
PREvant (Preview Servant): Composing
Microservices into Reviewable and Testable
Applications
Marc Schreiber
aixigo AG, Aachen, Germany
marc.schreiber@fh-aachen.de

Abstract
This paper introduces PREvant (preview servant), a software tool which provides a simple RESTful
API for deploying and composing containerized microservices as reviewable applications. PREvant’s
API serves as a connector between continuous delivery pipelines of microservices and the infrastructure
that hosts the applications. Based on the REST API and a web interface developers and domain
experts at aixigo AG developed quality assurance workflows that help to increase and maintain high
microservice quality.

2012 ACM Subject Classification Software and its engineering → Software creation and management;
Software and its engineering

Keywords and phrases Microservice development, testing for microservices, exploratory testing,
development workflows

Digital Object Identifier 10.4230/OASIcs.Microservices.2017-2019.5

Supplement Material
The source code is available on GitHub: https://github.com/aixigo/PREvant
A short talk about PREvant is available on YouTube: https://www.youtube.com/watch?v=
O9GxapQR5bk

1 Introduction

Currently, an increasing number of enterprises develop microservices to build their applica-
tions [2, 11, 18] because microservices are scalable and offer quick deployment cycles, superior
quality, and greater flexibility compared to monolithic software [21, 24]. Furthermore, nu-
merous companies migrate their on-premises applications to microservice architectures [13]
because of the aforementioned advantages combined with agile software development. How-
ever, when development teams begin to build microservices, they can face major challenges
due to the increased cognitive load, design complexity, testing and maintenance efforts [30].

Microservices must be deployed on an infrastructure to perform automatic and user-based
acceptance tests, thereby ensuring feature correctness. Developers can employ containeriza-
tion techniques to package and deploy their microservices [17]; however, they must manage
the complexity of deployment set-ups when they provide the whole application as a preview,
which consists of multiple microservices distributed across numerous source-code repositories.
To deploy their services to a container orchestration platform for testing purposes, develop-
ers must create complex continuous delivery pipelines that utilize container orchestration
platforms. In addition to these technical challenges, the testing of microservices provides
further challenges that require effective testing strategies [15, 22].

This paper introduces PREvant (Preview Servant), a software tool that helps to deliver
high-quality microservices by providing an approach to deploying and composing containerized
microservices as reviewable applications. PREvant simplifies the deployment of applications
that comprise multiple microservices, and it supports various configuration scenarios that

© Marc Schreiber;
licensed under Creative Commons License CC-BY

Joint Post-proceedings of the First and Second International Conference on Microservices (Microservices
2017/2019).
Editors: Luís Cruz-Filipe, Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, Florian Rademacher, and
Sabine Sachweh; Article No. 5; pp. 5:1–5:16

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-2564-6126
mailto:marc.schreiber@fh-aachen.de
https://doi.org/10.4230/OASIcs.Microservices.2017-2019.5
https://github.com/aixigo/PREvant
https://www.youtube.com/watch?v=O9GxapQR5bk
https://www.youtube.com/watch?v=O9GxapQR5bk
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 PREvant (Preview Servant)

equip the application with the necessary infrastructure through companions. Thanks to these
and additional features, developers and domain experts can employ established workflows
to ensure that their teams are building high-quality services. Additionally, sales and team
managers can utilize PREvant’s capabilities.

The remainder of this paper is structured as follows: Section 2 provides basic concepts
and technologies that are necessary for understanding PREvant’s use cases. Additionally,
this section presents related work. Section 3 provides an exemplary case study to support
PREvant’s use cases with a meaningful example, and Section 4 depicts PREvant’s approach,
implementation, and architecture. Section 5 illustrates established workflows utilized at
aixigo AG that ensure high quality microservices. Section 6 supplies recipes that have been
collected through the utilization of PREvant at aixigo AG. Finally, Section 7 concludes the
paper.

2 Background and Related Work

The development of microservices is based on the following characteristics [18]:

Microservices are small, autonomous services that work together . . . and [a service]
might be deployed as an isolated service on a platform as a service (PAAS), or it might
be its own operating system process. . . . All communication between the services
themselves are via network calls, to enforce separation between the services and avoid
the perils of tight coupling. . . . [The] service exposes an application programming
interface (API), and collaborating services communicate with us via those APIs.

Therefore, developers who create applications consisting of independent microservices must
ensure that the services provide feature correctness even when the independent microservices
do not share any resources such as operating systems or databases. Due to the independence
of microservices, Docker [17] and standard containerization techniques [9] support the
development of such microservice architecture because Docker and containers in general suit
each other in implementing this kind of architecture [14]. This approach of implementing
microservice architectures [9, 14, 17] provides the foundation of PREvant’s approach.

