger is used to keep track of transactions that are made, held accountable by the
users of the blockchain themselves. Smart contracts are programs that are deployed across
a blockchain network. Since blockchain technology is often used in potentially high-stakes
contexts, such as financial transactions, if a bug in a contract is exploited, it could involve
loss of important resources (like money or personal items). Some of the more common of
these security risks are (1) loss of resources and (2) manipulating objects at improper times.
Current status quo blockchain languages (such as Solidity) have no mechanism to prevent
such bugs.
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2:2 A Usability Study of Obsidian

Obsidian is a programming language for writing smart contracts that is designed to
prevent these two issues; it uses both typestate and linear types to prevent such risks
statically [2]. In order to detect and prevent these vulnerabilities, Obsidian introduces the
concepts of ownership, assets, and states. Ownership is a property of references, rather
than the objects themselves. There are three types of references; Owned, Unowned, and
Shared. An object can have exactly one Owned reference, and any number of Unowned
references. It can have any number of Shared references, but only if there is no Owned
reference. Making an object an asset enables the compiler to prevent losing track of Owned
references. Assets, combined with permissions (the types of ownership references) allow
the compiler to detect the loss-of-resource security bug. Objects can also have states, and
certain transactions can only occur within a particular state. States help prevent improper
manipulation of objects; certain contracts might allow certain transactions only when in an
appropriate state. A contract is similar to a class in other object-oriented languages, with
corresponding transactions (analogous to methods) and fields (like member variables) [2].

Yet how do we know Obsidian is effective in accomplishing what it is designed to achieve?
Do users actually make fewer of these security mistakes in Obsidian than in other common
smart contract programming languages, such as Solidity? And how usable is Obsidian in
the long term, after programmers have mastered the language? In this paper, we focus on
beginning to answer these questions; we want to see whether the bugs that Obsidian detects
are ones we observe people inserting frequently in the laboratory. In addition, we want to
see whether the language is in fact usable, and how we can teach it to potential users.

We intend to run a user study where participants will learn either Solidity or Obsidian
through a tutorial, and then attempt a series of programming tasks that will test their
knowledge of the language. We will also assess the safety of the code they have will write. In
order to develop these programming tasks and the Obsidian tutorial, we first ran a series of
pilot studies. This paper describes the design and results of those pilot studies, addressing in
particular, the following research questions:
RQ1 What are the most significant usability problems with Obsidian?
RQ2 How should a tutorial be best authored to help one learn a language sufficiently well

to get to the point where usability can be evaluated?
RQ3 How do we design programming tasks that assess the ability to program effectively and

also potentially expose the types of bugs that our tool would detect or prevent?

The answers to these research questions, and what we learned from this study could also
be of interest to a broader audience; specifically, the initial findings we report in this paper
that could feed into future work are as follows:

A potential design of a method of teaching programmers to effectively learn an entirely
new language composed of complex features
Hypotheses on why some programmers are more effectively able to learn and utilize a
new programming language than others
Evidence that the additional features Obsidian introduces for security can actually be
effectively used by programmers

It is important to note the findings we present here through our pilot studies are not fully
validated; we plan to substantiate them in our follow-up quantitative user study.

2 Related Work

Designing programming tools and languages has been shown to be better when done with
a human-centered approach [4]. It is often inadequate to just use technical methods in
assessing properties of a language. For example, even if type soundness has been proven,
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the language might be too complex for a programmer to learn and use [3]. Programming
languages are interfaces between a human programmer and a computer to enable people to
effectively create programs, and as a result, should be tested and evaluated through user
studies with actual developers. Obsidian has been designed using such a human-centered
approach [1], and is similarly being evaluated through user studies.

There are differences in approaches to programming between novices and experts [6].
Novices generally lack detailed mental models of what they are doing, and approach program-
ming one line at a time, rather than as meaningful blocks [6]. On the other hand, experts
tend to be faster and more accurate, able to make use of a variety of effective strategies and
more vast knowledge base [6]. The participants in the pilot studies fall somewhere between
novice and expert, and their approach to programming may play a role in their success in the
tasks given to them. While knowledge is the ability to state how something works, strategies
are the ability to apply that knowledge. There are many different strategies programmers
use to comprehend programs, including systematic (tracing through all the code in detail),
as-needed (only looking at code related to the required task), and inquiry episodes (asking
a question, hypothesizing an answer, and verifying by looking at code, or compiling the
program), among others [7]. The programming strategy participants in our study use is a
variable that could influence how they learn Obsidian.

In addition, studies of novice programmers have shown that past experience is strongly pre-
dictive of self-efficacy, and that a strong mental model increases self-efficacy [5]. Ramalingam
et al. also found that both of these (self-efficacy and strong mental models) affect perform-
ance in an introductory class setting. Active learning helps develop these mental models;
it requires an individual to be active in constructing their own knowledge and finding new
ideas [9]. An active learning environment is beneficial to learning programming because it is
one that provides immediate feedback and engaged participation, which can help develop
mental constructions of programming concepts [9]. Although Obsidian is not being taught
to novice programmers in a course setting, self-efficacy and mental models might still play
roles in the ability to learn the language effectively, and teaching through active learning
might help participants pick up the language more successfully.

3 Study Design

In this work, we focused on designing the Obsidian condition for the quantitative user study.
Participants in our pilot studies were asked to do the Obsidian tutorial, and then some more
in-depth programming tasks, during which they were asked to think out loud. They were
told they could ask questions about anything they didn’t understand throughout the study;
the answers to these questions could then be incorporated in the next iteration of the tutorial
and tasks. This pilot study was approved by our IRB, and participants were paid $10/hour
for their time during the study.

We chose tasks with potential real blockchain use-cases for external validity; by approx-
imating code an actual smart contract programmer might write, we hope to be able to
generalize our conclusions to our proposed end applications of Obsidian. Each task had a
series of parts that tested different aspects of Obsidian, and are described below, along with
the design of the tutorial.

Obsidian Tutorial

The tutorial consisted of a Qualtrics survey with a few multiple choice, write-in answers, short
answer questions, and small programming questions. It was split into eight sections: four on
ownership, one on assets, and three on states. An early version of the tutorial had only four
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sections, but we subdivided it because of participant feedback of having too much information
at once with just a few sections. Participants completed programming questions in a separate
Visual Studio Code (VSCode) window, in which participants could compile their code to
confirm that they had complied with the type system’s requirements. Some of the short-
answer questions were purposefully open-ended, as in “Describe the relationship between
ownership and states in your own words.” The objective was to make the participant think
about, and thereby internalize, these concepts, rather than to evaluate their understanding.

Auction Task

The Auction task simulates an English auction; there are multiple Bidders who each make
a Bid for a single Item being sold by a Seller. The highest Bidder receives the Item for the
price of the highest Bid. However, unlike in a normal English auction, when a Bidder makes
a Bid, they give the Money to the Auction house immediately, and the Money is returned
to that Bidder if another Bidder makes a higher Bid. This requirement ensures that all bids
are legitimate, rather than allowing for a failure mode in which the sale cannot be completed
because a bidder does not pay for the item. A consequence is that the contract must return
the bid money every time a higher bid is made. If a participant forgot to do this, they would
lose a resource (the bid money), which the Obsidian compiler would detect.

The task included five parts. The most significant parts of this task were 3 and 4, which
allowed for a potential loss-of-resource bug. Part 3: Write code to return money to a Bidder
in the case that the bid is not greater than the current maximum bid. This part (whose
starter code is shown in Listing 1) was created to prime the participant for the next question,
so the participant is aware there is a way to return money to a Bidder. Part 4: Update
the current maximum bid (i.e., given that the new bid is greater than the previous, replace
the maxBid with the new one). Since Money is an asset, and a Bid contains Money, the
participant will not be able to simply do something like maxBid = newBid; the money
will have to be returned to the Bidder before overwriting maxBid, otherwise they will get
a compiler error in regards to overwriting an asset (losing a resource). This part (starter
code also shown in Listing 1) was meant to capture this potential pitfall. To implement this
correctly, a participant must return the Money to the Bidder and disown the Bid. They
could write code to do this or call a given function that does both these things.

Listing 1 Partial Starter Code for Auction Parts 3 & 4.
transaction makeBid(Auction @ Open this, Bid @ Owned >> Unowned newBid,

Bidder @ Unowned bidder) {
if (newBid.getAmount() > bid.getAmount()) {

setCurrentBid(newBid);
Bidder tempBidder = maxBidder;
maxBidder = bidder;

}
else {

//Part 3. TODO: return the newBid money to the bidder.
//You may call any other transactions as needed.

}
}
transaction setCurrentBid(Auction @ Open this, Bid @ Owned >> Unowned b) {

//Part 4. TODO: set the current bid to the new bid b.
//You may call any other transactions as needed.

}
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Pharmacy Task

The Pharmacy task simulates a pharmacy; there are Prescriptions, PrescriptionRecords
(which keep track of Prescriptions), and Patients (who have Prescriptions), as well as the
Pharmacy contract, which has a list of PrescriptionRecords. The goal of this task is to
have the participants utilize states to prevent improper use of the prescription; a Patient
can only fill a Prescription when they have additional refills. There were three parts to
this task; the third was most significant, which had a participant writing in lines of code
to fill a prescription. In this part (starter code shown in Listing 2), the participant must
take an element off a list, apply transactions to that object, and add it back to the list. It
assesses understanding of the code, and the ability to use the language to implement what
the participant wants to occur, as well as correct use of states.

Listing 2 Partial Starter Code for Pharmacy Part 3.
transaction fillPrescription(Prescription @ Unowned prescription) {

MaybeRecord maybeRecord = prescriptionList.removeIfExists(prescription);
// TODO Part 3: Fill in the rest of this transaction.
// You will need to call the doFill transaction in this
// class (Pharmacy) on the appropriate PharmacyPrescriptionRecord.
// Be sure to record that the prescription has been filled.

}

Gambling Tasks

The Gambling task simulates betting at a Casino; before every Game, Bettors place a
bet on the outcome of the Game. A set of restrictions and assumptions is given to the
participant, as well as a sequence diagram showing a potential timeline of possible events, and
structural diagram explaining how contracts relate to each other. This task is purposefully
more open-ended; the participant can design and implement the Casino contract however
they would like using Obsidian, but the program must comply with the given requirements.
The goal of this task was to see how the participants used what they learned about the
language to design their own program (and be able to implement it). Code for the other
contracts (Bettor, Money, etc.) is not shown here due to space constraints.

Listing 3 Partial Gambling Starter Code.
main asset contract Casino {

Money @ Owned money;
Game @ Owned currentGame; //The game that is currently being played
BetList @ Shared bets; //The bets for the current game being played

Casino @ Owned() {
money = new Money(100000);
currentGame = new Game();
bets = new BetList();

}
//TODO: Add your code here.

}

4 Initial Results

Since these studies were exploratory, serving as preparation for our evaluative user study,
we changed the tutorial and tasks after nearly every participant, based on the qualitative
results and participant feedback. We recruited six participants (three men, and three women),
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all of whom were undergraduates in computer science at different universities. Despite all
the participants being almost the same amount through their undergraduate career (they
were either rising Juniors or Seniors), there was a wide range of 3 - 9 years of previous
programming experience, and they all had a different CS education. All the participants were
familiar with Java to varying degrees (ranging from 1.5 to 8 years of experience), which was
a requirement for participation, since Obsidian is similar to Java. None of the participants
had any previous experience with blockchain programming. Each participant was given an
anonymous participant ID: R0, R1, etc.

Participants worked on a 15” MacBook Pro with a second monitor that displayed the
documentation pages and instructions for the tasks. We recorded screen and audio of each
session. The programming tasks were all done in VSCode, for which we created a plugin for
Obsidian syntax highlighting, and through which we ran the Obsidian compiler.

Some participants did not seem to understand and internalize the information given
in the tutorial despite reading it. For example, R2 said the idea of ownership made sense
theoretically, but not in application. This may be because R2 missed some key concepts,
like the fact that ownership is a property of a reference, not an object. In contrast, other
participants seemed to fully comprehend the material; R1, R3, and R5 got nearly all questions
correct. A summary of the tutorial results are shown in Table 1.

Table 1 Tutorial Results.

Participant Tutorial Version Questions Correct Time

R0 2 Parts, No questions N/A N/A

R1 4 Parts, all multiple-choice 19/19 35 min

R2 4 Parts, all multiple-choice 11/19 40 min

R3 8 Parts: multiple-choice,
short answer, programming

20/22 (non-code), 8/8 (code) 1.25 hours

R4 8 Parts: multiple-choice,
short answer, programming

14/22 (non-code), 4/8 (code) 2.5 hours

R5 8 Parts: multiple-choice,
short answer, programming

20/22 (non-code), 8/8 (code) 53 min

All the participants except R4 did the Auction task. They all had the most trouble
with part 4; neither R0 nor R2 was able to complete it. Every participant who did part 4
started by writing bid = newBid, which overwrote an owned reference to an asset; the
compiler generated an appropriate error message. Participants R1, R3, and R5 realized that
ownership of the original bid must be transferred first. R1 even said out loud after typing
this in, “Oh is bid an asset? Yes, it is an asset. Then this should fail.” After compiling the
code and confirming the failure, R1 made sure the original bid was transferred. R3 did the
same, but first returned the Money in the Bid to its Bidder. R5 was the only one that used
the given transaction returnBidMoney() (which gave the Money back to the Bidder and
disowned the current bid).

