
Using Microservices to Customize Multi-Tenant
SaaS: From Intrusive to Non-Intrusive
Hui Song
SINTEF, Oslo, Norway
hui.song@sintef.no

Phu H. Nguyen1

SINTEF, Oslo, Norway
phu.nguyen@sintef.no

Franck Chauvel
SINTEF, Oslo, Norway
franck.chauvel@sintef.no

Abstract
Customization is a widely adopted practice on enterprise software applications such as Enterprise
resource planning (ERP) or Customer relation management (CRM). Software vendors deploy their
enterprise software product on the premises of a customer, which is then often customized for
different specific needs of the customer. When enterprise applications are moving to the cloud as
mutli-tenant Software-as-a-Service (SaaS), the traditional way of on-premises customization faces
new challenges because a customer no longer has an exclusive control to the application. To empower
businesses with specific requirements on top of the shared standard SaaS, vendors need a novel
approach to support the customization on the multi-tenant SaaS. In this paper, we summarize our
two approaches for customizing multi-tenant SaaS using microservices: intrusive and non-intrusive.
The paper clarifies the key concepts related to the problem of multi-tenant customization, and
describes a design with a reference architecture and high-level principles. We also discuss the key
technical challenges and the feasible solutions to implement this architecture. Our microservice-based
customization solution is promising to meet the general customization requirements, and achieves a
balance between isolation, assimilation and economy of scale.

2012 ACM Subject Classification Software and its engineering → Software as a service orchestration
systems; Software and its engineering → Cloud computing; Applied computing → Service-oriented
architectures

Keywords and phrases Customization, Software-as-a-Service (SaaS), Microservices, Multi-tenancy,
Cloud, Reference Architecture

Digital Object Identifier 10.4230/OASIcs.Microservices.2017-2019.1

Funding This work is funded by the Research Council of Norway under the grant agreement number
256594 (the Cirrus project).

Acknowledgements We want to thank our colleagues at Supper Office and Visma for the fruitful
collaboration in the Cirrus project.

1 Introduction

Most companies rely on enterprise software applications to drive their daily business, such
as Enterprise resource planning (ERP) or Customer relation management (CRM). Because
every company is unique, a standard product application cannot fit all the requirements
of any company, and therefore often needs to be customized for individual customers. In

1 Corresponding author

© Hui Song, Phu H. Nguyen, and Franck Chauvel;
licensed under Creative Commons License CC-BY

Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices
2017/2019).
Editors: Luís Cruz-Filipe, Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher, and
Sabine Sachweh; Article No. 1; pp. 1:1–1:18

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hui.song@sintef.no
https://orcid.org/0000-0003-1773-8581
mailto:phu.nguyen@sintef.no
mailto:franck.chauvel@sintef.no
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


1:2 Using Microservices to Customize Multi-Tenant SaaS

practice, a customer can easily spend ten times the cost on customization than the licence
they bought for the original application [3]. Software customization is traditionally done
by re-defining work flows, developing add-in applications, or even directly modifying the
source code of the standard product application. In this paper, we differentiate customization
from configuration: The former involves software development work whereas the latter only
involves changing some values of the predefined parameters. Advanced customers often
require features that are not predictable for vendors, making customization inevitable, since
configuration is limited within the features that are already implemented by the vendors.

Following the trend of cloud computing, enterprise software vendors are moving from
single-tenant on-premises applications to multi-tenant (Cloud-based) Software as a Service
(SaaS) [6]. Customer companies no longer buy a license from the vendor and install it in
their own premises. Instead, they subscribe to an online service, which is also used by other
customers, known as tenants of the service. The SaaS model brings new challenges to the
software vendors with regard to enabling customization. It is not possible for any tenant to
directly edit the source code of the same product service shared by other tenants. Software
vendors must enhance the SaaS model with the ability to enable tenant-specific customization
in the multi-tenant context. Under such setup, customization on multi-tenant SaaS must
meet three basic requirements. These requirements have been defined together with the two
software vendors who are the industrial partners in the Cirrus project.

Isolation: The customization for one tenant must not affect the other tenants. Tenant
isolation, especially in terms of security is of paramount importance.
Assimilation: Customization should not harm the performance and user experience of
the SaaS. In other words, the “look and feel” of the SaaS with customization should not
change compared to the original SaaS.
Economy of scale: With more customers subscribe to customize the SaaS, the average
cost per customer should decrease. The SaaS business model allows to make full use of
the economy of scale, as multiple tenants (customers) share the same application and
database instance [1]. Enabling customization for multi-tenant SaaS should still ensure
the economy of scale brought by the SaaS business model.

The state of the art and practice on enabling customization for multi-tenant SaaS may
still be at an early stage discussed as follows. There are enterprise software vendors that
move their products to SaaS without supporting the same level of customization capabilities
as their customers used to have on their own premises. As a result, a significant number
of their customers are not following to the cloud [7]. Without customization capabilities,
the customers lost an important weapon for tailoring the services according to their real
requirements, and for continuous business innovation. Some vendors choose to support
either lightweight, in-product customization by providing customers with scripting or work
flow languages [24]. In this way, the customization capability is stronger than parameter
configuration but still limited by the languages. It is also not ideal in terms of isolation,
as the scripts are running inside the main product. Other vendors, especially the big ones
such as Salesforce, choose a heavyweight direction, transforming themselves from a product
into a development platform for customers to implement their own applications [21]. In this
way, the customization in terms of standalone applications does not meet the assimilation
requirements, as the external applications will break the consistent user experience of the
product service, and also drag down the response time. More importantly, this solution
requires huge investment from vendors and strong expertise from customization developers.