Because microservice architectures rely on unreliable network calls that require fault-
tolerant services [18, Chapter 11], developers must ensure that the source code includes
this fault tolerance. Therefore, developers can rely on automated unit tests and continuous
integration to ensure high-quality code [12]. Additionally, developers must ensure that the
whole application works as expected, a factor which is often confronted by continuous delivery
pipelines [4]. Figure 1 depicts a continuous delivery pipeline for a microservice as described
by Chen [4].

Acceptance
Test

Build Manual
Test

ProductionCommit

Figure 1 Continuous Delivery Pipeline Stages.

M. Schreiber 5:3

The build stage in Figure 1 represents the continuous integration stage, in which the
microservice is compiled, tested, and packaged into a runnable format, such as a Docker
container image [9, 17]. When the build stage is completed, the continuous delivery pipeline
executes the next stages:

Acceptance Test In this stage, automated end-to-end tests ensure that the microservice per-
forms as expected. For example, an automated browser test ensures that the microservice’s
data is rendered correctly.

Manual Test This stage provides a running instance of the microservice for domain experts
who perform exploratory testing to ensure correct business behavior.

Production When the domain experts establish that the microservice performs correctly,
the service can be deployed into production, completing the continuous delivery pipeline.

The acceptance and manual test stages include environments similar to the production
environment in which the microservices will be deployed (depicted by the infrastructure
symbols above the stages in Figure 1). The deployment in these environments is handled by
the continuous delivery pipeline and is supported by different development tools, such as
GitLab Review Apps1 or GitOps,2 that utilize container orchestrations to spin the required
environments. Such an approach [4] builds common ground for GitLab Review Apps, GitOps,
and PREvant.

However, existing solutions have a common disadvantage when developers build multiple
microservices in multiple source-code repositories, a factor which is addressed by PREvant.
Existing solutions such as GitLab Review Apps do not manage effectively when the de-
velopment of an application consists of multiple microservices distributed across multiple
source-code repositories, as depicted in Figure 2. In this scenario, the continuous delivery
pipelines of each microservice repository (see the commit stage) must be aware of foreign mi-
croservices and ensure that their environments include them (see question marks in Figure 2).
Therefore, both GitLab Review Apps and GitOps offer to write deployment scripts that
ensure that the foreign microservices are deployed as well, which generates a tight coupling
between the deployment pipelines, thus violating the mantra of independent microservice
architecture.

Acceptance
Test

Build Manual
Test

Commit

Branching
Model

Figure 2 Continuous Delivery Pipeline Stages with Multi-Repository Development.

1 https://about.gitlab.com/product/review-apps/
2 https://www.weave.works/technologies/gitops/

Microservices 2017/2019

https://about.gitlab.com/product/review-apps/
https://www.weave.works/technologies/gitops/

5:4 PREvant (Preview Servant)

Furthermore, the development of each microservice could follow a branching model, as
depicted on the left-hand side of Figure 2, and each branch should be tested through the
same stages of the delivery pipeline as the mainline branch. However, if a feature requires
the extensions of two or more microservices, then this must be configured and written into
the source code of the deployment scripts, which requires thorough clean-up afterward. This
clean-up could fail and break the deployment of the mainline branches.

In contrast to existing solutions, PREvant aims to improve the handling of delivery
pipelines in multi-repository, multi-branch scenarios, some of which are described in further
detail in Section 4. Therefore, PREvant relies on following techniques to compose a set of
microservices into one application:
1. Because PREvant supports the development of microservices, and containers are an

ideal match for microservice architecture [14], PREvant relies on container runtime
infrastructure, such as Docker, Docker Swarm, or Kubernetes to deploy the microservices
into staging areas.3

2. To compose the microservices on a container runtime, PREvant relies on a container
registry to exchange the container images between a continuous delivery pipeline and the
container runtime.

3. Additionally, the container runtimes provide software-defined networking [7] that PREvant
utilizes to isolate the microservice applications from each other.

4. To make the composed applications accessible to the domain experts, PREvant equips
the containers in such a way that Traefik [5] can work as a reverse proxy, which makes
Traefik a requirement for PREvant.

3 Case Study

To support PREvant’s use cases with an illustrative example, this section introduces a sample
e-commerce system that offers end customers the ability to purchase products in a web shop.
The example is borrowed from Wolff [29] and provides the following services:

order This microservice provides a web interface that accepts orders through a shopping cart.
All accepted orders are stored in a database and are published through an asynchronous
messaging channel.

invoice This service subscribes to the orders channel and extracts all relevant information
from the messages. The relevant information is stored as new invoices in a database,
and the accounting department receives new invoices through the invoice service’s web
interface.

shipping Similar to the invoice service, the shipping service subscribes to the orders channel
and stores the relevant shipping information in a database. The shipping department
receives new shipping requests through the shipping service’s web interface.

In the context of this paper, the development of these services is distributed across three
source-code repositories, and each repository manages a continuous delivery pipeline that
ensures that the services perform as desired. Additionally, the development team is supported
through domain experts who randomly perform exploratory testing on the whole e-commerce
system to ensure that the system works well for the salespeople who operate the system.