All the participants except R4 were given the Pharmacy task. R0 was able to complete
parts 1 and 2, but was unable to do any of the third part; the participant could not figure
out what to do, and was stopped by the experimenter due to time constraints. Participant
R2 did part 1 incorrectly, and part 2 correctly. R2 was unable to figure out the third part,
and stopped after a significant amount of trial and error due to time constraints. R2 was
asked by the experimenter to answer in pseudocode; the participant did this mostly correctly
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(but forgot to check if the PrescriptionRecord actually existed). Participant R3 did the whole
task correctly, but forgot to append the PrescriptionRecord back on the list after consuming
a refill. Participants R1 and R5 did the entire task correctly.

Only R3 and R5 were given the Gambling task (it was created after R1, and both R2
and R4 could not take it because of time constraints). R3 took 1 hour to complete the task
and get the code to compile. Most of this time was spent on understanding the architecture
of the objects given, and the structure of the problem itself. Participant R5 took 36 minutes
to do this task and get the code to compile. In this version, the requirements were unchanged,
but the problem was made more clear, and there were fewer layers of abstraction. For R5,
an architectural diagram was added to show how objects are related (e.g., a Bet has a Bettor
and a BetPrediction), in addition to the sequence diagram (showing an example of potential
actions) given to R3. Both R3 and R5 successfully designed and implemented a program
that met all the requirements given in the specification. They made correct use of states and
permissions. R3’s program was 63 lines long, and R5’s was 56 lines long.

5 Discussion

A clear distinction can be drawn between the results of the different participants. Participants
R0, R2, and R4 struggled with the study (both the tutorial and the programming tasks),
while participants R1, R3, and R5 found the tutorial and tasks easy to understand. There
was almost no middle ground; one of the challenges in designing the tutorial and tasks
was that after one participant, it seemed the exercises were very difficult and needed to
be simplified, but after another, they seemed too simple. While R0, R2, and R4 needed
prompting and additional explanation, and still did not finish all the exercises, R1, R3,
and R5 easily completed the tutorial (including the programming exercises for R3 and R5).
These three participants were able to work through the programming tasks, write code in
the language, understand the compiler errors, and make fixes when necessary. They had
understood the new concepts they were taught; while working through the Pharmacy task,
R5 said “... and this takes an owned [reference] and makes it unowned...,” showing that the
participant grasped the idea of ownership. Both R1 and R3 also said similar things while
thinking out loud. On the other hand, R0, R2, and R4 got stuck; it was clear that although
they read through the tutorial, they did not fully understand the concepts. For example,
despite reading in the documents, answering questions about it in previous parts of the
tutorial, and given an explanation by the experimenter, R4 did not seem to understand how
state and permission transitions worked as types for a parameter in a transaction declaration.

Below are hypothesized explanations for the differences among participant performance:
General programming experience. The participants who struggled had an average of
3.2 years of programming experience; the others had an average of 7.5 years of experience.
One of the key observations we made during the pilot studies was that the participants
who struggled had the most trouble because upon getting an error, they would either
get stuck or start trying random solutions that neither made sense conceptually nor
syntactically. Participants who successfully completed the tutorial and tasks used a
variety of techniques to fix compiler errors. They had less trouble understanding the
compiler messages (most of the time, they knew what the problem was immediately),
and even if they did not, they used strategies to find a solution. These observations
suggest that the amount of past programming experience played a role in how effective
participants were in using the unfamiliar language.
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Object-oriented (OO) programming experience. The less effective participants
had an average of 2.2 years of Java experience, and the more effective ones had an average
of 5.3 years (familiarity with Java was a prerequisite to participating in this study).
Perhaps some concepts that are learned in OO classes, or learned through developing in
OO languages affects the way one learns other OO languages.
Teaching style. The tutorial was text- and exercise-based. Perhaps the participants
who struggled may have done better if the material had been taught in a video, or lecture
format, or in a more interactive way.
Type of programmer. Different programmers use different programming strategies (see
§2). Perhaps some of these strategies are more effective in learning or using Obsidian than
others. While there were systematic and opportunistic strategies used in the group that
was more effective, the ones who had more trouble only used an opportunistic approach.
Self-efficacy and interest. Self-efficacy appeared to play a role in how effective parti-
cipants were in using the language while completing the tasks. The effective participants
were very confident; they were not afraid to question the experimenter about things they
did not understand and things they thought were wrong in the tutorial or tasks. They
were also more relaxed; the participants who struggled seemed tense. It is difficult to
tell whether confidence entailed being effective in completing the tasks, or whether doing
well made participants more confident. In addition, lower self-efficacy might have played
a role in whether participants asked questions when they were confused, and thus how
well they performed. The effective participants also had a genuine interest in what they
were learning. They made noises of surprise or interest while reading the tutorial, saying
for example “Oh, that makes sense”, or “huh, that’s interesting.” In contrast, other
participants went through the study like taking an exam, or doing an assignment; they
were just doing exercises they were given. Perhaps having an interest in learning a new
language made participants more successful at completing the given exercises, or at least
created a more open mindset that might have allowed for faster debugging.

RQ1 asked about identifying potential usability problems with Obsidian. Multiple
participants mentioned things related to the environment; a few expected more precise
autocomplete (VSCode has a default autocomplete that lists any words used previously
in the window, which confused some participants), and one asked about in-place error
diagnostics (showing errors as one types). In addition, a few participants were confused
by some of the compiler errors. Two participants tried to add a permission or state to an
object they were creating, like g = new Game@FinishedPlaying(). The error message
was Error: '(' expected, but @ found, which they eventually figured out. R2
did not understand the compiler message variable is an owning reference to an
asset, so it cannot be overwritten at first, and when it was explained by the
experimenter, was unable to figure out how to resolve the problem. R5 was confused by the er-
ror message Can’t reassign to variables that are formal parameters or
which are used in a dynamic state check. R5 commented that even distin-
guishing between the two (whether a formal parameter or used in a dynamic state check)
might be more helpful. None of the participants had much feedback about the language
itself, although there was a general consensus that states were an easier concept to grasp
than ownership because they are more familiar.

RQ2, asked about how to design a language tutorial. Teaching any new programming
language is hard; teaching a new programming language that has more complex features
may be even harder. From our results, we learned a few things: (1) material that should be
read needs to be split into manageable sections, (2) simply giving people material to read is
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not enough for them to understand it – they need to be given questions along the way to
force them to thoroughly comprehend it, and (3) these questions must have them actually do
problems themselves, rather than merely pick an answer choice. When given large amounts of
reading material at a time, participants had trouble remembering all the information; an early
participant commented that they wanted to see an example when doing the programming
tasks, and while they knew there was probably one in the documentation, they had no idea
where to look. After splitting the reading material into eight sections (each less than a
page), we observed that later participants found it easier to understand the material initially,
but that this also enabled going back to particular documents for reference when doing the
programming exercises and tasks. Questions (in particular, questions that have someone
write or do or try something) seemed more effective than only having participants read text.
Participants who used the version of the tutorial with programming questions said they were
helpful, and one participant who did not specifically stated that being able to try out the
code would have helped learn and internalize the material more.

RQ3 asked about designing programming tasks that:
1. assess the ability to program effectively;
2. expose the types of bugs likely to be made by participants in the control condition

The Auction task was mostly straightforward except for part 4, in which everyone who
attempted it made the same mistake of overwriting an asset. This would have caused the loss
of a resource (money) if it had not been caught by the Obsidian compiler. This does seem to
be a relatively common security bug, since every participant made the mistake at first. It
therefore seems likely that Solidity participants in the user study would insert the same bug
as well, but would not have the compiler to remind them of the error. This suggests that
this task fulfills goal (2). The Pharmacy task required an understanding of how contracts
interact with each other, as well as using states to prevent improper manipulation of objects.
The task was intended to require higher-level insight from participants, so the instructions
for the third part in this task do not explicitly lay out everything the participant needs to
do. The task requires the participant to be able to understand Obsidian code (including
the novel concepts of ownership and states). In the Gambling task (again only given to R3
and R5), the participants wrote 50+ lines of code. Though a small program, this is not a
trivial amount of code, especially since they were able to design a program to follow the
specifications accurately, implement their design correctly using concepts they had only just
learned (ownership and states) and have their code compile using syntax that was new to
them for this study. As a result, the Pharmacy and Gambling tasks seem to fulfill (1).

In this pilot study, we started to gather evidence that the new language features of
Obsidian that allow for writing safer smart contracts can be used effectively by real users.
The Auction task had participants use ownership to prevent the loss of a resource, and the
Pharmacy task had participants use states to prevent incorrect manipulation of objects. All
the participants who did these tasks were able to use ownership and states, and all of the
more experienced ones used ownership and states to complete them correctly. Although the
features of the language that allow for greater safety are more complicated, and one might
assume make the language less usable, we did not observe this in these initial results. This
will need to be more fully validated with additional participants in our user study.

6 Threats to Validity

The participants were a convenience sample of undergraduates studying computer science;
this may not be representative of the general population of programmers. In the quantitative
study, we hope to have a more diverse group of participants who more closely align with the
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intended users of Obsidian. We only had six participants, and not all of them attempted
all parts of the study. In addition, some of our participants had limited object-oriented
programming experience. As a pilot study, our goal was to refine our study design and
hypotheses, and for those purposes, we believe our approach sufficed.

7 Conclusion and Future Work

We designed and conducted pilot studies to find potential usability problems with Obsidian,
its tutorial, and the tasks used to evaluate it. We created a tutorial that helps at least some
participants learn Obsidian well enough to use it effectively. We also created programming
tasks that test a participant’s ability to use Obsidian competently and have the potential
for participants to make the types of security bugs that are caught by Obsidian’s compiler.
We identified hypotheses for why some of our participants found it easier to learn and use
Obsidian than others, and more generally, why picking up new languages is easier for some
people than it is for others. We found that an incremental approach of teaching the language
that included regular practice opportunities was most effective, but that participants with
more programming experience appeared to be much more successful at completing the tasks.

In the future, we will conduct a quantitative user study to compare Obsidian to a control
language with respect to usability and security, and will continue to make any necessary
changes to our tutorial and programming tasks. In the process, we hope to evaluate our
hypotheses regarding why some participants are more successful in learning the language
and completing the programming tasks, with a focus on self-efficacy and experience.
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Abstract
We present preliminary research on Deuce+, a set of tools integrating plain text editing with
structural manipulation that brings the power of expressive and extensible type-directed program
transformations to everyday, working programmers without a background in computer science or
mathematical theory. Deuce+ comprises three components: (i) a novel set of type-directed program
transformations, (ii) support for syntax constraints for specifying “code style sheets” as a means of
flexibly ensuring the consistency of both the concrete and abstract syntax of the output of program
transformations, and (iii) a domain-specific language for specifying program transformations that
can operate at a high level on the abstract (and/or concrete) syntax tree of a program and interface
with syntax constraints to expose end-user options and alleviate tedious and potentially mutually
inconsistent style choices. Currently, Deuce+ is in the design phase of development, and discovering
the right usability choices for the system is of the highest priority.

2012 ACM Subject Classification Human-centered computing → Human computer interaction
(HCI); Software and its engineering → Domain specific languages; Software and its engineering →
Integrated and visual development environments

Keywords and phrases program transformations, structured editing, refactoring, code formatting

Digital Object Identifier 10.4230/OASIcs.PLATEAU.2019.3

1 Introduction

As a medium for storing, transmitting, and interpreting information, text is as versatile as it is
ubiquitous. Countless programs and interfaces operate and rely on text files, from the UNIX
command line to nearly every programming language compiler. One particularly strong asset
of text is its power to succinctly represent structured data in a way that is understandable
to both humans and computers alike, as in CSV (comma-separated values) files, HTML
(hypertext markup language) documents, and – the focus of this paper – programming
language source files.

Unfortunately, this flexibility comes with a price: manual editing of structured text can
be tedious and error-prone. On a basic level, one problem with manipulating structured
text is that to do so requires knowledge of and adherence to rigid, static systems such as
parsing and type checking. A single missed comma in a CSV file or improperly annotated
variable in program source code can cause a complete failure on the part of the computer
to interpret the text as the author intended. In the case of performing a nontrivial manual
transformation on a program, the problem is exacerbated even further: programmers must
also worry about the runtime behavior of their code and reason about changes in semantics
(or lack thereof) that might be a result of their transformations.
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3:2 Type-Directed Program Transformations for the Working Functional Programmer

(a) Structurally selecting a let-
binding equation in Deuce.