Using microservices is a promising direction to customize multi-tenant SaaS because
microservices architectures offer several benefits. First, microservices for customization
purposes can be packaged and deployed in isolation from the main product, which is an
important requirement for multi-tenant context. Moreover, independent development and



H. Song, P.H. Nguyen, and F. Chauvel 1:3

deployment of microservices ease the adoption of continuous integration and delivery, and
reduce, in turn, the time to market for each service. Independence also allows engineers to
choose the technology that best suits one and only one service, while other services may
use different programming languages, database, etc. Each service can also be operated
independently, including upgrades, scaling, etc. In this paper, we discuss our two approaches
of using microservices to enable customization for multi-tenant SaaS: intrusive and non-
intrusive. The intrusive approach [22, 2] prescribes that the main body of customization code
runs in a separate microservice, isolated from the main service (of the main product), whilst
specific parts of the customization code are sent back to the main product and dynamically
compiled and executed within the execution context of the main service. While intrusive
customization using microservices is technically sound, its practical adoption by industry
may be hindered by the intrusive way of customization code, which would be developed by
“third-parties” that cannot be trusted by the software vendor to be dynamically compiled
and executed within the execution context of the main service. Thus, we have evolved
our approach to become non-intrusive [14, 15]. The non-intrusive approach avoids using
intrusive call-back code for customization and rather orchestrates customization using the
API Gateway pattern [19]. Via API Gateway(s), the APIs of the main product and the APIs
of the microservices implementing customization are exposed for tenant-specific authorized
access. We have demonstrated the two proposed approaches by two experimental use cases
of transforming two Microsoft’s reference .Net Core web applications into customizable SaaS:
MusicStore [12] and eShopOnContainers [11].

Based on these two approaches, we generalize our approaches by providing a reference
architecture of customizing multi-tenant SaaS by microservices, together with the general
principles to achieve the requirements of isolation, assimilation and economy of scale. Whether
intrusive or non-intrusive, our work has provided the designs and experiments towards novel,
cloud-native architectures for customizing multi-tenant SaaS by tenant-specific microservices.
A customization for a particular tenant is running as a standalone service and dynamically
registered to the product service for this tenant. At runtime, the customization microservices
are triggered by the product service when the latter reaches a registered extension point.
They communicate with each other via REST APIs. The customization microservices are
hosted by the same vendor cloud as the product service.

This paper is a report based on the investigation, design and experiments under the
collaboration among a research institute and two software vendors. The objective of this
paper is to provide: 1) a sample solution in the direction of using microservices in a high
abstraction level, aiming at inspiring other vendors having the same customization problem
for multi-tenant SaaS; and 2) a reference for researchers interested in the problem of multi-
tenant customization, with a clarification of relevant concepts and research challenges. The
contributions of this paper can be summarized as follows.

We clarify the problem of muti-tenant SaaS customization with a conceptual architecture,
which defines the high-level concepts involved in the problem and the relationships
between these concepts.
We provide a reference architecture of customizing multi-tenant SaaS by microservices,
together with the general principles to achieve the requirements of isolation, assimilation
and economy of scale.
We identify a set of technical challenges towards implementing this reference architecture,
and propose technical solutions towards these challenges.
The remainder of this paper is organized as follows: In Section 2, we give a motivational

example to demonstrate the challenges of deep customization. Then, Section 3 provides a
conceptual architecture of multi-tenant SaaS. Sections 4 and 5 describe our intrusive and non-
intrusive approaches for enabling the customization of multi-tenant SaaS using microservices.

Microservices 2017/2019



1:4 Using Microservices to Customize Multi-Tenant SaaS

We generalize our solutions and provide a reference architecture for customization using
microservices in Section 6. After that, Section 7 discusses the technical details in the proposed
reference architecture. Section 8 presents the related work. Finally, we give our conclusions
and future work in Section 9.

2 A Motivational Example

Let us consider MuTeShop.com (Multi-Tenant Shops) as a made-up example that captures
the requirement of customization. MuTeShop.com offers web-based online shopping SaaS:
Customers can quickly set up their own shopping website. From the MuTeShop.com software
vendor’s point of view, each customer is a tenant with a separate website for their end-users
to browse and buy goods.

MuTeShop.com has to be customizable. For example, one of their key customer/tenant,
e.g., Music.MuTeShop.com, requires that their shopping cart includes a charity donation
option. Whenever an end-user adds an album into her shopping cart, she can donate
some money to a designated charity, which eventually adds-up on the total checkout price.
Music.MuTeShop.com hires a third-party consultant to implement this customization, which
involves the following changes to the standard MuTeShop.com product. They need to change:
(i) the database storage to be able to record the amount of donation for each item in the
shopping cart, (ii) the business logic to account for these donations, and (iii) finally the user
interface for end-users to choose/see how much they donate.

As a multi-tenant SaaS, MuTeShop.com cannot allow the consultant to modify their
product source code to implement such customization, because the same database schema
and the price accounting source code are shared by multiple tenants. Modifying the code for
one tenant would interfere with the service to other tenants. Instead, the product service
of MuTeShop.com should only provide the standard features that are common for all the
tenants. The customization required specifically by Music.MuTeShop.com should be running
in an isolated way, outside of the product service. When registered to the product service,
this customization should modify the behaviour of the product service as stated above if and
only if the user requests are bound to this tenant.

The example illustrates the problem that many SaaS vendors face: Their services are
successful for some customers only if they can do deep customization. But the vendor cannot
allow the same way of deep customization as for on-premises products, because they have to
keep the service multi-tenant. In summary, they need a customization solution that achieves
both isolation and assimilation.

3 A Conceptual Model of Customization for Multi-Tenant SaaS

Figure 1 summarizes the main concepts related to the customization of multi-tenant SaaS.
There are three different roles in the ecosystem of multi-tenant SaaS customization, i.e., the
Vendors who provide the main SaaS, the Customers who subscribe to the service, and the
Consultants who are hired by the customers to customize the SaaS. In practice, the three roles
are not necessarily taken by different companies, e.g., a customer company may have their
own IT team and developers that are competent for doing customization. A vendor company
may also have its own consult team who sells their own service and does customization under
the customer’s request.