3 Currently, PREvant only supports Docker, but PREvant’s developers plan to support Kubernetes in
the future.

M. Schreiber 5:5

Therefore, the continuous delivery pipelines must ensure that domain experts can access the
application at any time, as depicted in Figure 2.

Furthermore, the microservices rely on infrastructure services. They require a Apache
Kafka4 instance to exchange the order message and PostgreSQL5 as a database instance
to store the service-relevant information. These infrastructure services must be deployed
through the continuous delivery pipelines as well to ensure a running application.

4 Composing Microservices with PREvant

As stated in Section 2, PREvant aims to simplify the composition of microservices through
continuous delivery pipelines. Therefore, PREvant serves as a connector between the
continuous delivery pipelines and the infrastructure that hosts the applications for testing
and quality-assurance purposes, as depicted in Figure 3. This approach facilitates the
composition of reviewable applications that are explained in detail in this section.

Acceptance
Test

BuildCommit Production

 HT
TP

shipping

invoiceinvoice

orderorder

shipping

invoice

shipping

order

order

shipping

invoice

Manual
Test

Image Registry

P
u
s
h

I
m
a
g
e

Figure 3 Composing Microservices with PREvant into Reviewable Applications.

Figure 3 illustrates the disjoint repositories and continuous delivery pipelines of the
microservices order, shipping, and invoice. The build stage packages the microservices as
a container image and pushes it to a container image registry (e.g. a Docker registry) to
ensure that the services are ready for deployment in the acceptance and manual test stages.
In a deployment phase, such as the manual test stage depicted in Figure 3, the continuous
delivery pipeline can utilize PREvant’s REST API, as illustrated in Listing 1. This REST
request creates a software-defined network [7], initiates the container for the microservice,
connects it to the network, and creates a reverse-proxy configuration, making the service
accessible through PREvant’s web interface.6 Subsequent REST calls check whether the
container image has a newer version, and if so, then the container is updated.

4 https://kafka.apache.org/
5 https://www.postgresql.org/
6 In this example the invoice service is available through the relative URL /master/invoice.

Microservices 2017/2019

https://kafka.apache.org/
https://www.postgresql.org/

5:6 PREvant (Preview Servant)

Listing 1 Deploy "invoice" Service.

POST /api/apps/master HTTP/1.1
Content-Type: application/json
Accept: application/json

[{
"serviceName": "invoice",
"image": "registry.example.com/a-team/invoice:master",

}]

When the continuous delivery pipelines of the remaining microservices utilize a similar
REST call, for example, replacing invoice in Listing 1 with order or shipping PREvant
initiates the containers and connects them to the existing software-defined network so
that the services can communicate with each other. Then, domain experts can access the
services through PREvant’s web interface, and they can begin exploratory testing before
the microservices are deployed to production. Through this approach, PREvant offers the
following key concepts:

PREvant’s REST API does not expose the internal workings of the underlying container
runtime, which makes the deployment infrastructure agnostic. By design, the software
architecture of PREvant employs an infrastructure abstraction so that Docker and
Kubernetes are supported platforms; however, PREvant is not limited to these container
orchestration platforms. Section 4.1 provides an architectural overview.
The REST API approach reduces the complexity of continuous delivery pipelines because
the necessity of deployment scripts for specific container orchestration is eliminated.
The REST API approach enables further use cases that are employed in development
workflows, as illustrated in Section 5.
PREvant supports different microservice architectures so that it is not limited to a specific
kind of microservice architecture. This is implemented through the concept of companions,
as explained in Section 6.

In addition to these key concepts, PREvant supports feature branch workflows across
multiple build pipelines and is not limited to mainline branches of microservices. As illustrated
in Figure 2 in Section 2, a feature-based branching model raises the following issue: how does
one deploy or compose the whole application automatically when developing a new feature
on a branch for a single microservice? For this use case, PREvant provides following solution:

While PREvant can compose the mainline branches of multiple microservices into one
application, it also utilizes the mainline branch as a template for each feature branch, as
illustrated in Figure 4. To provide a fully functional application that can be reviewed by
the domain experts, PREvant replicates all missing services from the master application.
For example, if the delivery pipeline executes a POST request to deploy the service order,
then PREvant compares the set of running microservices in the master application with the
provided set of microservices. Then it includes the microservices that are not included and
initiates them to provide a fully functional application. Here, it would deploy new container
instances of the container images for the services shipping and invoice.

To distinguish the applications, the deployment pipeline must choose the names that are
defined by a path parameter at the REST API level, as illustrated in Listing 2. Here, the
application named feature-a (see path parameter) is deployed with the container image of
the order service that has been labeled with feature-a. These names can be derived from
the branch names through the continuous delivery pipeline, which is an established pattern
at aixigo AG.

M. Schreiber 5:7

shipping

order

invoice

order

shipping

invoice

Figure 4 Replication of Services for Feature Branch Workflows.