(b) Activating a program transformation in Deuce by (1) struc-
turally selecting an expression – in this case, a hole – and (2)
interacting with the popup menu.

Figure 1 The Deuce user interface.

Tools known as structure (or projectional) editors [9, 13, 24, 25] attempt to alleviate
these difficulties by offering an interface that allows programmers to directly manipulate a
projection of the underlying structure that is more faithful to the structure than is standard
text. A major drawback of these systems is their reliance on non-standard file formats, and,
as a result, their incompatibility with the large set of existing tools that operate on programs.

One attempt to reconcile the flexibility of plain text with the power of projectional editing
is Deuce [2, 8], a structure-aware code editor that operates on standard program source
text, but augments the editing experience with direct manipulation capabilities for invoking
relevant, automated program transformations. In Deuce, the underlying structure of the
program is revealed to the user via a set of overlaid polygons, as depicted in Figure 1a. After
structurally selecting various parts of the program by pressing the shift key, hovering, and
clicking on the polygons that appear, a “Program Transformations” menu appears that is
automatically populated with a set of relevant transformations for the selected polygons, as
depicted in Figure 1b. Hovering over the output of a program transformation previews it in
the code panel, and clicking on the output updates the program with the transformed code.

While a good first step, Deuce falls short in several regards. In particular, it has two
main limitations:

(Limitation A) Deuce only offers a relatively small number of ad-hoc program trans-
formations; and

(Limitation B) the implementation of these transformations is tedious and non-
compositional, requiring manual munging of abstract syntax trees
annotated with low-level syntactic details such as whitespace.

To address these limitations, we propose and present initial work on a vast expansion of the
Deuce system – which we here call Deuce+ – with the goal of bringing expressive and
extensible program transformations to the working programmer.

Paper Outline. In Section 2, we run through a high-level example demonstrating the desired
(as-of-yet unimplemented) workflow of the Deuce+ system. Then, in Section 3, we explain
the work that is underway to make that workflow possible and explicitly describe how the
improvements we propose will address Limitations A and B. Finally, we conclude in Section 4
with a discussion of the further usability challenges that arise from the Deuce+ workflow.

In our quest to realize these goals, we assert the necessity of harmony between (i) text
and structured editing, and (ii) sound mathematical foundations and usable, accessible,
tools for everyday programmers without assuming extensive expertise in advanced functional
programming or abstract mathematics.
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Table 1 The database schema with some example entries.

Flag Identity Homepage
1 alice example.net
1 bob
0 carol@example.net
1 dan example.org
0 eve@example.edu

2 The Deuce+ Workflow

Consider a website in which users register and have their information saved to a database.
Originally, users could only register on this website with an email address, but this restriction
was later relaxed to require only a username and, optionally, a homepage that lists further
contact information. To encourage migration to the new username registration format, users
may only list a homepage if they register with a username and not with an email. The
database is structured into three columns, as shown in Table 1: the first tracks whether
the user has registered with an email address (0) or a username (1), the second tracks the
provided email or username, and the third tracks the (sometimes empty) user homepage.

To access this database, two library functions are provided:

identities : Database -> List (Either Username Email)
homepages : Database -> List (Maybe Homepage)

Using these two helpers, our task is to implement a function show : Database -> String.
We begin by taking a peek at our project’s code style sheet, a mechanism provided by

Deuce+ to allow users to customize preferences about stylistic choices in their programs:

.type-alias[type=tuple] { newlines: per-component; }

.tuple { max-size: 3; }

.top-level-definition { eta-reduction: basic; }

The first of these three rules tells us that, when aliasing a tuple type with a new name,
each component of the tuple should be on its own line. The second rule ensures that only
tuples be of (at most) size three are permitted, encouraging larger tuples to be replaced
with records. The final rule indicates that “basic” eta reductions should be performed for
top level definitions (no term rewriting beyond dropping arguments to functions). None of
the program transformations in Deuce+ are aware of the particular code style in any given
project, and, consequently, the authors of these transformations do not need to worry about
adhering to style guidelines; Deuce+ handles the stylistic details automatically.

We now sketch out the skeleton of our program using standard text editing.

showEntries : (List (Either Username Email), List (Maybe Homepage)) -> List String
showEntries (idents, homes) =

??

show : Database -> String
show d =
String.concat (showEntries (identities d, homepages d))

In the definition of showEntries, we use a hole expression [17] as a placeholder until we are
able to make further progress implementing the function.

Immediately, we notice that the type annotation on showEntries is long and unwieldy. As
in Figure 1a (but not shown here or in the rest of the code listings), we structurally select
the tuple argument to the showEntries function and choose the Make Type Alias from
Arguments transformation, entering “Entries” as the new type name.
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type alias Entries =
( List (Either Username Email)
, List (Maybe Homepage)
)

showEntries : Entries -> List String
showEntries (idents, homes) =

??

show : Database -> String
show d =

String.concat (showEntries (identities d, homepages d))

The new type alias automatically adheres to the specification from our style sheet that type
aliases for tuples should have each component on a new line.

However, we are still struggling to make progress on the showEntries implementation
because the types of our program alone do not ensure that the two lists passed into the function
are the same length. In reality, we know that the state in which the two lists are of different
lengths should be impossible. To take advantage of this fact, we can let the type system know
it by structurally selecting the Entries type alias, choosing the Refine Type transformation,
and entering the equality refinement \xs -> length (first xs) == length (second xs).

type alias Entries =
List (Either Username Email, Maybe Homepage)

convert : (List (Either Username Email), List (Maybe Homepage)) -> Maybe Entries
convert = ...

showEntries : Entries -> List String
showEntries entries =

??

show : Database -> String
show d =

case convert (identities d, homepages d) of
Just entries -> String.concat (showEntries entries)

Nothing -> ??

The Entries type alias has been automatically updated to make the specified impossible
state unrepresentable, the argument to showEntries has been switched from a (now-outdated)
tuple pattern to a single variable name, and a new convert function has been introduced that
is now used in the show function. The convert function translates our old Entries into the
new representation, returning Nothing if the conversion fails. A hole expression is inserted in
the show function to indicate that a default value is needed for when the conversion fails.

We now refactor the Entries type alias by structurally selecting the type argument to the
List constructor and choosing the Introduce Type Alias transformation (which, as before,
adheres to the code style sheet specification for type-aliased tuples). We also now provide a
default value for show in the case of a conversion failure using standard text edits.

type alias Entry =
( Either Username Email
, Maybe Homepage
)

type alias Entries =
List Entry

convert : (List (Either Username Email), List (Maybe Homepage)) -> Maybe Entries
convert = ...

showEntries : Entries -> List String
showEntries entries =

??
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show : Database -> String
show d =
case convert (identities d, homepages d) of
Just entries -> String.concat (showEntries entries)
Nothing -> "Conversion failure!"

The Entries type alias as well as the convert and show functions are now complete, so we will
omit their definitions until the final code listing for brevity.

We can now make progress on the hole in showEntries. The notion of “making progress”
on filling in a hole is captured by the Make Progress on Hole transformation. We
structurally select the hole in showEntries and select this transformation. Deuce+ recognizes
that we are trying to fill a hole of type List String and that we have an unused argument of
type Entries, or List Entry. Accordingly, one of the options that the transformation presents
to the user is the Map over List option with the additional parameter entries as the list
to map over. We select this option, and the resulting code is automatically eta-reduced in
accordance with our code style sheet.

type alias Entry =
( Either Username Email
, Maybe Homepage
)

showEntries : Entries -> List String
showEntries =
let
showEntry : Entry -> String
showEntry entry =

??
in
List.map showEntry

We can make progress on the newly-created hole by structurally selecting it and the
entry argument, choosing the Make Progress on Hole transformation, and choosing the
Pattern Match option.

type alias Entry =
( Either Username Email
, Maybe Homepage
)

showEntries : Entries -> List String
showEntries =
let
showEntry : Entry -> String
showEntry entry =
case entry of

(Left username, Nothing) -> ??

(Left username, Just homepage) -> ??

(Right email, Nothing) -> ??

(Right email, Just homepage) -> ??
in
List.map showEntry

Using standard text editing, we fill in the holes on the branches of the case expression,
but we get stuck on the last branch.

type alias Entry =
( Either Username Email
, Maybe Homepage
)

showEntries : Entries -> List String
showEntries =
let
showEntry : Entry -> String
showEntry entry =
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case entry of
(Left username, Nothing) -> showUsername username
(Left username, Just homepage) -> showUsername username ++ "; see " ++ showHomepage homepage
(Right email, Nothing) -> showEmail email

(Right email, Just homepage) -> ??
in
List.map showEntry

We are stuck on the last branch because it is actually an impossible state! We structurally
select the branch and choose the Make Impossible code transformation. We are presented
with two redefinitions of the Entry type alias: a “normalized” and a “standardized” option.
The normalized option results in a sum-of-products representation of the valid states, and
the standardized option results in a definition in terms of built-in library types.

-- Normalized
type Entry

= Ctor0 Username
| Ctor1 Username Homepage
| Ctor2 Email

-- Standardized
type alias Entry =
Either (Username, Maybe Homepage) Email

Using other code transformations, we can swap one of these implementations for the other at
any time, so we do not need to dwell too long on the decision right now. For now, we choose
the standardized option. The transformation updates the implementation (but not signature)
of the convert function as well as the case expression inside the showEntry helper.

type alias Entry =
Either (Username, Maybe Homepage) Email

type alias Entries =
List Entry

convert : (List (Either Username Email), List (Maybe Homepage)) -> Maybe Entries
convert = ...

showEntries : Entries -> List String
showEntries =
let
showEntry : Entry -> String
showEntry entry =
case entry of
Left (username, Nothing) -> showUsername username
Left (username, Just homepage) -> showUsername username ++ "; see " ++ showHomepage homepage
Right email -> showEmail email

in
List.map showEntry

show : Database -> String
show d =
case convert (identities d, homepages d) of
Just entries -> String.concat (showEntries entries)
Nothing -> "Conversion failure!"

The function is complete. The data and types have been munged by the code transforma-
tions into a cleaner, more manageable form that allows us to focus on the core logic of our
program: converting entries in the database to strings.

3 Designing and Implementing Deuce+

To fully realize the workflow described in Section 2, Deuce+ must comprise three distinct
but interrelated components:

(Section 3.1) a set of type-directed program transformations informed by common code
authoring patterns of functional programmers;



J. Lubin and R. Chugh 3:7

(Section 3.2) a syntax constraint language and engine to ensure these transformations
are composable and produce stylistically consistent output; and

(Section 3.3) a domain-specific language for specifying these transformations.

The first of these components will address Limitation A of Deuce by providing a sizeable
set of transformations justifiably rooted in existing programmer behaviors, and the second
and third of these components will address Limitation B of Deuce by providing a system
for building and composing the transformations that is accessible to any user of the system.
Moreover, with such tools in place, a large library of automatically composable user-defined
transformations will be made possible, further combating Limitation A.

3.1 Type-Directed Program Transformations
With the strong guarantees of a rich type system, programmers can leverage expressive
program transformations to alleviate some of the pains caused by the flexibility of text (as
demonstrated by [11]). As part of the Deuce+ project, we would like to formalize some of
the common, implicit techniques that functional programmers use to develop programs by
crafting program transformations to perform these authoring patterns automatically.

From personal experience, we have identified a few such transformations, including the
Refine Type, Make Progress on Hole, and Make Impossible transformations from
Section 2. However, we would like to design and conduct a user study to observe how
functional programmers author code. Do they start with a skeleton of a solution and later
fill in the holes? Or do they, perhaps, write code from the top down? There are myriad other
ways code can be written, too, and there may not even be a consensus among functional
programmers on this issue; nevertheless, a formal user study is in order to even begin to
answer these questions. In the meantime, we investigate the three aforementioned program
transformations and how they relate to some common functional programming authoring
patterns, as summarized briefly in Figure 2.

Refine Type. The Refine Type transformation mirrors the code authoring practice of
maintaining code invariants. After structurally selecting a type, users may activate the
Refine Type transformation to narrow down the type’s set of possible values. Inspired by
(but not reliant upon) refinement types [6, 7, 23], the Refine Type transformation prompts
the user for an invariant that they wish to maintain about the program, and attempts to
refactor the type to ensure that the invariant is satisfied. For example, consider a functional
queue type (left, below) drawn from Chris Okasaki’s Purely Functional Data Structures [16].
Given the queue type on the left and the invariant that |front| >= |back|, Refine Type
might suggest to transform the type to that on the right:

type Queue a =
Queue
{ front : List a
, back : List a
}

type Queue a =
Queue
{ frontBack : List (a, a)
, remainingFront : List a
}

The first |back| components of front and back are stored together in the list frontBack, and the
remaining |front| - |back| elements are stored in the list remainingFront, so it is now impos-
sible to represent a Queue in which |front| < |back|. (This transformation is a generalization
of the approach used in Section 2 to ensure that the lengths of the two lists in the Entries type
were equal.) To maintain ease of use and increase backward compatibility, the Refine Type
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tool might also provide helper functions corresponding to the previous API of the queue:

front : Queue a -> List a
front (Queue q) =

List.map Tuple.first q ++ remainingFront

back : Queue a -> List a
back (Queue q) =
List.map Tuple.second q

Make Progress on Hole. The Make Progress on Hole transformation mirrors the code
authoring practice of “following the types,” an oft-heard adage in the functional programming
community suggesting that the type system can guide the user to implement the task at
hand essentially automatically. While such advice is clearly not universally applicable, the
statement does hold some truth to it, as demonstrated by the practice of type-directed
programming [1, 26, 27].