The Product is the software produced by the vendor. It may have multiple versions.
A Product Service is a running instance of a specific product version, hosted by a Product
Environment, together with the Product Data. A product environment is a specific Environment,



H. Song, P.H. Nguyen, and F. Chauvel 1:5

User Tenant

Product

Product 
Version

Product 
Environment

Identity 
Management

Environment

Tenant 
management

Customization 
Environment

Customization 
Service

Customization 
App

Customization 
App version

Product 
Service

Customization 
Data

0..*

1..*

1..1

0..*

1..* 1..1

0..*

1..1

1..1

1..1

1..1
0..*

1..1

1..1

1..1

0..*

0..* 1..1

1..* 1..1
1..1

1..1

1..1
0..1

App StoreResource

0..*
1..1

Library

0..*
1..*0..*

hosted by

Product Data
1..1

1..1

Customer
1..10..*

Consultant

Vendor

developers

operates

Figure 1 A conceptual model of customization for multi-tenant SaaS.

which is a self-contained computation unit with software, Libraries and Resources, such as
a Docker container or a virtual machine. A product service typically runs in an exclusive
environment, meaning that one environment is for one and only one instance. An environment
may be hosted by another environment, e.g., a Docker container may be hosted by a virtual
machine, and the latter is hosted by a cloud infrastructure.

One product service serves multiple Tenants, and at the same time, the vendor manages
the product environment. A vendor usually operates multiple product services (and therefore
multiple product environments) at the same time: They may need to maintain instances
for several versions of the product for their customers. For the same version, they usually
run one main instance for the production usage, one staging instance for user testing, and
one development instance for testing and debugging. Even within the product usage, there
may need several product instances due to load capacity or region constraints. Under such
setup, a customer may have the subscription of multiple product instances, each of which
is subscribed via a different tenant. In other words, every tenant belongs to one and only
one product instance. This simplifies the billing and management for the vendors. Each
tenant covers a number of Users, which are the persons who have the right to access the
product instance via this tenant. They are typically employees of the customer behind this
tenant, but a tenant may also include users from the consult company who help the customer
through training, maintenance or customization.

A Customization App is software code that implements customization to the product. It
may have several versions. A Customization Service is a running instance of one version of
the Customization App. A customization service is hosted by a Customization Environment.
Similar to a product environment, a customization environment also provides necessary
resources, libraries and database to run the customization service. Database is optional as
some lightweight customization services can be stateless. A customization service is registered
to a tenant, and it only changes the behaviour of the product for this particular tenant.

4 Intrusive Customization Using Microservices

In our previous work, we have experimented with an approach to using (semi-)intrusive
microservices for the customization of multi-tenant SaaS [22, 2]. We allow the tenants to
replace the fine-grained structures, i.e., any part of user interface (UI), business logic (BL),
or database (DB) in the original product by external microservices. The main customization

Microservices 2017/2019



1:6 Using Microservices to Customize Multi-Tenant SaaS

Figure 2 Intrusive customization code.

logic is running in those microservices, as parallel stacks outside of the main product. However,
when a customization logic needs to access the product data or to manipulate the state of the
product, it sends the so-called “call-back code” to the product, and the latter will interpret
the call-back code dynamically during runtime. Since the call-back code is running under the
same context as the replaced main product code, in theory it has the equivalent power as the
main product code, which means that it can access any data and change any the states that
are reachable by the product code. Therefore, this achieves the deep customization because
what can be customized is not limited by the APIs of the main product. This way does not
require the main product to provide any dedicated APIs for customization purpose.

A proof-of-concept implementation on multi-tenant customization based on intrusive
microservices was conducted to an open source online shopping product, the Microsoft
MusicStore [12]. The Microsoft MusicStore can be considered as an implementation of the
MuTeShop.com example in Section 2. We first transformed it into a customizable mutli-
tenant SaaS (Section 4.1). Then, we tested its customization capability by programming
a simple microservice realizing the customization scenario as described in Section 2. The
following proof-of-concept implementation described in Section 4.2 demonstrates the usage
of synchronous triggering, intrusive invocation, separate NoSQL database, and Docker-based
environments. The experiment in Section 4.2 shows that, within a reasonable cost, it is
possible to enable microservice-based customization on originally un-customizable product.

4.1 Adapting the SaaS to be Customizable
We adapted the source code of MusicStore to enable microservice-based customization by
adding a generic library and perform a code rewriting. A simple tenant manager is used to
register the mapping from original methods of the main code to customization code. Figure
2 shows how the customization code interacts with the main code flow of the main product.
A generic interceptor drives the synchronous triggering between the main product and the
customization code. The interceptor sends the current execution context from the main
product to the corresponding customization microservice for executing customization logic.
After executing customization logic, the customization microservice sends callback code
to the main product to apply the customization and even request for other context from
the main product if follow-up customization logic is necessary. A callback code interpreter
executes the intrusive callback code on the local context to apply the customization in the
main code.

Before building and deploying the MusicStore application as a service, we performed an
automatic code rewriting to enable the triggering and callback code mechanisms. In particular,
we add three pieces of code in the beginning of each method. Listing 1 below shows an



H. Song, P.H. Nguyen, and F. Chauvel 1:7

example of such added code for the method AddToCart in the class ShoppingCartController.
The first initializes a local context as a Dictionary object and fills it with the method
parameters. This context dictionary will be used later on by the callback code interpreter.
The second invokes the generic interceptor with the context and the method name. The
third checks if a return value is available to decide whether to skip the original method body
and return the customization results.

Listing 1 Triggering customization.
// first piece of code
var context = new Dictionary <string , object >()
{

["id"] = id ,
["cart"] = cart ,
["this"] = this

};
// second piece of code
ReturnValue rv = Interceptor . Intercept (

Controllers . TenantController . currentUser ,
" MusicStore . Controllers . ShoppingCartController . AddToCart ",
false ,
context

);
// third piece of code
if(rv != null)
{

return rv.Value;
}

According to our implementation practice, very light effort is required to realize the deep
customization support on a legacy software application. The effort is focused on generic
mechanisms, without specific consideration of the actual customization requirements or
features.

4.2 Sample Customization
On the customizable MusicStore, we performed three customization use cases.

Donation: as described in Section 2, we need to add a new page for end-users to choose
the donation, a new column in the shopping cart table to show the donations and a new
business logic computing total price for the shopping cart.
Visit Counting: We want to record how many times each album has been visited. The
feature needs to be triggered every time an album detail view is loaded.
Real Cover: We want to use the album title to search the cover picture from Bing Image2
and replace the original place-holder picture. A pop-up comment shows the picture source
when the mouse cursor is hovered on the picture.