Listing 2 Deploy Feature Branch of "order" Service.

POST /api/apps/feature-a HTTP/1.1
Content-Type: application/json
Accept: application/json

[{
"serviceName": "order",
"image": "registry.example.com/a-team/order:feature-a",

}]

Additionally, if a feature requires changes in two services, then the feature branches can
use the same application names to deploy and test the feature across multiple microservice.

4.1 Architecture
To provide the aforementioned use cases, PREvant is implemented as a self-contained
system [28] written in Rust [16]; it works in conjunction with Traefik and a container runtime,
as illustrated in Figure 5. PREvant’s architecture is divided into the following layers.

Container Runtime

Web Interface

REST API

Apps

Infrastructure

Reverse Proxy

Auto DiscoveryAPI Calls Reverse Proxy

Figure 5 PREvant’s Architecture.

Web Interface To provide the use case so that domain experts can access the reviewable
applications, PREvant offers a web interface that employs PREvant’s REST API to render
the available applications. This interface is implemented as a single-page application
written in Vue.js,7 and Figure 6 displays the result in a screenshot of the web interface.

7 https://vuejs.org/

Microservices 2017/2019

https://vuejs.org/

5:8 PREvant (Preview Servant)

REST API As an interface for continuous delivery pipelines and the web interface, PREvant
implements its REST API with Rocket,8 which is a web framework for Rust. This API
layer forwards HTTP requests to the Apps layer.

Apps This layer implements the logic of PREvant’s use cases. For example, the request to
deploy a microservice is enriched with further information, such as additional services
that must be deployed (see Figure 4), and the enriched information is passed to the
Infrastructure layer.

Infrastructure The Infrastructure layer serves as a connector between the actual container
runtime and the Apps layer by translating requests from the Apps layer into API calls
to the container runtime. For example, when PREvant utilizes Docker as a container
runtime, the request to list all running applications with the running services is translated
into the corresponding API call,9 as illustrated through API Calls in Figure 5. Further
requests from the Apps layer are translated as well.
Additionally, this layer is responsible to create the software-defined network for every
application so that the microservices of one application can communicate with each other.
Additionally, this layer assigns DNS names to the services that are equivalent to the value
of the field "serviceName" in the REST request.

Figure 6 PREvant’s Web Interface.

While this architecture solves the deployment and composition problems, it does not serve
a proxy mechanism to make the microservices accessible. Therefore, PREvant utilizes Traefik’s
capabilities [5] as a reverse proxy. PREvant configures the running containers through the
Infrastructure layer in such a way that Traefik can utilize the automatic discovery of containers
to provide HTTP routes to the microservices, as illustrated in Figure 7. The HTTP requests
of each web client, such as a browser, are routed through Traefik, which determines the
microservice (concurrently running on the infrastructure) responsible to process the request.
Additionally, Traefik routes all requests to PREvant’s API and web interface.

8 https://rocket.rs/
9 https://docs.docker.com/engine/api/v1.40/

https://rocket.rs/
https://docs.docker.com/engine/api/v1.40/

M. Schreiber 5:9

http://preview.example.com/master/shipping

http://preview.example.com/feature-a/order

shipping

invoice

http://preview.example.com/

order

shipping

invoice

order

order

shipping

invoice

order

shipping

invoice

Figure 7 Traefik Serving the Microservices.

To utilize Traefik’s capabilities, PREvant must label each microservice with routing
information to enable Traefik to discover the microservices automatically. For example,
if PREvant is hosted on http://preview.example.com/, then the invoice service of the
application master would be configured to be accessible at following URL, as shown in
Figure 7: http://preview.example.com/master/invoice

4.2 Conventions on Microservices and Application
As illustrated above, PREvant provides a web interface that makes PREvant’s applications
accessible to the domain experts, sales and team managers, and developers, as illustrated
in Figure 6 which displays the microservices of the fictitious e-commerce shop in Section 3.
This interface provides following features:

Access to the microservices via HTML links, which are accessible through Traefik
Access to log statements (see Logs in Figure 6)
Issue-tracking system information
Version information, such as Git commit hash, semantic version, and build date and time
Swagger UI integration (see API Documentation in Figure 6)
Start and stop buttons to test the resilience of each microservice

To provide these features, PREvant relies on some conventions. For example, to make
the logs available, the container must log to standard output, which is a common practice
for cloud-native applications [26]. Additionally, PREvant attempts to link the names of the
applications to issue tracking information.

To provide version information and Swagger UI integration, PREvant collects information
from the microservice itself. Therefore, PREvant employs the web host metadata, proposed in
RFC 6415 [6]. If a microservice provides the well-known resource /.well-known/host-meta.
json, then PREvant can collect the required information and render it in the web interface.
Listing 3 illustrates web host metadata of the microservice shipping in the application master,
demonstrating that the OpenAPI specification [8] of the microservice is available at http:
//preview.example.com/master/shipping/swagger.json. When PREvant requests the

Microservices 2017/2019

5:10 PREvant (Preview Servant)

well-known resource, it provides the HTTP headers Forwarded [19] and X-Forwarded-Prefix
to the microservice, enabling the microservice to generate public links, which are required by
the web interface.