After structurally selecting a hole, users may activate the Make Progress on Hole
transformation to fill a hole with an expression (that will likely contain further, more
specific, holes to fill in the future). There are at least three type-based approaches that this
transformation can rely on to fill holes with helpful expressions: expression templates, type-
directed refinement, and program synthesis. Expression templates are pre-written generic code
snippets that can be suggested to the user to fill the hole at hand based solely on the bindings
that are in scope and the type of the hole to be filled, as was done to introduce the List.map

function in the implementation of the showEntries function in Section 2. Type-directed
refinement is the systematic destructuring of a type into its component types via pattern
matching, as was done to pattern match on the entry variable in the implementation of the
aforementioned showEntries function. Another example of type-directed refinement would be,
for instance, the filling of a hole of type (a, a) with the expression (??, ??), an expression
whose holes have been refined to simpler types (albeit at the cost of introducing a greater
number of holes/subproblems). A final, more general approach to the task of filling holes
lies in the practice of type-directed program synthesis, or, generating programs to match a
specification (which, in this case, is the type of the hole along with any additional information
– such as examples – that the synthesis algorithm may need), as in [5, 10, 12, 18, 19, 20, 21].

Make Impossible. The Make Impossible transformation mirrors the code authoring
practice of making illegal states unrepresentable [4, 15]. At the time of authoring a type,
certain code decisions may seem like a good idea that only later reveal themselves to be
cumbersome. For example, a programmer might write a record type representing the state
of an application window with the field content : Maybe String (where Nothing represents a
closed window). Some time later, the programmer may realize that windows should save
their own position, and thus adds a field position : Maybe (Int, Int) (when the window is
closed, they reason, it has no position, so position must be a Maybe type). But, in enacting
this change, the programmer has made representable two states that should be illegal: when
either one of the fields is Just something and the other is Nothing.

By structurally selecting the record type and providing the patterns that should be
unrepresentable (or by merely structurally selecting the branches in a case expression that
should be unrepresentable), the programmer can use the Make Impossible tool to make
values of the selected type that match the specified patterns impossible to represent. In the
windowing example from above, the Make Impossible tool would transform the record of
Maybe types to Maybe { contents : String, position : (Int, Int) }.

This transformation is made possible by the algebraic nature of datatypes, as used
in [14]. While work is still underway to make the intuition rigorous, we may view the Make
Impossible transformation on a datatype as operating on the polynomial functor of which
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Refine Type ←→ maintaining code invariants
Make Progress on Hole ←→ following the types

Make Impossible ←→ making illegal states unrepresentable

Figure 2 Summary of transformation and code authoring pattern correspondences.

the type is a fixed point, represented suggestively as τ − P , where τ is the datatype functor
and P is the pattern we wish to eliminate. For example, viewing record types as product
types, we can determine the solution to the windowing example from above using algebraic
laws related to this transformation (which are still under investigation):

(Maybe String, Maybe (Int, Int)) − (Just _, Nothing) − (Nothing, Just _)

 (1 + s) ∗ (1 + (i ∗ i)) − s ∗ 1 − 1 ∗ (i ∗ i)
= 1 ∗ 1 + 1 ∗ (i ∗ i) + s ∗ 1 + s ∗ (i ∗ i) − s ∗ 1 − 1 ∗ (i ∗ i)
= 1 + s ∗ (i ∗ i)
 Maybe (String, (Int, Int)).

3.2 Syntax Constraints

Implementing program transformations can be difficult and time-consuming work; it is
clear that even just the three transformation described in Section 3.1 will require great
thought and careful execution in their design and implementation. On top of the inherent
complexity of the program transformation at hand, transformation authors – in the most
basic setting – will also need to worry about routine but difficult-to-get-right considerations
such as whitespace handling, declaration ordering, and naming conventions, among many
other stylistic considerations. Moreover, sets of transformations authored by different people
might all work with mutually incompatible styles, resulting in a poor user experience.

Automatic formatting tools eliminate these problematic choices by applying language-
or project-specific concrete formatting rules to abstract syntax trees. Although formatting
tools can be extremely valuable, they are typically limited to concrete syntax (even though
many structural choices can be viewed as stylistic, too) and based on hard-coded rules that
are not easily adapted to multiple configurations.

To address this problem, we propose the notion of code style sheets, or, the notion that
stylistic choices for both concrete and abstract syntax be made automatically based on syntax
constraints. Syntax constraints are an expressive means for encoding a variety of stylistic
choices to be optimized to meet different requirements (e.g. line widths, stylistic preferences,
and surrounding context). Much like the distinction between HTML, CSS, and JavaScript,
syntax constraints specify code style completely independently of the code itself and any
transformations that operate on it, reducing the burden of transformation authors while also
ensuring a more consistent and flexible experience for users of these transformations.

When needed, Deuce+ will feed the syntax constraints (along with unformatted code)
into a solver engine, which will output formatted code. Presently, the exact nature of this
engine as well as of the syntax constraints themselves are under investigation.

PLATEAU 2019



3:10 Type-Directed Program Transformations for the Working Functional Programmer

3.3 A Program Transformation Language
Even assuming that both concrete and abstract formatting are taken care of by the code
style sheet engine, writing the transformation code for manipulating abstract syntax trees
can be challenging. Speaking from the personal experience of implementing thousands of line
of program transformations, it is difficult to maintain a declarative, consistent, and reusable
pattern of implementation that scales well for even a few dozen transformations.

To resolve these issues, we propose a domain-specific language for program transformations
that can operate on three different levels of abstraction: the concrete syntax tree, the abstract
syntax tree, and the generalized syntax tree. The concrete syntax tree and abstract syntax
tree are familiar: the former including rigid details such as the exact whitespace of the code
to be transformed and the latter including only the underlying structure that is fed to, for
example, the evaluator of the language. The generalized syntax tree operates at an even
higher level than the abstract syntax tree, and allows for an even more declarative approach
to specifying program transformations. It relaxes certain relationships between nodes in
the abstract syntax tree so that, for example, an ordered list of let-bindings becomes an
unordered set of let-bindings and function application operators (such as |> in Elm, OCaml,
and F# and $ in Haskell) are unified into a single function application node. Translating
from the transformed high-level description of the program back to the concrete syntax that
the programmer sees can be done by the use of the code style sheet engine, and the concerns
of style and transformation logic are cleanly separated.

The program transformation language should also be able to interface with the code style
sheet, exposing transformation-specific properties that allow the programmer to fine-tune how
the transformation operates on a granular basis. Moreover, the language should eventually
be amenable to synthesis of program transformations, reducing the barrier to authorship of
transformations even further; indeed, the synthesis of program transformations is an exciting
area of related (as in [22]) and future work. As with the syntax constraints and solver, much
further investigation is needed to understand, design, and implement the generalized syntax
tree specification as well as the domain-specific language as a whole.

4 Further Usability Challenges for Deuce+

If the goal of Deuce+ is to make powerful program transformations backed by elegant
mathematical ideas accessible to – and authorable by – the everyday programmer, then
good usability is of utmost importance. Every single operation described thus far should be
influenced and rooted in not only sound mathematics, but proper usability studies. Although
the development of Deuce+ is currently very early in the design process, there are a few
preliminary usability considerations that need to be addressed as Deuce+ develops.

With so many program transformations available to the user (especially including trans-
formations authored by third parties), it is critical that the user be able to find the correct
transformation for the task at hand, even if the user does not know its name. We will
need to investigate what mental models users have of the transformations available to
them and determine heuristics (likely relating to the structurally selected expressions)
and display mechanisms (such as code diffs or animation) for showing them relevant
program transformations.
After a transformation has been selected, its output may be hard to decipher, so how does
a user know when a program transformation is “correct?” We will need to investigate
how to help users be confident (and correct) in their output selections.
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The languages underlying the program transformations themselves must also be stream-
lined and intuitive for end-user transformation authors. Drawing from interdisciplinary
programming language design [3], we will need to design and evaluate the style sheet and
transformation specification languages holistically, aiming for providing an experience
that supports and encourages expressive and extensible code.
The structured editing user interface introduced by Deuce will need to be improved to
support usability improvements such as drag and drop, fluid and dynamic animations,
and novel code overlays beyond simple polygons (such as for type information).

Completion of these tasks will ensure that – at every step of the way – the usability of
Deuce+ is of the highest priority across all its components, from its graphical user interface
to its program transformation authoring and end-user experience.
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Abstract
The ability to declare what a program should include rather than how these features should be
implemented makes declarative languages very useful in many visual output programs. The wide-
ranging uses of these programs, in domains ranging from architecture to web programming to data
visualization, encourages us to find an effective method to teach them. Traditional tutorial systems
are usually non-interactive and have a gap between the learning and application. This can leave the
user frustrated without a way to move forward in the learning process. A general lack of guidance
can lead the student down an incorrect path. To prevent these difficulties, we propose a guided
tour followed by novel question types that both direct the student’s learning and creates a focused
environment to practice individual skills. Lastly, we propose a study to test the hypothesis that this
tutorial is quicker to complete and results in a greater understanding of the declarative language.
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1 Introduction

Declarative languages have been successful in many domains because of the multiple advant-
ages they possess. The readability [1], succinct composition, and unordered nature of the
code can make them easier to use [6]. For creating programs with visual output, declarative
languages are especially prevalent. There are many examples that are widely used, including
HTML, CSS, D3, and others. The reason for that is the ability to declare what the aspects
of the visualization should be rather than how they should be built [11]. Due to the common
usage of declarative languages and their prominence with visualizations, we are investigating
how to effectively teach a declarative language. We are conducting this investigation within
the context of a mathematical diagramming and education system called Penrose, which
utilizes a declarative language, Substance, that resembles standard mathematical notation.
An uncomplicated, accessible way to learn Substance would support the system overall. As
a solution to our primary research question, we propose using a guided tour followed by a
series of novel question designs that provide targeted, focused application practice.

A guided tour is a context-sensitive tutorial that uses constraints and checkpoints to
guide the user through the different aspects of the program. Many video games use guided
tours instead of multi-page manuals because there is less frustration among users [2]. Each
time there is a new skill to be learned, the tutorial will show the player how to complete
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the action through instruction and practice, followed by a checkpoint. The tasks are smaller
pieces of the overall game, so they build upon each other to complete the tutorial. Both
video games and declarative languages consist of many small pieces and skills that build up
into proficiency, therefore it is likely a guided tour will be an effective strategy for declarative
languages. The possible downfalls that this method avoids, however, are seen with traditional
programming language tutorials. The mixture of textual instructions followed by exercises
leads to a gap between learning and applying. Removing this gap should result in faster
learning [7].

To secure a smooth transition into using the system freely, there will be practice questions
that follow the guided tour. These questions come in a set of novel designs that are more
focused on honing individual skills. Typical models, on the other hand, have exercises that
slowly build to an activity that encompasses all of the learned skills. This does not take into
account the needs of the student and which areas require more practice. Providing targeted
feedback through specific questions, with the appropriate level of difficulty, will ensure the
student effectively learns all the necessary skills for using the declarative language [12].

Along with this design, having a visualization as an aid can be extremely useful in
the field of education. Due to the undeniable connection between visual outputs and
declarative languages, the educational benefits of diagrams are important as well. External
representations, such as diagrams, portray the information in an alternative way and assist
the learning process. Often, seeing the information visually, as opposed to textually, promotes
better reasoning and problem solving [9]. Additionally, inferring information from visuals is
easier due to their emergent properties [8]. When visualizations are paired accurately with a
student’s current capabilities and the task at hand, which is the aim of the practice problems,
there are cognitive benefits that enhance learning [3].

In the following sections we introduce our ongoing efforts of designing a tutorial for
declarative languages. We start by presenting the design of a guided tour that teaches the
declarative language of Penrose, Substance. Following that, we will show the designs of
the novel problem types that provide focused but unconstrained practice within the Penrose
system. Finally, we propose a user study that evaluates our design.

2 Tutorial Design

A successful tutorial ensures that the student can understand and utilize the content they
just learned. Teaching a language, specifically, entails covering all aspects of the language
that might be used afterwards. Programming languages often have formal descriptions of the
grammar that it implements, such as the BNF. When looking at a declarative, domain-specific
language, however, the size of the grammar is smaller, limiting the space of possible programs.
Our system can leverage an explicit specification of the language constructs to automatically

predicate
predicate
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 Vector



 In: Vector * VectorSpace V

 LinearlyDependent: Vector * Vector


type
type

-- Predicates



-- Type Constructors



Figure 1 Domain Program.
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generate instructional content such as guided tasks and practice problems. The system derives
examples and counterexamples from the high-level grammar to create practice problems
that target a specific language construct. In our example, Penrose defines a mathematical
domain with a Domain program written in a simple metalanguage that declares all the
types and operators available (see Figure 1). By sampling the space of possible Substance
programs defined by Domain, the system generates various types of diagrammatic practice
problems.