We design these use cases deliberately to achieve a good coverage of the general require-
ments of customization on Web-based enterprise systems. In the user interface level, they
cover the changes within a web page, i.e., adding, removing or changing the position of
HTML controls (UI components such as text, button, list, image, etc.), and adding a new

2 https://www.bing.com/images/

Microservices 2017/2019

https://www.bing.com/images/


1:8 Using Microservices to Customize Multi-Tenant SaaS

page. The third use case also changed the browser-executed logics. In the business logic level,
they cover the need to add or override server-side logics, override the action to particular
events, change the bindings between UI controls and the data, and execute the services that
are provided by a third party. In the database level, they require new tables, as well as
new fields to an existing table. These requirements are summarized based on the actual
customization cases on the on-premises products provided by the two companies.

We implemented the three customization scenarios in TypeScript, using the Node.js
HTTP server to host the customization microservice [22, 2]. The first two scenarios request
data storage, and we used MongoDB as the customer database. Node.js and MongoDB are
running in two Docker containers, hosted on the same node as the product service. The
entire customization code includes 384 lines of code in five TypeScript files (one file for each
scenario, plus two common files to configure and launch the HTTP server) and 175 lines of
new code in four Razor HTML templates (of which, two templates are new and the other
two are copy-and-pasted from MusicStore, with 176 lines of code that are not changed).

The effect of the customized MusicStore can be seen by a screen-shot video3. In the video,
we are using a MusicStore service through a fictional tenant. We first see the standard way to
buy a music album through the MusicStore, i.e., browsing the album, add it to the shopping
cart, and check the overview. After that, we deploy the customization code as a microservice
and registered it into the MusicStore tenant manager. The effect of the customization is
instant: When we repeat the process, we first see a new cover image of the album. When we
add the album to shopping cart, we are led to a new page to select the donation amount,
and shown a shopping cart overview with donations and a different total price. Finally, we
open a new page to check the statistics about the album visits. At the end of the video, we
log off the tenant, and the service immediately goes back to the standard behaviour.

The video also shows some non-functional features of the customization. First, the
customization code is deployed and registered to the MusicStore at runtime, without rebooting
the product service, and affects only the particular tenant. Second, the customized behaviour
is seamlessly integrated into the product service: The new pages and the modified ones all
keep the same UI style as the original MusicStore. From the end-user’s perspective, it is not
difficult to notice that the application has been customized.

The customization microservices have reasonable resource consumption, and is able to
scale. A further examination shows that a customized page takes in average 100 millisecond
longer to load, comparing to the original page. However, considering that the average page
loading time in MusicStore is over two seconds, the slow down is tolerable. The footprint
for a customization microservice under this scenario and the technical stack (i.e., Node.js,
MongoDB, Docker) is minimal. The two Docker containers used 20 and 50 megabytes of
memory at runtime.

5 Non-Intrusive Customization Using Microservices

Despite the ultimate assimilation, which means that the tenants are able to do anything for
customization, just as if they are developers of the main product - our intrusive microservice
approach for customization was finally not adopted by the software vendors who commissioned
this research. The main concern is security. Since the partners are virtually capable of doing
everything to the main product during run-time, it requires strict inspection by the vendors
on the customization code, which is not pragmatic at the moment. As a result, we have
turned to non-intrusive way for microservices-based customization, which should allow the
vendors to keep the customization code of tenants under control [14, 15].

3 https://youtu.be/IIuCeTHbcxc

https://youtu.be/IIuCeTHbcxc


H. Song, P.H. Nguyen, and F. Chauvel 1:9

To make non-intrusive customization possible, there is a main prerequisite for the web-
based SaaS’ architecture, i.e., the clear separation of the user interface (UI) part from the
back-end business logic (BL) part [15]. This means that a web-based SaaS must be split into
a WebUI part and back-end BL service(s). By separating the UI and the BL of the main
product, we can introduce microservices implementing tenant-specific customization for the
main product at UI, BL, and database (DB) levels. Note that we focus on web-based SaaS
because of its popularity. Figure 3 shows an overview of the non-intrusive approach. Each
customization for a tenant is running as a standalone microservice and dynamically registered
to the main product service for this tenant. The APIs of the customization microservice are
available for authorized access via API gateway. At runtime, whenever the main product
service reaches a registered customization point for a tenant, the main product service triggers
the corresponding customization for that tenant by calling the REST APIs of the tenant’s
customization microservices via the API gateway. Note that the customization microservices
have been registered with the tenant manager in advance.

The WebMVC Customizer is a local component that is introduced into the main product’s
WebApp MVC to intercept the flows of the main product. The WebMVC Customizer is
similar to the Interceptor of the intrusive approach in Section 4.1. Tenant Manager is a
service that manages the customization(s) for every tenant, which is also similar to the
intrusive approach. The main difference between the intrusive approach and the non-
intrusive approach comes from the introduction of the API Gateways, the Identity and
Access Management (IAM) service, and the Event Bus. In our non-intrusive approach, we
follow the API gateway pattern [19] to decouple the client applications (e.g., the WebMVC
application) from the internal microservices (for customization or main-stream BL). The key
point in the non-intrusive approach is that it enables the authorized access of the tenants’
customization microservices to the main product BL via the API gateways. In this way,
the tenants’ customization microservices can have access to the necessary execution context
of the main product BL if needed and allowed. The non-intrusive approach can provide
deep customization because it allows a customization service to replace a BL component
of the main product for the corresponding tenant if authorized. The authorized access of
the tenants’ customization microservices to the main product BL components makes the
deep customization manageable. This differs from the intrusive way of sending “call-back”
code from customization microservices to the main product to be dynamically compiled and
executed within the execution context of the main service. The IAM Service built on an
OpenID Connect4 or OAuth 2.05 Identity provider can make tenant-specific customization
authorized. Using standardized and powerful authentication and authorization mechanisms
such as OAuth 2.0 is very important for tenant-isolation at the application level, especially
regarding customization. Last but not least, the Event Bus allows the customization
microservices to have asynchronous event-based communication with the main product BL
components for customization purposes. We have implemented a proof-of-concept of our non-
intrusive approach for enabling deep customization of a reference application for microservices
architecture, eShopOnContainers [11]. The MusicStore could be re-engineered to enable non-
intrusive customization but we chose the eShopOnContainers because the eShopOnContainers’
architecture already satisfies our prerequisites for non-intrusive customization. Due to space
reason, we refer readers to [15] for more details of the proof-of-concept on eShopOnContainers.