Listing 3 Microservices Properties Formulated in Web Host Meta.

{
"properties": {

"https://schema.org/softwareVersion": "0.9",
"https://schema.org/dateModified": "2019-08-12T15:31:00Z",
"https://git-scm.com/docs/git-commit":

"43de4c6edf3c7ed93cdf8983f1ea7d73115176cc"
},
"links": [

{
"rel": "https://github.com/OAI/OpenAPI-Specification",
"href": "http://preview.example.com/master/shipping/swagger.json"

}
]

}

5 Development and Quality Assurance Workflows

Aixigo AG utilizes PREvant extensively in daily development activities and has developed
substantial workflows that improve the quality assurance of its microservices:

Aixigo AG utilizes feature branches to prevent the pollution of mainline branches with
incomplete features, as discussed in Section 5.1.
Aixigo’s microservices provide flexible configuration capabilities, and PREvant allows
changes in configuration set-ups quickly to test different scenarios, as illustrated in
Section 5.2.
Aixigo AG provides bug fixes for older major or minor releases of its microservices. In
these cases, PREvant helps to reproduce reported bugs, as outlined in Section 5.3.

Each described workflow occurs before the release to production, because aixigo AG
generally cannot access the production area due to legal constraints. Some testing strategies
of microservices suggest testing in the production area [15] but this paper does not cover
such strategies; rather, it describes workflows that allow developers, domain experts, and
sales and team managers to provide improved service quality for in-house developments.

5.1 Feature Branch Based Development
New feature development of a microservice at aixigo AG is subject to strict quality control
because several actions have been implemented to ensure high quality: test-driven develop-
ment [1], code reviews [3], pair programming [27], snapshot and integration tests, end-to-end
tests.10 Additionally, the company has enhanced its development workflow based on reviews
by its domain experts.

When a new feature is completed by a developer, such as new functionality in the front-end
or a new REST resource, it must be reviewed by a domain expert; the domain experts have

10Vocke [25] provides more information about automatic software tests.

M. Schreiber 5:11

experience with REST APIs, so they can judge whether the developer has implemented the
feature correctly. When the feature branch of any microservice has been built by the delivery
pipeline and the whole application is available on PREvant, as mentioned in Figure 4, the
developer notifies the domain expert that the branch is ready for review, and the domain
expert performs exploratory tests. If any issues are discovered, then they are reported to the
developer; the developer then solves the reported issues.

Even when developers are working on features that are not observable from the outside,
PREvant ensures that the application meets quality criteria. For example, aixigo AG’s delivery
pipelines deploy the feature branches for automatic end-to-end tests (see the acceptance
stage). PREvant deploys the whole application and the end-to-end tests are working on the
whole application, which ensures that the whole set of microservices is working in conjunction,
thus reducing integration time and costs. Due to the quick deployment cycles that PREvant
provides, teams at aixigo AG have extended their definitions of done with the clause that the
developer is responsible to test the new application features manually (by clicking through
the front-end or by utilizing the integrated Swagger UI), which prevents obvious faults by
the developer.

When the feature is completed and complies with the definition of done[23, Page 18],
the developer merges the feature onto the mainline branch. This invokes a web hook and
instructs PREvant to shut down the application, and the development continues with the
next feature.

5.2 Configurable and Isolated Environments
Because the microservices of aixigo AG are utilized with different configurations in different
production environments, it is crucial that these configurations can be tested in an accessible
manner. Therefore, the company utilizes PREvant’s REST API to spin up-and-down
applications with specific configuration scenarios. Listing 4 illustrates the usage of PREvant’s
REST API to spin up the application features.test with the order service in a specific
configuration.

Listing 4 REST API Call with Configuration for Test Case.

POST /api/apps/features.test HTTP/1.1
Host: preview.example.com
Content-Type: application/json
Accept: application/json

[{
"serviceName": "order",
"image": "registry.example.com/a-team/order",
"files": {

"/etc/order/conf.d/sales.properties": "some.feature.flag = OFF"
},
"env": {

"FEATURE_FLAG": "ON"
}

}]

In this case the configuration of order is influenced by two parameters: the configuration
file /etc/order/conf.d/sales.properties and the environment variable FEATURE_FLAG that
toggle features of the service. The configuration of the remaining services has not been

Microservices 2017/2019

5:12 PREvant (Preview Servant)

changed. When the REST request has been executed, the domain experts and developers can
test the service to determine whether it behaves correctly. This feature is crucial to quality
assurance when introducing new configuration options because the mainline application runs
in a default configuration; otherwise, it would be difficult for domain experts and developers
to spin up an application for quality-assurance purposes. PREvant’s approach provides
additional use cases:

The microservices with the specific configurations are running in isolation so that domain
experts can test the application without disruption from builds and deployments that are
executed on the mainline branch. Aixigo AG’s domain experts often utilize this feature
to clone the mainline branch to test it with the default configuration without disruption.
The REST call that is integrated into PREvant’s web interface is illustrated in Listing 5.
Furthermore, the REST interface provides the query parameter replicateFrom to specify
which application should be replicated.