We have not yet generated problems from Domain and there are many open research
questions to solve to do so effectively. For example, when generating incorrect answers for
multiple choice questions we will want to replicate plausible errors that students might make.
Addressing these research questions is future work.

With our system, the guided tour consists of a set of tasks that covers different parts of
the domain. Each task is broken up into a series of small steps. In order for the user to learn
exactly what is intended, we guide the user through each step and constrain how the user
can interact with the interface to ensure completion. We direct the user’s attention towards
a particular part of the question to show the next step via arrows, changes to the opacity
of components in the user interface, and precise directions. Furthermore, the user cannot
proceed without completing each step.

Question 1 of 5

Objective

Show two linearly dependent vectors

1

2

3

4

5

6

7

8

9

Run Check

Diagram - Click ‘Run’

Autolabel all

VectorSpace U

In(A, U)

In(B, U)



Vector A

Vector B

Add linear dependency, type 
“LinearlyDependent(A, B)”

(a) Guided Tour Step 3
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(b) Guided Tour Step 4

Figure 2 Guided Tour.

The purpose of using instructions at every step is to avoid frustration. Without personal
assistance, advancing in the face of difficulties is a challenging task. In a system such as
Penrose, where the purpose is creating mathematical diagrams with ease, we aim to support
users without any programming experience. Our goal in the guided tour is that the user
should know exactly what they need to do at each step, and thereby increase retention rates
[13]. At the same time, combining instruction with the physical task of writing code aids
retention [2].

An example task for the guided tour (see Figure 2) has the prompt: “show two linearly
dependent vectors”, separated into smaller steps:

Add the first vector, type Vector A
Add a second vector, labeled B
Add linear dependency, type LinearlyDependent(A, B)
Click Run
If the diagram looks linearly dependent, click Check

PLATEAU 2019
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As seen in Figure 2, the opacity of the screen is lower, except for the instructions and the
spot where the arrow is pointing. The instructions are contained within a boldly outlined
ellipse, and the arrow points to where those instructions should be applied, which is also
outlined. All these elements directs the attention of the user.

After progressing through the tasks, users naturally continue practicing with a set of
novel question types. These questions utilize the Penrose system, as described earlier in
this section, and visualizations to emphasize the learning that occurs during the guided tour.
The questions are focused on practicing specific skills and target the areas where the student
is not as strong. The two categories of questions include recognition and recall.

(a) Recognition (b) Recall

Figure 3 Novel Question Types.

Recognition is a category of problems that requires the student to recognize associations
between the program outputs and the source programs. The methodology would be analyzing
and working with the diagrams from the system. One type of problem that falls into this
category is a multiple choice question where users match the code or prompt to the correct
diagram (see Figure 3a). The prompt might ask for two linearly independent vectors, where
two out of the four options are correct. Another question type is adjusting a diagram to
match the code that is provided, meaning the user corrects the error. An extension of this
problem is building the diagram from a bank of shapes.

Recall questions strengthen a student’s ability to recall language constructs of the DSL.
This involves a diagram that is already produced and constructing the answer. Our design
supports this in two ways, correcting existing code and writing new code. For the former,
there is an error in the code that the user has to find and fix. The latter is starting from
the beginning and writing the code that answers the prompt (see Figure 3b). If the prompt
requests two linearly dependent vectors, the user must write the code that creates that
diagram.

3 Study Design

Implementing a study could provide evidence that supports this tutorial design. The purpose
of an evaluation is to show the benefits of the previously described design, mainly that it is a
faster and more efficient way of learning a declarative language. We hypothesize that this
method will increase the understanding of the user.

Our tentative evaluation plan consists of students with a range of computer science
backgrounds split into two groups, control and experimental. The control group learns
Substance with textual instructions, and have full access to the system. The experimental
group uses the guided tour and the novel question types. The dependent measures are the
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time it took to complete the tutorial and the understanding, which is assessed through a
quiz. The quiz will involve a combination of answering questions about example Substance
programs and writing Substance code. This will be evaluated for accuracy. Every participant
completes a pre and post-survey, followed by a debrief of the study.

4 Related Work

There are two main categories of related work that are correlated to our research question:
visual learning and language tutorials.

Visual Learning

One focus of visual learning is how to improve visualizations to help students the most. The
question’s presentation has one of the largest impacts [3]. For example, effective instructions
displayed alongside the external representation greatly increases understanding. Furthermore,
the student must have enough experience to fully utilize the diagram. Grounded feedback is
one way to use a student’s prior knowledge [12], where they solve problems using a symbolic
representation followed by the answer presented in a feedback representation. This second
representation is a more concrete, familiar visualization and encourages students to interpret
their answer’s accuracy. Grounded feedback is a great tool for teaching, yet making the
feedback individual is difficult to implement.

Visualizations can also be used as examples. Along with visual learning, example-based
learning has become more common within computer science [5]. Unfortunately, visualizations
and examples can be ineffective if they do not engage the student [10].

Language Tutorials

The most common way to learn a new language is through non-interactive methods, such
as written text and videos, similar to Khan Academy.1 Often, practice exercises and do-
it-yourself tasks follow the explanations, leaving a gap where information can be forgotten.
More interactive tutorials include websites such as Scrimba2 and A Tour of Go,3 that mix
textual instructions and videos with practice questions. In Scrimba, students can interact
with the code as the video is playing, making it easier to test out concepts as they are being
taught. A Tour of Go is similar, but with textual instructions instead.

DrScheme [4] (now known as Racket) and the stencils-based tutorial for Alice [7] are
examples of teaching within programming environments. DrScheme’s purpose is to easily
correct the errors many users run into. Experienced users have created work-arounds for
these problems, but beginners get stuck. The stencils tutorial for Alice is similar to the guided
tour, but focuses on teaching the system rather than a declarative language. This tutorial
uses translucent stencils that direct attention to a hole that is regularly colored. Virtual
sticky notes display the instructions. After comparing their new tutorial to a traditional one,
they found that fewer errors were committed and it was a faster and easier experience overall.
The main downside is that users who completed the stencils tutorial were less confident they
could work with the program, even though they were more confident that they completed
the tutorial correctly.

1 https://www.khanacademy.org
2 https://scrimba.com
3 https://tour.golang.org
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5 Conclusion

Since declarative languages are so widely utilized by users of all skill levels, teaching them
efficiently is an important problem to investigate. Combining a guided tour and practice
problems with new designs that focus on building individual skills suggests a more effective
method. A future study could confirm this hypothesis, by looking for how fast the tutorial is
completed and overall understanding of the content. This would improve the visual output
systems that depend on declarative languages by providing more guidance for students
without requiring personal assistance.
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Abstract
Program synthesis techniques offer significant new capabilities in searching for programs that
satisfy high-level specifications. While synthesis has been thoroughly explored for input/output
pair specifications (programming-by-example), this paper asks: what does program synthesis look
like beyond examples? What actual issues in day-to-day development would stand to benefit the
most from synthesis? How can a human-centric perspective inform the exploration of alternative
specification languages for synthesis? I sketch a human-centric vision for program synthesis where
programmers explore and learn languages and APIs aided by a synthesis tool.
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1 A Story of Our Time

Consider the story of Dana the Data Scientist. At Sonmanto, her agritech business, Dana
wants to analyze the weekly seed production. Opening a Jupyter notebook, she creates a new
code cell, imports a few libraries, and sends off a SQL query to build a Pandas dataframe.
Knowing the Pandas API from her data science course and past experience, she computes
the week’s average seed production using standard dataframe methods.

query = sql("SELECT time, production FROM seed_production ORDER BY time")
df = pd.read_sql_query(query)
df.where(df.time >= dt.now() - dt.timedelta(days=7)).production.mean()

Concerned that the week’s production seems low, Dana wants to see a 7-day rolling average
of the last year’s production to put this week into context. She has never computed a weekly
rolling average before, so she Googles “pandas rolling average”. Excellent, Pandas has a
Dataframe.rolling method, but. . . it doesn’t do quite what she wants. All the examples
use windows that contains a fixed number of elements, but she wants windows of a fixed
duration potentially containing different numbers of production samples.

Dana continues searching increasingly elaborate queries like “pandas rolling average date
dynamic window”, and eventually finds some StackOverflow answers that look almost right.
However, all of their solutions either use abstract notation like “foobar” or were made for
other domains like stock trading. Dana finds it difficult to see the relationship between
finance problems and seed production. After twenty minutes of searching, she gives up with
a resigned sigh and decides to just implement it in plain Python.

for day_start in pd.date_range(df.time.min(), df.time.max()):
day_end = day_start + datetime.timedelta(days=7)
window = [row.production
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for day in pd.date_range(day_start, day_end)
for _, row in df.iterrows() if row.time.date() == day.date()]

weekly_prod.append(pd.Series(window).mean())

Dana knows the code isn’t beautiful, but it gets the job done. Glancing back at the
StackOverflow questions, she starts to see the connections after going through her own
implementation. But it’s close to lunch, and she spent too long on this already. Simplifying
the code is a task for another day, and she moves on.

2 A Story of Another Time

. . . Concerned that the week’s production seems low, Dana wants to see a 7-day rolling
average of the last year’s production to put this week into context. She has never computed
a weekly rolling average before, so she Googles “pandas rolling average”. Excellent, Pandas
has a Dataframe.rolling method, but. . . it doesn’t do quite what she wants.

Rather than continuing to search fruitlessly, she writes down her plain Python solution.
Dana highlights the code cell and clicks “Synthesize” in her Jupyter toolbar, opening a dialog
box on the side. She writes Dataframe.rolling and Dataframe.mean into the box, knowing
those are likely going to be important parts of a Pandas-specific solution if it exists. Guided
by her suggestions, the synthesis engine finishes in under a minute, producing a rolling
solution contextualized to her dataframe.

df.sort_values('time').set_index('time').rolling('7d').mean()

Ahh, the rolling function has a special syntax for time windows. But, Dana wonders, what
does each part do? Hovering over each part of the program, the synthesis tool uses its
counterexamples to shows what would happen if a given method call was omitted or changed.
Removing sort_values or set_index cause the program to raise an error. Changing the
window to rolling(7) produces an incorrect output.

Plotting the values in Matplotlib, Dana marvels at the simplicity of the solution. She
starts to wonder: are there other places in Sonmanto’s code base where they could use this
pattern? Glancing over at the clock, there’s still an hour to lunch, great! Highlighting her
old code cell once more, she clicks “Find Similar” to search her notebooks and text files for
snippets that look structurally similar to the one she just wrote.

After the search engine returns five plausibly similar programs, Dana runs the synthesis
engine in parallel on each one. Noticing that most of the snippets were written by Danny the
Data Engineer, she motions Danny over and teaches him about the feature she just learned.

3 The Past and Present of Program Synthesis

The stories above highlight a key fact about modern-day programming: programmers routinely
deal with dozens of representations of code and data. In the data science domain, Jupyter
notebooks swap between explanation and code. Data flows from SQL databases to Python
lists to Pandas dataframes. Operations mix and match bespoke APIs with general-purpose
programming constructs. Programmers are continually learning new representations as
languages, libraries, and tools emerge and change.

Dana’s struggles with Pandas show a prototypical case of acquiring a new representation.
Not knowing how to compute a specific kind of rolling average, she uses a combination of
documentation, code examples, and prior knowledge to understand whether the Pandas API
can solve her problem. Having general programming skills, she can arrive at a standard Python
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solution, but not the more concise API-specific solution. As the second story demonstrates,
I believe that program synthesis techniques hold promise in helping programmers overcome
these kinds of representational transfer problems (or refactoring, migration, etc.). Yet, to
date, such a story is still a fantasy.

To understand why, we will briefly examine the history of program synthesis. Synthesis
has been predominantly applied in the context of programming-by-example (PBE). In PBE, a
user provides examples (input/output pairs) of a pure function, and the synthesizer attempts
to find a “good” (e.g. small) function that satisfies those examples. Often, the user is an
end-user manipulating spreadsheets or text documents, and the generated program is an
invisible macro. Through hard-earned experience with dozens of PBE systems, researchers
have both articulated design principles of PBE [8] and ultimately produced the flagship
commercial synthesis engine, Excel FlashFill [11]. This effort succeeded in part by a human-
centric push to understand both the applications where PBE was most valuable, and the
essential usability constraints for real-world usage.