4 https://openid.net/connect/
5 https://oauth.net/2/

Microservices 2017/2019

https://openid.net/connect/
https://oauth.net/2/


1:10 Using Microservices to Customize Multi-Tenant SaaS

Figure 3 An overview of the non-intrusive approach [15].

6 A Reference Architecture for Customization by Microservices

This section generalizes the two customization approaches using microservices. We present
the main principles for the microservice-based style for customization, and a reference
architecture that follows these principles.

6.1 Principles
We adopt a microservice-based style for customization, driven by a set of high-level principles,
or design decisions, in order to meet the requirements of isolation, assimilation and economy
of scale. The first set of principles meets the following requirements of isolation.

Every customization is a service. A customization should be a stand-alone running
entity, with its own life-cycle independent of the product. Such a solution avoids a failure
in the customization (such as dead loop) from impacting the normal operation of the main
product. The interaction of customization services with the main product is monitored
and administrated.
A customization service serves one and only one tenant. This principle also
indicates that no more than one product service connects to a same customization service,
since each tenant belongs to only one product service.
Each customization service runs on its own environment. This prevents custom-
ization services from influencing each other at runtime. It also simplifies the management
of customization, such as monitoring and billing.
A customization service has its own database. A customization should not be
allowed to modify the schema of the product database. It uses its exclusive database to
store the customization-specific data. A customization service does not have direct access
to either the product database or the other customization database.
A customization service communicates with the product service and other
customization services only via REST API. Other ways of communication, such
as shared database, shared memory or files, will make the services more tightly coupled.



H. Song, P.H. Nguyen, and F. Chauvel 1:11

These principles that favour isolation have negative effects on either assimilation or the
economy of scale. The more isolation, the less likely that customization can be assimilated
with the main product. Similarly, the more isolation leads to more use of resources, which
means less favor for the economy of scale. We make the following design decisions to reduce
such negative effects and bring a better balance regarding isolation, assimilation and economy
of scale.

A customization environment is “close to” its product environment. If a
product environment is hosted by a cloud provider, such as Amazon AWS, the customiza-
tion environments related to it should be deployed into an infrastructure from the same
cloud provider, in the same region. This ensures the low latency of their communication.
The external URL to access a customization service is consistent with the
product URLs. Most of the customization services are not visible to end users, but
only used indirectly when the users invoke the product. When a customization service is
exposed directly to the end user, the URL to access this service should be in the same
style as the product URL, so that the users do not feel the separation.
The vendor should provide a unified identity management for both product
and customization, so that users do not need separate login to use the customization
services.
Customization environments should have minimal footprint, so that the vendors
can host a large scale of customers for each product service. In other words, customization
services should be lightweight microservices that have minimal resource consumption.
The vendor should manage all the environments in an elastic way. This will
reduce the total cost of resources, especially when there is a large number of lightweight,
infrequently used customization services.
The vendor should facilitate the reuse-by-code for customization Apps. When
a customization solution fits multiple customers (this normally happens when the cus-
tomers hire the same consultant), it should be easy for the customers to reuse the
customization App by code, i.e., to create a new instance of this App.

6.2 A Reference Architecture
Following the principles in the last section, we come up with a reference architecture to
support the customization of multi-tenant SaaS using customer microservices. Figure 4
illustrates this reference architecture with one product instance and two customization
services. The product is a typical browser-server web-based application. The single product
instance serves several tenants simultaneously. The tenant management component, as part
of the product instance, controls the valid tenant served by this instance, the unified identity
management service controls which users have the access via each tenant. The product
instance and the database are deployed in the same virtual machine from a public cloud
provider. All the user requests from the browser go through a web proxy, which translate
the user-friendly URL into the internal address used by the cloud provider.

Customization service customizes the behaviour of the product instance for one of its
tenants, by introducing new features and replacing existing features. The customization
service is registered to the tenant manager in a customization registration process before it
can be triggered. The new features can be accessed via a specific URL directly from the users,
or triggered by the product instance under predefined circumstances. The replacing features
are triggered by the product instance, when the original feature in the product is about
to be activated. The tenant manager defines when to trigger the customization services,

Microservices 2017/2019



1:12 Using Microservices to Customize Multi-Tenant SaaS

product service

Tenant 
manager

proxy

identity 
manager

customization
service

customization
databaseproduct

database

message 
queue

sync triggering

async
triggering

invocation

register

product environment VM: environment
container container

UI in browser

cloud provider

Figure 4 A reference architecture of using microservices for customization.

based on the customization registration. The customization service may need the standard
data from the product instance, or modify the state and data of the product instance. It
achieves this by invoking the product instance via API calls (in a non-intrusive approach) or
call-back code (in an intrusive approach). Triggering and invoking are the two directions
of communications between the product instance and the customization service. We will
discuss later in Section 7 on how to implement these communications.

The customization service uses its own database to store the data that it cannot save
to the standard database. The customization service and the database are deployed in two
separate environments, which are in turn hosted by a virtual machine from the same provider
as the product environment.

7 Discussions

This section discusses the technical challenges and potential solutions to implement the
reference architecture.

7.1 Customization of Database
Customization often needs to extend the standard data type. Two types of extension on
the data schema must be supported, i.e., adding a new data entity and adding a field to an
existing entity. Removing an entity or a field is not necessary for customization, since the
customization service can simply ignore them. Changing the type of a field can be achieved
by adding a new field and ignoring the original one. Since the customization service is not
allowed to change the data schema of the product database, all data under the extended
entity of field has to be stored in the customization database. A new data entity can be
implemented as a table in the customization database. A new field can be also implemented
as a table in customization database, as a mapping from the primary key of the original
table to the extended field.