Listing 5 REST API Call Cloning Mainline.

POST /api/apps/features.test?replicateFrom=master HTTP/1.1
Host: preview.example.com
Content-Type: application/json
Accept: application/json

[]

From time to time, sales managers wish to demonstrate the application to potential
customers and must demonstrate the application in a specific configuration. Therefore,
they ask aixigo’s domain experts to set up an application that can demonstrate feature X
or Y.

5.3 Version Picking
Microservices of aixigo AG are running in production in different major or minor versions,
and users report bugs in different versions. To reproduce these bugs, domain experts and
developers utilize PREvant to spin up an application that runs the specific version with an
additional specific configuration of the service. Therefore, a domain expert can utilize the
REST API to select a specific container image version, as illustrated in Listing 6.11

Listing 6 REST API Call with Version Picking.

POST /api/apps/is-it-working-with-v1?replicateFrom=master HTTP/1.1
Host: preview.example.com
Content-Type: application/json
Accept: application/json

[{
"serviceName": "order",
"image": "registry.example.com/a-team/order:1.0.2"

}]

11 Sometimes it is useful to compare old and new versions of a microservice in aixigo’s sprint reviews; on
such occasions, it is convenient to spin it up with PREvant.

M. Schreiber 5:13

PREvant does not provide a user interface for this use case and the feature is only
accessible utilizing command line tools or the integrated Swagger UI. However, PREvant’s
road map contains the extension of the web interface, so that spinning up applications with
specific versions and configurations, as illustrated in Listing 4 and 6, is more effective.

6 Companions and Recipes

While PREvant enables workflows that ensure a higher quality of microservices, it also
aims to be agnostic to the hosted types of microservices, which means that the type of
microservices [10] in development are irrelevant to PREvant. Whether a team develops a
function as a service or a self-contained system, the microservices merely need to be packaged
as a container image. However, these microservices rely on services that provide some
infrastructure, such as databases or OpenID [20] providers, as depicted in the case study in
Section 3. To provide these infrastructure services, PREvant offers two types of companions
that are infrastructure microservices that are available over the container network while the
microservice applications are running. PREvant deploys companions automatically when it
received a REST request.

Service Companions Some infrastructure services are specific to a given microservice or are
logically owned by a microservice. For example, a database instance such as MariaDB12

is required by a service, a memory cache such as Memcached13 is required by another
service, and all services require a sidecar proxy.
These infrastructure services must be available for the microservice, and PREvant initiates
these services as soon as the dependent microservice spins up.

Application Companions Some infrastructure services must be available for all microservices
of an application. For example, Apache Kafka provides a stream-processing platform to
establish publish and subscribe messaging between services. Further examples include
service discovery providers, API gateways, or OpenID providers.
These types of services are globally available and potentially required by all microservices
of the application. Therefore, PREvant initiates these infrastructure services when the
application spins up.

To initiate these infrastructure services, PREvant provides configuration options that
are illustrated in the following subsections by a set of recipes. These recipes provide some
configuration examples that help developers to compose their microservice applications
through PREvant. Section 6.1 provides an example of the configuration of database services
for all microservices of an application. Additionally, these configuration options provide some
templating options so that configurations are dynamically adjusted.

6.1 Service Databases

As stated previously, microservices that are hosted by PREvant often require the provision
of a database. Listing 7 illustrates a configuration that ensures initiation of a MariaDB
database, which is a service companion.

12 https://mariadb.org/
13 http://memcached.org/

Microservices 2017/2019

https://mariadb.org/
http://memcached.org/

5:14 PREvant (Preview Servant)

Listing 7 PREvant Configuration: Database Companion.

1 [companions.mariadb]
2 type = 'service'
3 image = 'docker.io/library/mariadb:10.3'
4 serviceName = '{{service.name}}-db'
5 env = [
6 'MYSQL_DATABASE={{service.name}}', 'MYSQL_USER={{service.name}}',

'MYSQL_PASSWORD={{service.name}}'↪→

7]

Initially, the companion name must be defined; in this case, the name is mariadb (see
Line 1). Additionally, the companion type must be defined so that it is valid for every
service (see Line 2). Furthermore, the container image as well as the service name must be
specified (see Line 3), which results in the DNS name of the database (see Line 4). The
configuration of the DNS name can be adjusted by Handlebars templating syntax.14 In
this case, the corresponding microservice name is utilized to derive the DNS name. For
example, for the microservice with name X, the corresponding database DNS name is X-db.
Additionally, the environment variables of the database companion are adjusted so that the
companion creates a database with a default username and password.