The central question of this paper, then: what does human-centric synthesis look like
beyond PBE? Specifically, what applications open up when a user has the programming
skills to express specifications at a level beyond examples? Traditionally, these kinds of
tasks have been viewed as refactoring or migration, where the existing codebase specifies the
desired behavior for the transformed one. Historically, refactoring tools could only perform
simple syntactic changes like renaming types or methods. However, recent synthesis tools
have shown striking progress in translating between complex high-level representations of
code. For example, tools can move between languages like Java → Spark [1], and Fortran
→ Halide [5]. Tools can refactor APIs, like parallelizing Java streams [7], adding default
methods in Java [6], updating SQL queries after schema changes [14].

These approaches have significantly advanced the state-of-the-art in program synthesis
techniques. But given the lack of meaningful commercial adoption, it is unclear whether
they’re trying to solve the right problem. Certainly this fact arises in part from the general dif-
ficulty of tech transfer. But this would not be the first time the PL and compilers communities
have been led astray by the allure of automating high-level tasks for programmers.

For example, modern compilers do register allocation by solving a complex graph coloring
problem with zero user input, and no one takes issue with that. History and experience
suggest that deciding which temporary is assigned to which register or stack slot is not a
meaningful decision for a programmer. By contrast, decades of research have been invested
into automatic parallelization of general-purpose code, like arbitrary C for-loops. However,
identifying and expressing parallelism in an application seems more fundamental/important
for the programmer to decide than register allocation. Automatic techniques have been
ultimately eclipsed by DSLs with understandable, user-programmable models of parallelism
like Halide [12] and Spark [16]. After all, autovectorization is not a programming model [10].
So how can program synthesis avoid a similar fate?

4 A Vision for Human-Centric Program Synthesis

The moral of these stories is that understanding the context, challenges, and capabilities of
the working programmer is essential for improving the programming experience. Applying
such a human-centric lens in designing and evaluating synthesis tools could accelerate the
progress of synthesis research and promote the real-world adoption of these techniques. While
the goal of this paper is primarily to spark discussion – what do you think human-centric
synthesis entails? – I want to set the stage by articulating my principles for improving
synthesis tools.

PLATEAU 2019
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1. Synthesis tools should use a user’s most productive specification language.
Input/output pairs have been a popular specification language for synthesis, since “PBD
is a natural match for artificial intelligence... by observing the actions taken by the user
(training examples), the system can create a program (learned model) that is able to
automate the same task in the future.” [8] Moreover, for end-users without training in
formal languages, I/O pairs are the highest level of abstraction at which they can formally
specify behavior. However, programmers can use a diverse array of representations for
specifications. These range from testing (e.g. unit testing, randomized test generation [2])
to declarative languages (PlusCal, UML) to programming languages (sketches [13]).
Synthesis tools should use a specification language based on the difficulty of writing
abstract rules versus writing individual examples in a given domain. Dana’s window
query may be easier for her to specify in Python, while a data structure manipulation
like rotating a tensor may be easier to specify by examples. Human-centric evaluations of
synthesis should seek to empirically characterize this trade-off.

2. The synthesized program can not be a black box.
Synthesis tools have historically been used like compilers: input the specification, and
don’t look at the output program, just run it. Again, while this approach works for
end-users who may lack the technical knowledge to understand the synthesized program,
such an interaction mode is rarely desirable for a programmer. Programs are written,
re-read, tweaked, maintained, handed off to other collaborators, and so on. Professional
programmers spend only 5% of their time writing code [9, 15].
Subsequently, Programmers must be able to comprehend and maintain synthesized
programs. A synthesis tool should generate readable code and be able to explain its
decisions, like Dana’s imagined UI. Readability metrics can be informed by existing
principles of programming notation design, like the cognitive dimensions framework [4].

These principles have helped me envision application spaces beyond the traditional purview
of synthesis, like those characterized in the stories above. For example:

1. Helping programmers learn new languages and APIs. Programmers, whether
hobbyists or full-time developers, encounter learning opportunities every time they code.
Dana’s was intentional: she realized she didn’t know a feature and searched for it. But
many more opportunities are passed by due to lack of awareness of a language or API
feature. Anecdotally, I know Rust users that say the linter (Clippy) has helped them
learn APIs through simple syntactic patterns. A synthesis tool as an extremely powerful
linter could identify when someone likely doesn’t know a concept (“there are 10 places in
your code base that could be simplified with a for-loop”), highlight relevant code, and
even suggest the translation if possible. By explaining its code-generating decisions, a
synthesis tool can move beyond code that just works, to code that teaches how it works.

2. Evaluating the impact of an API/language change. When maintainers of libraries
and languages debate new features, questions arise like: how many people would use this
change? Would their code be meaningfully improved with this feature? For example,
the Python community recently accepted the contentious PEP 572 “walrus operator.”
Guido was ultimately convinced by maintainers who combed through their own codebase,
demonstrating dozens of places where the proposed feature could be applied [3]. A
synthesis tool could help maintainers automate such exploratory tasks and more freely
experiment with proposed designs.



W. Crichton 5:5

Enabling these applications raises a number of exciting research questions in the design,
implementation, and evaluation of synthesis tools. If high-level specifications replace I/O
pairs, does this reduce the program search space, or is it just a means of generating examples
(like QuickCheck)? Can API or language designers make their systems more amenable to
synthesis? I hope that perspectives from the PL/HCI community can contribute greatly to
these endeavors.
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Abstract
Querying data is core to databases and data science. However, the two communities have seemingly
different concepts and use cases. As a result, both designers and users of the query languages
disagree on whether the core abstractions – dataframes (data science) and tables (databases) – and
the operations are the same. To investigate the difference from a PL-HCI perspective, we identify the
basic affordances provided by tables and dataframes and how programming experiences over tables
and dataframes differ. We show that the data structures nudge programmers to query and store
their data in different ways. We hope the case study could clarify confusions, dispel misinformation,
increase cross-pollination between the two communities, and identify open PL-HCI questions.
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1 Introduction

Querying data is ubiquitous – application programmers query data to show relevant inform-
ation, analysts query data to answer business questions, and scientists query data to find
patterns for formulating and testing hypothesis. The uses cases are addressed by different
communities.

Application programmers and business analysts are traditionally served by databases.
During the 1970s, Codd’s seminal paper defined a set of relational algebra over tables. A few
years later, IBM developed SQL, a declarative language that can express the algebra. Since
then, SQL has become the standard for database management systems. The data scientists
are served by more general purpose programming environments like R and Python. Instead
of using tables, they use dataframe, as seen in pandas (Python) [7], R [11], and Spark [13].

Database researchers find dataframes odd. A well-known database researcher, Joe
Hellerstein, commented on Twitter in 2016, Stop. A “data frame” is just a table. Thank
you [19]. In the tweet thread, Leo Meyerovich, a PL researcher, suggested that the systems
must have been built for a reason. He found that dataframes helps with a clean curation of
basic DB, HPC, PL, etc. ideas. Two years later, the difference in opinion continues – when
prompted with whether the tweet has “aged well”, Joe replied, A “data frame” is a messy
conflation of relations and matrices that wouldn’t have evolved in a well-typed language, and
which complicates the relevant algebraic operations involved. [20].
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While the database side considers dataframe APIs messy, the dataframe side seems to
consider the database APIs inconvenient – from the creator of pandas, Wes McKinney,
“[pandas] is what people use for data ingest, data prep, and feature engineering for machine
learning models. The existence of other database systems that perform equivalent tasks isn’t
useful if they are not accessible to Python programmers with a convenient API.” [3]. We
see from the comment that the question of whether a dataframe is the same as a table is
as much about the data structures themselves as it is about the API design, which, as well
will show, is often influenced by the data structures both in terms of technical limitations as
well as mental models – to understand tables and dataframes, we also need to understand
accompanying languages like SQL and pandas.

Not only do system designers have different opinions, users of the query systems also
have different views. On a Stack Exchange post, the first search result in Google for “pandas
vs. sql” as of August 2019, the second most upvoted post claims that the comparison is
“apples to oranges” [10].

Understanding the disagreement is important for language and library designers. Not
understanding what functionalities are different or what features are desirable prevents the
communities from learning from past lessons and leveraging existing techniques. It may also
be confusing to the users to be presented with inconsistent messages and ideas. In this article,
we evaluate the differences of the data structures of tables and dataframes, their mental
affordances, the operations available, the mediums by which the operations are expressed and
the effects on programming experience. We will take a bottom up approach, investigating
existing languages – primarily SQL and Python pandas – to draw out relevant concepts and
questions. Along the way, we will identify open questions for future work and speculations
about the approaches.

2 Data Structures and Operations

The tabular format has existed for a long time as a way of organizing information, dating
at least to the Almagest almost two thousand years ago [27]. It is no wonder that both
the database and data science community have found the format useful. Despite sharing a
similar tabular look, tables and dataframes are defined as different data structures and have
different operations available. In databases, a table is a set of records (rows)1. A table is
also called a relation. The relational algebra, proposed by Codd, defines the transformations
available to these relations [17]. The design of relational algebra protects users from needing
to know how the data is organized in the machine, and makes it possible for users to specify
high-level queries, and leads to an inexhaustible number of optimization techniques. In data
science, there is more than one definition of a dataframe, listed in Table 1. In the rest of this
section, we explore what the definition means for the users of these languages2.

1 In practice, tables are often multisets, which means that there can be duplicate values. We do not go
into a detailed discussion here since the key difference being investigated is that of order.

2 We will use “language” uniformly to discuss both languages and libraries for simplicity.
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Table 1 Definitions of dataframe.

lib/lang definition

pandas two-dimensional size-mutable, potentially heterogeneous tabular data structure with
labeled axes (rows and columns). Arithmetic operations align on both row and
column labels. Can be thought of as a dict-like container for Series objects [7].

R tightly coupled collections of variables which share many of the properties of matrices
and of lists [11]

Spark equivalent to a table in a relational database [13]

2.1 Set v. Lists
Relational algebra is all about (multi)sets. As a result, the programmer cannot rely on the
relative position of the row or column in the table. Dataframes are all about lists3, where
programmers can use the relative positions. As a direct consequence, many operations that
are commutative with tables are not for dataframes. For example, concatenating dataframes
in pandas takes in a list, whose order, if changed, returns a different result. Take df12
= pd.concat([df1, df2]) and df21 = pd.concat([df2, df1]), df12.iloc[0] may not
equal df21.iloc[0]. In SQL, union-ed tables are the same regardless or the order – (SELECT
* FROM df1) UNION (SELECT * FROM df2) and (SELECT * FROM df2) UNION (SELECT *
FROM df1) are the same.

The affordance of order has a big impact on how programmers think. First, being able to
rely on order makes basic operations like finding a row with values of a certain rank much
easier. For instance, if a list is already sorted by, say, income, finding the row with the
maximum income (i.e. rank of 1) is as simple as selecting the first item df.iloc[0]. SQL
is more verbose: SELECT * FROM df WHERE income = (SELECT MAX(income) FROM df),
or less idiomatically, SELECT * FROM df ORDER BY income DESC LIMIT 1. The difference
may seem small, but consider instead accessing the row of rank, say, 100. The following
query is in order: SELECT * FROM df AS df1 WHERE (SELECT COUNT(*) FROM df AS df2
WHERE df1.income > df2.income) = 99. There are more steps here than the list-based
approach. Now the reader should try writing the query for the median. Our observation is
further backed up by the fact that among the pandas APIs called in the top voted Kaggle
kernels (as an approximation of pandas API use), iloc is more commonly used than join
and drop [8].

Second, looping over a list is sometimes easier to use than mapping over a set. For instance,
consider getting the smallest missing value, e.g., {1,2,4,5,10} misses 3. With loop-based
thinking, a programmer can just pause after the first “gap”, but in set-oriented thinking,
one solution is to create a number of continuous integers, and then select the minimum
value that’s in the integers table, but not in the set at hand, e.g., SELECT MIN(n) FROM
numbers WHERE value NOT IN (SELECT value FROM t). Another example is computing
the difference between conceptually consecutive items, like what month-to-month sales change.
A SQL query would use a JOIN operator, SELECT t1.month, t1.sales-t2.sales FROM t
AS t1 JOIN t as t2 on t2.month = t1.month - 1.

One may be tempted to draw the conclusion that lists are superior to sets from a
programming experience perspective. However, it is unclear if that is due to a bias in
education. Besides, the argument for programming without relying on order is increasingly

3 And arrays, which is also ordered, the key feature discussed.
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important for programming with large datasets on the cloud [12], where the cost of maintaining
order is incredibly high, both in terms of performance, and engineering and compute resources.
Sets are much superior to lists when it comes to performance since operations over sets can
be easily parallelized. Since order is so expensive, it makes sense to have programmers ask
explicitly for order only when it is needed, as opposed to being assumed to be always present.
In addition, operators over sets tend to encourage more declarative thinking, since there
is no order to base the procedural thinking on. The key question for the future from this
section is understanding how difficult will it be to teach developers to program without a
constant assumption about order.