The customization service registers to the tenant manager how it extends the standard
data schema. In this way, the product service knows how each tenant extends its database, so
that it can utilize the extended data. For example, Music.MuTeShop.com has a page listing



H. Song, P.H. Nguyen, and F. Chauvel 1:13

all the shopping cart items, originally with price and quantity. When rendering this page,
Music.MuTeShop.com checks with the tenant manager and gets the information that the
customization extends shopping cart items with a new field of donation amount. Therefore,
it adds a new column in the shopping cart information table for this field and queries the
customization service to fill in this column.

Customization databases usually have simple schema and relatively small amount of data.
Therefore, it is reasonable to use light-weight technologies such as PostgreSQL and MySQL.
NoSQL database is also a possibility as we have experimented with MongoDB in Section 4.2.

7.2 Triggering of Customization Services
The customization service registers itself to the tenant manager, which allows it to be
triggered from one of the predefined extension points in the product service (e.g., as shown
in Listing 1). When the control flow reaches this extension point, the product service picks
the registered customization service, and triggers it. There are two types of triggering, i.e.,
synchronous triggering, when the product service awaits the customization service to finish
the triggered logic, and asynchronous triggering when it does not.

Synchronous triggering can be implemented as a direct REST invocation from the
product service to the customization service. In the product service, the implementation of
an extension point can be simplified as an if-then-else structure: if the product service finds
a customization service registered for this point, then it invokes this service and continues
with the returned value, else it executes the standard logic. The more extension points the
product service has, the more customization it supports. As an extreme case, the vendor
can inject an extension point before each method in the product, using Aspect-Oriented
Programming [8]. Synchronous triggering applies to the customization scenarios when the
behaviour of the product service has to be influenced by the customization immediately.

Asynchronous triggering can be implemented by the event technology. At an extension
point, the product service ejects an event indicating that it has reached this point, together
with some context information of the extension point. The event is published to a message
queue. If a customization service subscribes this message queue at the right topic, it will be
notified by the message queue and triggered to handle this event. The product usually has its
internal event mechanism, and therefore, to support asynchronous triggering of customization
service, the vendor just needs to publish part of these internal events to the public message
queue. Using asynchronous triggering, the customization cannot immediately influence the
behaviour of the product service because the control flow of the product service is not blocked
by the customization service.

A customization service usually needs both synchronous and asynchronous triggering.
Take the visit counting scenario in Section 4.2 as an example, each time an album is visited,
the customization service needs to be triggered asynchronously to increase the number of visits
in its database. Later on, in the overview page, the product service needs to synchronously
trigger the customization service to get the numbers of visits for all the albums. This time it
needs to wait for those numbers to be returned from the customization service to show them
on the overview page.

7.3 Invocation from Customization Services to the Product Service
A customization service needs to invoke the product service, in order to obtain the standard
data and to influence the state and behaviour of the product service for the relevant tenant.
From a technical point of view, there are two ways of implementing the invocation from

Microservices 2017/2019



1:14 Using Microservices to Customize Multi-Tenant SaaS

customization service to product service, i.e., intrusive invocation, when the customiza-
tion service injects code into the product service, and non-intrusive invocation, when the
customization service only relies on the APIs opened by the product service.

For intrusive invocation, the customization service send a piece of code (we call it the
“callback code“), to the product service. The product service compiles and executes the
callback code immediately, and sends the execution results back to the customization service.
The callback code is exposed to the same context as the native code of the product service,
and therefore, in theory, it can read and write all the standard data and the other states
of the product service, just as a piece of native code. To support intrusive invocation, the
product should have a built-in interpreter that compiles and executes the callback code.
Some modern dynamic programming languages support the execution of source code from
plain text, e.g., the eval method in Python. Microsoft .Net framework also provides the
Dynamic Linq techniques to compile a query into a dynamically executable delegation. If
the product is implemented in a platform without such support, the vendors can choose to
translate the callback code into a set of invocations to the reflection API. For the sake of
security and simplicity, the callback code should be transferred as source code, in terms of
plain text, instead of binary code. The product service should provide the specific REST
API for injecting callback code and return the execution result.

For non-intrusive invocation, the customization service calls the REST API of product
service to obtain the standard data and to manipulate the product states. In this way, the
customization capability is defined and limited by the APIs exposed to the customization
services. Providing a both powerful and easy-to-use API is a big challenge for the vendor.
Automatic generation of such APIs based on the data schema and the product features is a
promising way.

One challenge related to the invocation of product instance, regardless of intrusive or
non-intrusive way, is how to keep the execution context of the product service. In the product
service, every piece of code is running under a runtime context, which is the temporary
and static variables accessible by this piece of code. The context contains the important
information such as the current user, the recently queried and manipulated data, etc. When
the customization service kicks in and replaces an original piece of code, it normally need
such context information. For intrusive invocation, a natural solution is to reserve the entire
context at the point when the customization service is triggered, and the product service use
this context to execute the callback code. For non-intrusive invocation, the vendor should
identify the useful context information and provide specific API methods to obtain and
exploit such context information.

7.4 Tenant Manager and Tenant Isolation
The tenant manager is a part of the product service, which records the customization for
each tenant. When a customization service is activated, it registers to the tenant manager
the following information: which tenant it customizes, what extension points it listens to
(together with a service endpoint for the product service to call in order to trigger the
customization logic), and how it extends the product data schema. The product service
queries the tenant manager for such registration every time it reaches an extension point or
requires the data extensions. Due to the frequent interaction between the product service and
the tenant manager, it is reasonable to implement the tenant manager as a local component
within the product service, to avoid the unnecessary overload by remote invocations.

One of the key requirements in multi-tenant SaaS is tenant isolation with security and
privacy, especially together with deep customization enabled. We have better addressed
this requirement in the non-intrusive approach as discussed in [15]. The non-intrusive ap-



H. Song, P.H. Nguyen, and F. Chauvel 1:15

proach [15] allows a software vendor to manage all the tenants’ customization microservices,
in how they are authorized to customize the main product for a specific tenant, in adminis-
trating and monitoring the customization microservices at runtime. Deploying customization
microservices on separate containers for different tenants and the main product is also very
important for tenant isolation as discussed below.

7.5 Customization Environments
A customization environment comprises the infrastructure, technical stack and libraries that
a customization service needs at runtime. Considering that each customization service should
have a unique isolated environment, and a product service may serve many tenants, a vendor
cloud may host a large number of customization environments at the same time. Therefore, it
is important to keep a minimal footprint for each customization environment and to simplify
the management of these environments.