6.2 API Gateway
Some microservice architectures require an API gateway that processes every request before
they are forwarded to any microservice. To initiate an API gateway for each application,
definitions of the type, image and service name for the companion are required, as illustrated
in Listing 8 by [companions.api-gateway].

Listing 8 PREvant Configuration Using An API Gateway.

[companions.api-gateway]
type = 'application'
image = 'registry.example.com/a-team/api-gateway:latest'
serviceName = 'api-gateway'

[companions.api-gateway.labels]
'traefik.frontend.rule' = 'PathPrefix:/{{application.name}}/'
'traefik.frontend.priority' = '10000'

Furthermore, all requests are routed through the API gateway; therefore, the entry
link a domain expert employs to interact with the application is irrelevant. In Listing 8,
the configuration section labeled [companions.api-gateway.labels] ensures that the default
labeling of the API gateway, which is responsible for Traefik’s automatic discovery, is
overwritten. Here, every request to the application is routed to the API gateway because of
the higher priority and the path-prefix rule.15

14 https://handlebarsjs.com/
15More information about Traefik’s configuration options are available at: https://docs.traefik.io/

basics/

https://handlebarsjs.com/
https://docs.traefik.io/basics/
https://docs.traefik.io/basics/

M. Schreiber 5:15

7 Summary

This paper presented the concepts and implementation details of the tool Preview Ser-
vant (PREvant), which enables developers and domain experts to perform quality-assurance
tasks on their microservice applications. Therefore, PREvant provides a simple REST inter-
face that allows developers to extend their microservices’ delivery pipelines with PREvant’s
composing mechanism (see Section 4), which spins up fully functional applications that
can be explored by domain experts. Based on the capabilities of the RESTful interface,
aixigo’s employees utilize workflows that increase and maintain the microservice quality (see
Section 5). Furthermore, PREvant’s approach is not tied to these established workflows;
rather, it employs an approach that is independent from the microservice application archi-
tecture because PREvant enables developers to configure required infrastructure services, as
described in Section 6.

Furthermore, PREvant’s composition and configuration mechanisms that are integrated in
the web interface, allow users to set up dedicated previews in minutes so that sales managers
can utilize isolated applications to demonstrate the application to potential customers.
PREvant has become a major factor in the quality-assurance process at aixigo AG.

References
1 Dave Astels. Test Driven Development: A Practical Guide. Prentice Hall Professional Technical

Reference, July 2003.
2 Antonio Bucchiarone, Nicola Dragoni, Schahram Dustdar, Stephan T. Larsen, and Manuel

Mazzara. From Monolithic to Microservices: An Experience Report from the Banking Domain.
IEEE Software, 35(3):50–55, May 2018. doi:10.1109/MS.2018.2141026.

3 Giuliana Carullo. Code Reviews 101: The Wisdom of Good Coding. Giuliana Carullo, May
2019.

4 Lianping Chen. Continuous Delivery: Huge Benefits, but Challenges Too. IEEE Software,
32(2):50–54, March 2015. doi:10.1109/MS.2015.27.

5 Containous. Traefik: The Cloud Native Edge Router, 2019. Accessed: 2019-08-12. URL:
https://traefik.io/.

6 B. Cook. Web Host Metadata. Technical report, Internet Engineering Task Force, November
2011. doi:10.17487/rfc6415.

7 Cosmin Costache, Octavian Machidon, Adrian Mladin, Florin Sandu, and Razvan Bocu.
Software-defined networking of Linux containers. In RoEduNet Conference 13th Edition:
Networking in Education and Research Joint Event RENAM 8th Conference, pages 1–4,
September 2014. doi:10.1109/RoEduNet-RENAM.2014.6955310.

8 The Linux Foundation. OpenAPI Initiative, 2019. Accessed: 2019-11-08. URL: https:
//www.openapis.org/.

9 Silvery Fu, Jiangchuan Liu, Xiaowen Chu, and Yueming Hu. Toward a Standard Interface for
Cloud Providers: The Container as the Narrow Waist. IEEE Internet Computing, 20:66–71,
2016. doi:10.1109/MIC.2016.25.

10 Martin Garriga. Towards a Taxonomy of Microservices Architectures. In Software Engineering
and Formal Methods, pages 203–218. Springer International Publishing, February 2018. doi:
10.1007/978-3-319-74781-1_15.

11 Anne Marie Glen. [DZone Research] Microservices Priorities and Trends,
July 2018. Accessed: 2019-08-12. URL: https://dzone.com/articles/
dzone-research-microservices-priorities-and-trends.

12 Jesper Holck and Niels Jørgensen. Continuous Integration and Quality Assurance: a case study
of two open source projects. Australasian Journal of Information Systems, 11(1), November
2003. doi:10.3127/ajis.v11i1.145.