2.2 Matrix vs. Table

In a table, rows and columns are fundamentally different abstractions – one could reason
about rows but not columns, which would be second-order logic. Matrices do not differentiate
between rows and columns and are traditionally used in linear algebra. Many, like dot-
products, are awkward in SQL – the values would be stored in the schema (rowID, colID,
value). By contrast, matrices don’t provide the logical operations natural to relations, like
selection or join. However, dataframes provide a mix of matrix operations and relational
operations, because they provide both logical operations and linear algebra like operations.

2.2.1 Mixing Matrix and Tables, the Good Part

This mixture can be handy. Consider Table 2. If a user wishes to compute the total sales for
each year, it makes sense to apply an aggregation across the columns –
sales_df.apply(lambda row: sum(row) - sum.year, axis=1), rather than writing out
all the column names manually – SELECT fruits + nuts + dairy + meat ... FROM
sales. The limited operations allowed over tables could be casts as Premature Commitment,
per Green’s Cognitive Dimensions of Notations [18]. Perhaps the messy conflation of relations
and matrices [20] is what makes scripting and “exploratory programming” easy [21].

Table 2 An example table where programmatically iterating through the columns is desirable.

year fruits nuts dairy meat ...
2017 100 40 300 400 ...
2016 200 150 200 400 ...
... ... ... ... ... ...

However, there is a better way to achieve the above-mentioned functionality in databases
by changing the schema. Instead of having the year values as columns, the table can have
the values in the rows, with a new schema: year, category, and amount (Table 3). Then
the query is SELECT year, category, SUM(amount) FROM sales GROUP BY year.

Table 3 An example table that contains the same data as the previous table, but different
schema.

year category amount
2017 fruits 100
2017 nuts 40
... ... ...
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This style of schema design is not accidentally convenient. tidyverse, a popular ecosystem
of libraries in R, encourages programmers to organize experiment variables as columns, and
rows as observations (which makes the data relational). The data layout design increases
the ease of manipulation and usage of libraries like dylplr and ggplot2, as well as better
performance [29].

2.2.2 Mixing, the Bad Parts
A quirky outcome of the matrix thinking gone too far is that dataframes allow duplicate
column names. For example,pd.DataFrame([[1,2,3],[2,3,4]], columns=[‘a’,‘a’])
evaluates without error and results in a dataframe with two column a’s.

Another issue is the additional notion of indices in dataframes. Since a pandas dataframe
is a “dict-like container”, it has an explicit notion of the index. Programmers can change and
use indices – they can even use a “hierarchical” index called MultiIndex [6]. For instance, a
dataframe of sales information (store_id, date, item etc.) can be indexed with the store
type (e.g., Trader Joes) and state (e.g., California). Each state can have multiple store types.
As a result, queries like finding all sales at Trader Joes in California: df.loc[(“California”,
“TraderJoes”)].

Tables do not have an explicit notion of indices, but rather the concept of keys, which
are made up of sets of columns. Following the example, the index can be replaced by two
additional columns, store and state, then the same query can be written with WHERE state
=“California” AND store=“TraderJoes”. Tables do not need indices to achieve the same
functionality.

In fact, indices make the downstream API more complex. Let’s take a look at concat again.
While concat was compared to UNION, the semantics of concat are much more complex. In
SQL, UNION can only be applied to rows of the same width (and type), but in pandas, a
programmer need to specify whether the concatenation is along rows or columns and how to
match the indices or columns (full concat API: pd.concat(objs,axis,join,ignore_index,
keys, levels, names, copy, verify_integrity)). An index is a redundant construct.

2.2.3 Joins
The join operator is the crown jewel of the relational operators. It accepts a join condition
(selection) and a pair of tables as arguments and returns a table [25]. Joins enable programmers
to derive all kinds of information from relationships between data.

Joins in dataframes (called merge), on the other hand, look very different as a result
of the mixing of metaphors. Here’s what it looks like: pd.merge(left_df, right_df,
how, on, left_on, right_on, left_index, right_index, sort, suffixes, copy,
indicator, validate). The merge operator seem rather complex, with concepts like
left_index and suffixes that are not needed for joins on relational tables. Further-
more, despite the complexity, the join condition is limited to column equalities (a concept
called equijoin in databases). Non-equijoins are very common. For example, to find the
weather of events by joining the events table and the weather table. In SQL this can be
written as SELECT * FROM events JOIN weather_log w WHERE events.date > w.start
AND events.date < w.end, and this cannot be expressed using the merge function alone
in dataframe APIs in pandas or R. The lack of non-equijoin support is not an oversight.
One key pandas maintainers, Jeff Reback, explained in a discussion on GitHub that adding
non-equijoins is not Pythonic [1]. This is puzzling because, for joins between tables, both
equijoins and non-equijoins are predicates over columns and are treated exactly the same
algebraically [25].
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In this sense, the merge is not actually a database join, as was claimed by both R and
pandas’ documentations [4, 5]. What further complicates the picture is that the concat
operation (discussed briefly earlier) also have mixed in concepts of join. In fact, in dataframes,
concat is much closer to merge than UNION is to JOIN; concat even takes a inner or outer
join specification [4]! This odd overlap of concepts could cause additional confusion. For
instance, the concat function requires that the names or indices of the columns match, but
with merge, programmers could specify what columns to merge on, and the names do not
always have to be the same. This makes rows and columns not actually symmetric, as the
name “matrix” may initially suggest, further complicating the mental model a programmer
must hold of dataframes.

Perhaps a better design is to have tables and matrices as two separate data structures
each with their own operations.

3 Programming Workflows

Writing SQL and dataframe queries are very different experiences. The first is a declarative
language, and the latter is invoking library functions in a host language. SQL was initially
intended to be used by non-programmers like accountants and architects through a terminal
interface [14, 15]. On the other hand, dataframe libraries are serving data scientists who
can program. While SQL encourages programmers to think only about tables and reason
about high-level functionalities, which are easier to optimize. Dataframes are used more
procedurally, where programmers apply a sequence of operations on the dataset [13]. In this
section, we analyze the different implications of the procedural versus declarative approach.

3.1 Accessing Functions
SQL was designed to be used just by itself, typed into a terminal. However, increasingly
programmers need to access the query results in a general-purpose programming environment,
which they can achieve using a wrapper, often constructing the query as raw strings with no
IDE support – no syntax highlighting, no linting, no refactoring, and no type checking. It also
makes accessing functions more difficult. Functions are useful for defining custom predicates
and aggregations. In SQL, programmers can access custom user-defined functions (UDFs)
by registering the function to the database via a wrapper, e.g., sqlite3.create_function
(<custom_agg>).

3.2 Code Reuse and Composition
Functions are also useful for sharing code that expresses the same logic, which is good for
code reuse. Codesharing is easy with dataframes since they are manipulated with library
calls in a general-purpose host language. In a similar vein, dataframe queries can also be
composed using functions directly. For instance, the logic to pick different tables or columns
can be embedded in normal functions. Composition reduces the complexity of analytic tasks
with more succinct and readable code.

On the other hand, in SQL, the primary way to reuse code is via VIEWs, which are
similar to tables, except that they are not computed and persisted to storage (materialized).
Since SQL can only express first-order logic, the ability to reuse code using VIEWs is limited.
For example, programmatically changing or iterating over different tables or columns is
second-order logic and cannot be expressed in SQL. Programmers would have to generate
code strings, which is brittle or manipulate abstract syntax trees, which is often an over-kill.
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Consider a scenario where the programmer first creates an aggregation, then wishes
to add a filter before the aggregation. Take a table of flight delay data (delay, origin,
time, etc.). To aggregate based on origin in SQL, the programmer can write, CREATE
VIEW originAgg SELECT origin, COUNT(*) FROM flights GROUP BY origin. After see-
ing the result, they plan to see the same aggregation but filter by flights thats have delays
greater than an hour. However, there is no choice but to copy the query and add a where
clause – SELECT origin, COUNT(*) FROM flights WHERE delay > 60 GROUP BY origin.
There is no way to reuse the view originAgg because the delay column is no longer
accessible. Although the copy-paste then edit seems fine, the problem becomes more
pronounced with longer queries. With dataframes, the programmer can extract the oper-
ations originAgg=lambda(df):df.groupby([‘origin’]).count(), and pass the filtered
dataframe to the originAgg function.

3.3 Debugging
The function chaining style of dataframes forces the programmer to flatten out the operations,
and the results from a function can be inspected. However, this is not the case for SQL.
For instance, a programmer may write a query using both HAVING (with GROUP BY) and
WHERE clauses. When the result is unexpected, and the programmer wishes to inspect the
intermediate result, they would have to write new queries that capture the logic individually.
With dataframes, the programmer may already have the intermediate variables, and if not,
they can just break the chain and inspect the intermediate values without writing new code.

3.4 Performance
There are many different sequences of operators – a physical plan in databases – that evaluate
to the same values. Some of the sequences are slower and take more resources than others.
With the exception of Spark, dataframe programmers currently have to figure out what is
better themselves. To demonstrate, we borrow an example given by the pandas creator Wes
McKinney: to sum the values of column c2 from rows whose c1 column is negative [23].
With pandas, there are at least two ways:

1. Find the rows, then sum – df[df.c1 < 0].c2.sum(). When these functions are invoked,
pandas creates a temporary dataframe df[df.c1 < 0], then sums c2 column of that
temporary object. The temporary dataframe can be wasteful if df contains a lot of
columns.

2. Trim the dataframe down to just the c2 column, using the index from applying the
predicate on c1, then sum – df.c2 [df.c1 < 0].sum(). Since the df is first projected,
it uses less memory.

In SQL, the solution is SELECT SUM(c2) FROM df WHERE c1 < 0, and the database will
decide what sequence of operators to execute by using a query optimizer, which finds a better
execution plan regardless of the specification.

This issue is not just limited to the order of operators; the choice of functions can also
lead to performance issues. For example, the apply function in pandas prevents vectorized
processing, and there are often alternatives, such as using a UDF to process the whole column
instead of a row at a time, or sometimes to use the iterrows function to loop, leading to
extensive discussions among users of dataframes [9].

Is the situation unredeemable? Not quite, when evaluated lazily, dataframe operators can
still benefit from a subset of query optimization techniques available to SQL [13]. Furthermore,
performance is not the only issue programmers care about. Sometimes it is confusing when a
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query is slow, and we know that query optimizers don’t always work very well [22]. It might
be a better programming experience to be able to build a mental model and have a more
predictable performance that the user can improve on. Perhaps a good programming system
is not one that executes faster on average but one that respects the programmer’s agency.

3.5 Code Comprehension and API Recall
Some programmers dislike the syntax of SQL, where the ALL CAPS syntax can seem ugly.
This is partially due to historical reasons since syntax highlighting wasn’t available when SQL
was first created (although even today SQL is often run in strings and terminals, keeping the
need for the caps).

Caps aside, we would argue, however, that SQL is actually more role-expressive than
dataframe APIs. Role-expressiveness captures how easy it is for a programmer to parse code
into mental structures [18]. Because SQL blocks are fairly constrained, reading the operations
is straightforward, at least for simple queries, but this is not the case for dataframes. Consider
the many ways of expressing SELECT * FROM df WHERE a > 3 in pandas, a non-exhaustive
list below, with different evaluation below. The syntax differences are partially caused by
the use of syntax shortcuts, the use of defaults in function calls, and pandas exposing lower
level executions.

•df[df.a>3] •df[df["a"]>3]
•df.loc[df.a>3] •df.loc[df["a"]>3]
•df[lambda foo:foo.a > 3] •df.loc[lambda df: df["a"] > 3]
•df.loc[df.apply(lambda r: r["a"] > 3, axis=1)]
•pd.DataFrame([r for r in df.itertuples() if r.a > 0])
Having many different ways to express the same logic makes it hard for developers to

understand programs of heterogeneous styles. Besides having varying ways to express the
same simple logic, the sheer number of APIs (> 200) that are not only overloaded but also
have default parameters that may change version to version, making it hard to remember
the APIs. Developers may end up looking up documentation or search StackOverflow and
break the flow. The question for the future is whether a library should optimize for short
solutions to a large number of problems or optimize for a shorter list of APIs.

4 Conclusion and Future Work

So is a dataframe just a table? Our answer is that in the wild, dataframes are used differently
from tables and carry many additional useful functionalities at the cost of clarity and
performance. More PL-HCI work is needed to create language affordances that could help
combine the best of both worlds for programmers and language creators. In particular,
we had not time in this paper to investigate the design choices made by other languages
that integrate relational operators into a host language, such as LINQ [24], FlumeJava [16],
Eve [2], and Object Relation Managers. The creators of these languages have also made
various discoveries and claims about the desired properties of the language that might yield
insight into what the “Pareto-efficient” trade-off curve is between factors.