All the customization environments should use the same type of infrastructure, which is
both light-weighted and easy to manage. The container technology, in particular Docker,
appears to be very suitable for these purposes. Each customization environment is isolated
in a Docker container, so as the environment that hosts a customization database. The
consultant provides the vendor a Dockerfile, specifying how to construct a customization
environment container, i.e., choosing an operating system, installing the technical stack
step by step, downloading the customization App source code, and finally defining how to
initialize the technical stack with the customization App. The vendor builds the Docker
image according to the Dockerfile, in the vendor cloud, and instantiates a container from the
image when customization service needs to be on-board for the tenant.

The vendor should maintain a Docker cluster composing by a flexible number of virtual
machines from the same cloud provider. Depending on the number of customization services
and the load on them, the vendor cloud should scale in or out of the Docker cluster. The
vendor can also apply a standard management tool to monitor the state and resource
consumption of each container, and kill the customization services when necessary. Such
scaling and management functionality can be implemented using Docker tools.

8 Related Work

Software Product Line (SPL) [18] captures the variety of user requirements in a global
variability model, and actual products are generated based on the configuration of the
variability model. Traditional SPL approaches target all the potential user requirements by
the software vendor, and thus do not apply to our definition of customization. Dynamic
SPL [5] is closer to customization, and some approaches such as [10] propose the usage of
variability models for customization. However, such model-based configuration is in a much
higher abstraction level than programming [20], and focused on how to combine existing
features. In contrary, customization is targeting the development of new features specific to
the customers.

There are many approaches to SaaS customization in the context of service-oriented
computing. However, most of approaches focus on a high-level modification of the service
composition. Mietzner and Leymann [13] present a customization approach based on the
automatic transformation from a variability model to BPEL process. Here customization is a
re-composition of services provided by vendors. Tsai and Sun [24] follow the same assumption,
but propose multiple layers of compositions. All the composite services (defined by processes)
are customizable until reaching atomic services, which are, again, assumed to be provided by

Microservices 2017/2019



1:16 Using Microservices to Customize Multi-Tenant SaaS

the vendors. Nguyen et al. [16] develop the same idea, and introduce a service container to
manage the lifecycle of composite services and reduce the time to switch between tenants at
runtime. These service composition approaches all support customization in a coarse-grained
way, and rely on the vendors to provide adequate “atomic services” as the building blocks
for customized composite services. The microservice architecture discussed in this paper is
targeted at how to allow customers to develop the atomic services and integrate them into
the product service.

As market leading SaaS for CRM and ERP, the Salesforce platform and the Oracle NetSuite
provide built-in scripting languages [21][9][17] for fine-grained, code-level customization. Using
these scripting languages, the customization is running within the product, which requires
an advanced scripting interpreter to guarantee the isolation between customization and the
product. The customization capability is limited by the expression power of the language, and
learning these languages is a special burden for the customization developers. Implementing
customization as microservices solves these problems: Developers can choose the technical
stack that suits them, and still do not need to care about the hosting of these services.

Middleware techniques are also used to support the customization of SaaS. Guo et al. [4]
discuss, in a high abstraction level, a middleware-based framework for the development
and operation of customization, and highlight the key challenges. Walraven et al. [25]
implemented such a customization enabling middleware. In particular, they allow customers
to develop customization code using the same language as the main product, and use
Dependency Injection to dynamically inject these customization Java classes into the main
service, depending on the current tenant. Later work from the same group [26] developed
this idea and focused on the challenges of performance isolation and latency of customization
code switching. The dependency injection way for customization is close to our work, in
terms of the assimilation between custom code and the main service. However, operating the
customization code as an external microservice eases performance isolation. A misbehavior
of the customization code only fails the underlying container, and the main product only
perceives a network error, which will not affect other tenants. Besides, external microservices
ease management: scaling independently resource-consuming customization and eventually
billing tenants accurately.

This paper is a full extension of the position paper [23]. In this paper, we have summarized
our two approaches in [2] and [15] and then presented the full reference architecture for
customizing multi-tenant SaaS using microservices. Moreover, we have given discussions on
the technical challenges and potential solutions to implement the reference architecture.

9 Conclusion and Future Work

In this paper, we have presented a customization solution for multi-tenant SaaS using
microservices. From an intrusive approach, we have evolved our solution to introduce a
non-intrusive approach that could be more practical for industry. Based on these two
approaches, we have provided a generalized reference architecture for enabling customization
of multi-tenant SaaS using microservices. Our discussions on the technical challenges and
potential solutions to implement the reference architecture give more insights for readers to
adopt our customization solution. Our microservice-based customization solution is promising
to meet the general customization requirements, and achieves a balance between isolation,
assimilation and economy of scale. Our future research will focus on the quality assurance of
the customization services, including automatic testing and online monitoring, to achieve a
DevOps way of continuous customization development.



H. Song, P.H. Nguyen, and F. Chauvel 1:17

References
1 Cor-Paul Bezemer and Andy Zaidman. Multi-tenant SaaS applications: maintenance dream

or nightmare? In Proceedings of the Joint ERCIM Workshop on Software Evolution (EVOL)
and International Workshop on Principles of Software Evolution (IWPSE), pages 88–92. ACM,
2010.

2 Franck Chauvel and Arnor Solberg. Using Intrusive Microservices to Enable Deep Cus-
tomization of Multi-tenant SaaS. In 2018 11th International Conference on the Quality
of Information and Communications Technology (QUATIC), pages 30–37, September 2018.
doi:10.1109/QUATIC.2018.00015.

3 Denise Ganly, Andy Kyte, Nigel Rayner, and Carol Hardcastle. The Rise of the Postmodern
ERP and Enterprise Applications World. Gartner Report ID: G00259076, April 2018. URL:
https://www.gartner.com/doc/2633315?ref=mrktg-srch.

4 Chang Jie Guo, Wei Sun, Ying Huang, Zhi Hu Wang, and Bo Gao. A framework for native
multi-tenancy application development and management. In e-commerce Technology and the
4th IEEE International Conference on Enterprise Computing, e-commerce, and E-Services,
2007. CEC/EEE 2007. The 9th IEEE International Conference on, pages 551–558. IEEE,
2007.