In the process of investigation, we have opened up new questions. Some are human
factor questions, like whether it is inherent that programmers prefer lists over sets. Others
are philosophical questions, like whether language designers should meet users where they
are. We hope these questions can help inspire more discussions and analysis of a more
HCI-oriented study of query languages, to help guide language and library creators with
more material to discuss, less confusion, and better principles.
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4.1 A Cliffhanger

Before we end, we must share another teaser controversy. A well-followed database
researcher, Kelly Sommers, tweeted, Why GraphQL when we could have used SQL? [28].
Sommers continues to argue that GraphQL exists because JavaScript developers finally
realized HTTP API’s were too limiting so they reinvented SQL over JSON because JavaScript
developers are obsessed with reinventing everything into JSON API’s. The tweet has received
over 2K likes. The creators of GraphQL, experienced engineers at Facebook, responded that
SQL did not serve them well and that GraphQL is the result of listening and empathizing
with the needs of the product developers [26]. Now GraphQL has almost 15K GitHub stars
and a large and active developer community. What should we make of it?
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Abstract
Artificial intelligence (AI) such as deep learning has achieved significant success in a variety of
application domains. Several visualization techniques have been proposed for understanding the
overall behavior of the neural network defined by deep learning code. However, they show visualization
only after the code or network definition is written and it remains complicated and unfriendly
for newbies to build deep neural network models on a code editor. In this paper, to help user
better understand the behavior of networks, we augment a code editor with instant and editable
visualization of network model, inspired by live programming which provides continuous feedback to
the programmer.
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1 Introduction

In recent years, deep neural network (DNN) model has garnered tremendous success in various
application domains such as Image Processing (IP) and Natural Language Processing (NLP)
research. From well-structured models, effective features can automatically be extracted
without selecting manual-designed filters. Thus, deep learning has become a competitive
solution for most traditional application domains, as well as some new areas where it shows
the possibility such as computer graphics and robotics researches.

Deep learning programming, however, distinguish itself from conventional programming
with some unique features. That is, deep learning algorithm is not to provide solutions to
any specific applications, but to provide a way to extract features from data then optimize
the parameters in a huge matrix with the features and the pre-defined constraints, and
finally makes the optimized matrix a solution towards the application. Thus, rather than
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determining solution details for specific problem by programmer in conventional programming,
deep learning programming is to design a general way to search for solutions in various
training data.

Many DNN framework libraries [1, 3, 6, 7] provide full-stack deep learning toolbox from
preliminary layer definition, GPU-accelerated training optimizer to evaluation function. And
nearly all the DNN frameworks follow the same coding style: (i) users use a separated file
or block of code to define the network, then (ii) imports the network as an instance in the
training control module. The problem is, the training process is resource-consuming. Before
the actual training, the user needs to design the DNN architecture, load and pre-process
dataset, give the hyper-parameters and determine how data goes through the system. If the
shape of data in computing doesn’t match the defined layer’s parameters, the training process
will fail to start. However, in current practice, if the user don’t want to debug by running
the training script, the only way to check the computed data is in a desired shape or not,
is to validate data shapes on scratch paper line by line. Hence instant visualization during
programming will be a more timely feedback for the programmer. Some DNN frameworks
provide visualization of network structure as a node-link diagram. But they show such
visualization only after the code or network definition is written, or even after the training
phase is completed. Such visualization is not very helpful for newbies to build deep networks
on a code editor.

Therefore, we present a novel web-based live programming environment specialized for
neural network programming by integrating an instant and editable visualization into a
standard code editor. The system is aware of which part of codes belongs to the layer
definition and which part belongs to the data flow control. For the layer definition codes,
when the user types in one line that contains the configuration of a neural network layer, the
system understands the context and instantly create the layer’s visualization at the visual
panel; And for the data flow control part, we provide a bidirectional mapping between codes
and visualization: we visualize the defined layers as candidates, and enable the user to build
codes by dragging & dropping their visualization, or vice versa. This paper reports our
design principles and some implementation details, as well as work in progress.

2 Related Work

Neural Network Visualization. Chainer [1] and Keras [3] has built-in visualization functions.
However their display are too difficult to grasp the true important information of a neural net.
Wongsuphasawat et al. [14] proposed a plugin in TensorBoard to visualize neural nets with
data flow direction, but also particularly problematic that programmers may be confused
in choosing the best view to show the important information. While several open source
tools [2, 5, 4, 8] to visualize the networks are designed, they are focus on the stage after
the user finish editing their source code, or even after the model’s training. We therefore
visualize networks at coding time, and propose the first tool to enable user programming
deep learning code with living visual feedback.

Live Programming Environment. Live programming is a technique to provide the program-
mers with continuous feedback about the current program for understanding the behavior
of the under-development program. One approach is to use explicit representations such as
images, sounds or video [10, 11, 12] instead of textual information such as stack traces. The
other approach is to directly display the value of program variables. For example, Python
Tutor [9] divides the execution process into several steps of the program, and continues
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Figure 1 The screenshot of our system’s first prototype. The interface is made up of: (1) code
editor, (2) grid-like candidate region where layers defined in __init__ are listed here, (3) data
cubes are visualized in the form of a directional graph, whose direction is given in __call__.

executing the under-development program. Kanon [13] enables to synchronously analyze
data structure (e.g., linked list) without actually executing the program and update the data
nodes graph. Our work builds on the live programming approach to develop deep learning
programs while considering the characteristics of the current program.

3 Design Overview

3.1 Interface
Our interface (See Figure 1) consists of (1) the standard code editor to write DNN programs
(the left-hand side) and (2) the visualization panel to display layer/dataflow (the right-hand
side).

3.2 Design Principles
Based on the background of deep learning visualization tools, we design the system with the
principles below.

First, and also the key idea to support our design is, the visualization should be
presented during coding. Our motivation is to help user understand the network structure
and simplify the debugging of deep learning programming. Naturally, the “live” programming
manner that merges “coding” and “test” into a single phase makes the program developing a
shorter loop.

Secondly, besides the code editor, a graphical editor can be more helpful to a
newbie. Our target user is not a deep learning expert - that means, he/she might be a
newbie in programming, or a programmer without deep learning programming experience.
The utilization of graphical editor instruct the user, especially the newbie user, to build a
neural network in a more intuitive way, just like drawing the network structure on scratch
paper.
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Finally, to visualize the network in a most common, but interactive way. Re-
ferring to the visualizations of deep neural networks from published papers, we think box-like
visualization represents data’s shape best. Layers and data are the two main factors in neural
networks visualization, but if treated the same, the view will seem in a clutter. We believe
that the suitable practice to visualize the network, is to have the two factors separated
somehow.

3.3 Assumptions
To better locate our system’s feature and the usage scenarios, we make assumptions as below:

The DNN program is written in Chainer framework. In Chainer, the standard style to
define a neural network is the code snippets in Figure 1. The neural network is defined
using a Class that extends from chainer.Chain. The class, consists of two important
functions: __init__ gives all the layers’ type and shape in the net, while __call__
determines the order of layers.
The user will define __init__ first, then use the defined layers to further give the order
of layers that the input data will go through in __call__.
The user will create a instance of the DNN he/she defined at the end of the program.
This is for the convenience of syntax check.

4 Implementation

The whole system can be decomposed into frontend and backend. The frontend collects
user’s inputs in code and graphical editors, and the backend acts as a code parser.

4.1 Abstract Syntax Tree Parser in Backend
We set up a Python parser to process the code submitted from browser. The backend
program checks the syntax of code, then parses it into abstract syntax tree. Since what we
are interested in is the defined layers and data flow information, the program will distil the
ast into a much smaller object that only contains the necessary information for user. Finally
the object is returned to the browser for further processes.

4.2 Collaborated Code Editor and Visual Panel in Frontend
The proposed system can bidirectionally update the code editor and the visual panel, so this
section describes the behaviors in each direction separately.

1) Code ⇒ Visualization. After the browser receives the extracted net information from
the backend, it snapshots this frame and visualizes it. In the case where only __init__
is given, layers will be visualized in (2) of our interface as cube models whose length and
width represents the kernel size. Since connections are not defined, all cubes are individually
packaged in a cell and listed in a grid-like structure. If __call__ is also given by the users,
layers picked in __call__ will become transparent and its name will show on the lines
between data cubes in (3) of the interface.

2) Visualization ⇒ Code. (In progress) We consider that to define a new layer, coding is
a much more efficient means rather than graphical editing, thus we disable the synthesis of
layer definition from visualization operation. The more encouraged way to edit codes from
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the visual panel in our system is, with the defined layers cubes and the input data node,
the user drag the layer, and drop at the data he/she want to process using this layer, in
this way, the new line of codes in __call__ as well as the last data in the dataflow will be
synthesized one by one. For deletion, the mapping between code and visualization will still
be bidirectional.

5 Limitation and Future Work

The current system is still a prototype, so we only support Chainer and the most common
layers at this stage. Support for more frameworks and layers will make our system fit more
situations. Besides, we consider adding an argument hinter to simplify layer argument
configuration. There also remains space to make the code editor and the visual panel
collaborate better, like more simultaneous visual feedback. In addition, evaluation such as
user study will be performed to validate the effectiveness of the proposed system.

References
1 Chainer. https://chainer.org/. Accessed: 2019-06-05.
2 Hiddenlayer. https://github.com/waleedka/hiddenlayer/. Accessed: 2019-06-05.
3 Keras. http://keras.io/. Accessed: 2019-06-05.
4 Nn-svg: Lenet- and alexnet-style diagrams. http://alexlenail.me/NN-SVG/LeNet.html.

Accessed: 2019-06-05.
5 Plotneuralnet. https://github.com/HarisIqbal88/PlotNeuralNet. Accessed: 2019-06-05.
6 Pytorch. https://pytorch.org/. Accessed: 2019-06-05.
7 Tensorflow. https://www.tensorflow.org/. Accessed: 2019-06-05.
8 Tensorspace.js. https://tensorspace.org/. Accessed: 2019-06-05.
9 Philip J Guo. Online python tutor: Embeddable web-based program visualization for cs

education. In Proceedings of the 2013 ACM SIGCSE, pages 579–584. ACM, 2013.
10 Jun Kato. Visionsketch: Gesture-based language for end-user computer vision programming.

In Proceedings of the 2013 ACM SIGPLAN, 2013.
11 Jun Kato, Sean McDirmid, and Xiang Cao. Dejavu: Integrated support for developing

interactive camera-based programs. In Proceedings of the 2012 ACM UIST, pages 189–196.
ACM, 2012.

12 Dan Maynes-Aminzade, Terry Winograd, and Takeo Igarashi. Eyepatch: prototyping camera-
based interaction through examples. In Proceedings of the 2007 ACM UIST, pages 33–42.
ACM, 2007.

13 Akio Oka, Hidehiko Masuhara, and Tomoyuki Aotani. Live, synchronized, and mental map
preserving visualization for data structure programming. In Proceedings of the 2018 ACM
SIGPLAN, pages 72–87. ACM, 2018.

14 Kanit Wongsuphasawat, Daniel Smilkov, James Wexler, Jimbo Wilson, Dandelion Mane, Doug
Fritz, Dilip Krishnan, Fernanda B Viégas, and Martin Wattenberg. Visualizing dataflow graphs
of deep learning models in tensorflow. IEEE Transactions on Visualization and Computer
Graphics, 24(1):1–12, 2017.

PLATEAU 2019

https://chainer.org/
https://github.com/waleedka/hiddenlayer/
http://keras.io/
http://alexlenail.me/NN-SVG/LeNet.html
https://github.com/HarisIqbal88/PlotNeuralNet
https://pytorch.org/
https://www.tensorflow.org/
https://tensorspace.org/



	p000-Frontmatter
	Preface

	p001-Hao
	Introduction
	Related work
	HCI for programmers
	Related work in programming languages
	Related work in natural languages

	Open questions and potential approaches
	Conclusion

	p001-ZZZ-Hao
	p002-Kambhatla
	Introduction
	Related Work
	Study Design
	Initial Results
	Discussion
	Threats to Validity
	Conclusion and Future Work

	p002-ZZZ-Kambhatla
	p003-Lubin
	Introduction
	The Deuce+ Workflow
	Designing and Implementing Deuce+
	Type-Directed Program Transformations
	Syntax Constraints
	A Program Transformation Language

	Further Usability Challenges for Deuce+

	p004-Cohen
	Introduction
	Tutorial Design
	Study Design
	Related Work
	Conclusion

	p005-Crichton
	A Story of Our Time
	A Story of Another Time
	The Past and Present of Program Synthesis
	A Vision for Human-Centric Program Synthesis

	p005-ZZZ-Crichton
	p006-Wu
	Introduction
	Data Structures and Operations
	Set v. Lists
	Matrix vs. Table
	Mixing Matrix and Tables, the Good Part
	Mixing, the Bad Parts
	Joins


	Programming Workflows
	Accessing Functions
	Code Reuse and Composition
	Debugging
	Performance
	Code Comprehension and API Recall

	Conclusion and Future Work
	A Cliffhanger


	p007-Zhao
	Introduction
	Related Work
	Design Overview
	Interface
	Design Principles
	Assumptions

	Implementation
	Abstract Syntax Tree Parser in Backend
	Collaborated Code Editor and Visual Panel in Frontend

	Limitation and Future Work

	p007-ZZZ-Zhao