5 Svein Hallsteinsen, Mike Hinchey, Sooyong Park, and Klaus Schmid. Dynamic software product
lines. Computer, 41(4), 2008.

6 IDG. 2018 Cloud Computing Survey, April 2018. URL: https://www.idg.com/
tools-for-marketers/2018-cloud-computing-survey/.

7 Cindy Jutras. Cloud Financials: Having It Your Way, White paper from
AICPA. URL: https://online.intacct.com/WebsiteAssets_wp_mintjutras_cloud_
financials_your_way.html.

8 Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-
Marc Loingtier, and John Irwin. Aspect-oriented programming. In European conference on
object-oriented programming, pages 220–242. Springer, 1997.

9 Thomas Kwok and Ajay Mohindra. Resource calculations with constraints, and placement
of tenants and instances for multi-tenant SaaS applications. In International Conference on
Service-Oriented Computing, pages 633–648. Springer, 2008.

10 Jaejoon Lee and Gerald Kotonya. Combining service-orientation with product line engineering.
IEEE software, 27(3):35–41, 2010.

11 Microsoft. eShopOnContainers - Microservices Architecture and Containers based Reference
Application. URL: https://github.com/dotnet-architecture/eShopOnContainers.

12 Microsoft. MusicStore test application that uses ASP.NET/EF Core. URL: https://github.
com/aspnet/MusicStore.

13 Ralph Mietzner and Frank Leymann. Generation of BPEL customization processes for
SaaS applications from variability descriptors. In Services Computing, 2008. SCC’08. IEEE
International Conference on, volume 2, pages 359–366. IEEE, 2008.

14 Phu H. Nguyen, Hui Song, Franck Chauvel, and Erik Levin. Towards customizing multi-tenant
Cloud applications using non-intrusive microservices. The 2nd International Conference on
Microservices, Dortmund, 2019.

15 Phu H. Nguyen, Hui Song, Franck Chauvel, Roy Muller, Seref Boyar, and Erik Levin. Using
Microservices for Non-intrusive Customization of Multi-tenant SaaS. In Proceedings of the
2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE 2019, pages 905–915, New York, NY,
USA, 2019. ACM. doi:10.1145/3338906.3340452.

16 Tuan Nguyen, Alan Colman, and Jun Han. Enabling the delivery of customizable web services.
In Web Services (ICWS), 2012 IEEE 19th International Conference on, pages 138–145. IEEE,
2012.

17 Oracle. Applicaiton Development SuiteScript. URL: http://www.netsuite.com/portal/
platform/developer/suitescript.shtml.

Microservices 2017/2019

https://doi.org/10.1109/QUATIC.2018.00015
https://www.gartner.com/doc/2633315?ref=mrktg-srch
https://www.idg.com/tools-for-marketers/2018-cloud-computing-survey/
https://www.idg.com/tools-for-marketers/2018-cloud-computing-survey/
https://online.intacct.com/WebsiteAssets_wp_mintjutras_cloud_financials_your_way.html
https://online.intacct.com/WebsiteAssets_wp_mintjutras_cloud_financials_your_way.html
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/aspnet/MusicStore
https://github.com/aspnet/MusicStore
https://doi.org/10.1145/3338906.3340452
http://www.netsuite.com/portal/platform/developer/suitescript.shtml
http://www.netsuite.com/portal/platform/developer/suitescript.shtml


1:18 Using Microservices to Customize Multi-Tenant SaaS

18 Klaus Pohl, Günter Böckle, and Frank J van Der Linden. Software product line engineering:
foundations, principles and techniques. Springer Science & Business Media, 2005.

19 Chris Richardson. Microservices patterns, 2018.
20 Marcus A Rothenberger and Mark Srite. An investigation of customization in ERP system

implementations. IEEE Transactions on Engineering Management, 56(4):663–676, 2009.
21 Salesforce. Apex Developer Guide. URL: https://developer.salesforce.com/docs/atlas.

en-us.apexcode.meta/apexcode/.
22 Hui Song, Franck Chauvel, and Arnor Solberg. Deep customization of multi-tenant SaaS

using intrusive microservices. In Proceedings of the 40th International Conference on Software
Engineering: New Ideas and Emerging Results, pages 97–100. ACM, 2018.

23 Hui Song, Phu H. Nguyen, Franck Chauvel, Jens Glattetre, and Thomas Schjerpen. Cus-
tomizing Multi-Tenant SaaS by Microservices: A Reference Architecture. In 2019 IEEE
International Conference on Web Services (ICWS), pages 446–448, July 2019. doi:10.1109/
ICWS.2019.00081.

24 Wei-Tek Tsai and Xin Sun. SaaS multi-tenant application customization. In Service Oriented
System Engineering (SOSE), 2013 IEEE 7th International Symposium on, pages 1–12, 2013.

25 Stefan Walraven, Eddy Truyen, and Wouter Joosen. A middleware layer for flexible and
cost-efficient multi-tenant applications. In Proceedings of the 12th International Middleware
Conference, pages 360–379. International Federation for Information Processing, 2011.

26 Stefan Walraven, Dimitri Van Landuyt, Eddy Truyen, Koen Handekyn, and Wouter Joosen.
Efficient customization of multi-tenant software-as-a-service applications with service lines.
Journal of Systems and Software, 91:48–62, 2014.

https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/
https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/
https://doi.org/10.1109/ICWS.2019.00081
https://doi.org/10.1109/ICWS.2019.00081

	Introduction
	A Motivational Example
	A Conceptual Model of Customization for Multi-Tenant SaaS
	Intrusive Customization Using Microservices
	Adapting the SaaS to be Customizable
	Sample Customization

	Non-Intrusive Customization Using Microservices
	A Reference Architecture for Customization by Microservices
	Principles
	A Reference Architecture

	Discussions
	Customization of Database
	Triggering of Customization Services
	Invocation from Customization Services to the Product Service
	Tenant Manager and Tenant Isolation
	Customization Environments

	Related Work
	Conclusion and Future Work