Microservices 2017/2019

https://doi.org/10.1109/MS.2018.2141026
https://doi.org/10.1109/MS.2015.27
https://traefik.io/
https://doi.org/10.17487/rfc6415
https://doi.org/10.1109/RoEduNet-RENAM.2014.6955310
https://www.openapis.org/
https://www.openapis.org/
https://doi.org/10.1109/MIC.2016.25
https://doi.org/10.1007/978-3-319-74781-1_15
https://doi.org/10.1007/978-3-319-74781-1_15
https://dzone.com/articles/dzone-research-microservices-priorities-and-trends
https://dzone.com/articles/dzone-research-microservices-priorities-and-trends
https://doi.org/10.3127/ajis.v11i1.145

5:16 PREvant (Preview Servant)

13 Pooyan Jamshidi, Aakash Ahmad, and Claus Pahl. Cloud Migration Research: A Systematic
Review. IEEE Transactions on Cloud Computing, 1(2):142–157, 2013. doi:10.1109/tcc.
2013.10.

14 David Jaramillo, Duy Nguyen, and Robert Smart. Leveraging microservices architecture by
using Docker technology. In SoutheastCon 2016, pages 1–5, March 2016. doi:10.1109/SECON.
2016.7506647.

15 Sheroy Marker. Test Strategy for Microservices, May 2018. Accessed: 2019-08-12. URL: https:
//www.gocd.org/2018/05/08/continuous-delivery-microservices-test-strategy/.

16 Nicholas D. Matsakis and Felix S. Klock, II. The Rust Language. In Proceedings of the 2014
ACM SIGAda Annual Conference on High Integrity Language Technology, HILT ’14, pages
103–104. ACM, 2014. doi:10.1145/2692956.2663188.

17 Dirk Merkel. Docker: Lightweight Linux Containers for Consistent Development and Deploy-
ment. Linux Journal, 2014(239):2, 2014.

18 Sam Newman. Building Microservices. O’Reilly Media, Inc., 1st edition, 2015.
19 A. Petersson and M. Nilsson. Forwarded HTTP Extension. Technical report, Internet

Engineering Task Force, June 2014. doi:10.17487/rfc7239.
20 David Recordon and Drummond Reed. OpenID 2.0: A Platform for User-centric Identity

Management. In Proceedings of the Second ACM Workshop on Digital Identity Management,
DIM ’06, pages 11–16, New York, NY, USA, 2006. ACM. doi:10.1145/1179529.1179532.

21 Cesar Saavedra. The State of Microservices Survey 2017 – Eight trends you need to know,
December 2017. Accessed: 2019-08-12. URL: https://middlewareblog.redhat.com/2017/
12/05/the-state-of-microservices-survey-2017-eight-trends-you-need-to-know/.

22 D. I. Savchenko, Gleb Radchenko, and Ossi Taipale. Microservices validation: Mjolnirr
platform case study. In 38th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), pages 235–240, May 2015. doi:
10.1109/MIPRO.2015.7160271.

23 Jeff Sutherland and Ken Schwaber. The scrum guide. The definitive guide to scrum: The
rules of the game, 268, 2013. URL: https://www.scrumguides.org/docs/scrumguide/v2017/
2017-Scrum-Guide-US.pdf.

24 Markos Viggiato, Ricardo Terra, Henrique Rocha, Marco Tulio Valente, and Eduardo
Figueiredo. Microservices in Practice: A Survey Study. In VEM 2018 - 6th Workshop
on Software Visualization, Evolution and Maintenance, Sao Carlos, Brazil, September 2018.
URL: https://hal.inria.fr/hal-01944464.

25 Ham Vocke. The Practical Test Pyramid, February 2018. Accessed: 2019-11-08. URL:
https://martinfowler.com/articles/practical-test-pyramid.html.

26 Adam Wiggins. The Twelve-Factor App, 2017. Accessed: 2019-08-12. URL: https://12factor.
net/.

27 Laurie Williams. Pair Programming Illuminated. Addison-Wesley Professional, July 2002.
28 Eberhard Wolff. Microservices: Flexible Software Architectures. CreateSpace Independent

Publishing Platform, 2016.
29 Eberhard Wolff. Microservices: A Practical Guide. CreateSpace Independent Publishing

Platform, April 2018.
30 Olaf Zimmermann. Microservices Tenets. Comput. Sci., 32(3–4):301–310, July 2017. doi:

10.1007/s00450-016-0337-0.

https://doi.org/10.1109/tcc.2013.10
https://doi.org/10.1109/tcc.2013.10
https://doi.org/10.1109/SECON.2016.7506647
https://doi.org/10.1109/SECON.2016.7506647
https://www.gocd.org/2018/05/08/continuous-delivery-microservices-test-strategy/
https://www.gocd.org/2018/05/08/continuous-delivery-microservices-test-strategy/
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.17487/rfc7239
https://doi.org/10.1145/1179529.1179532
https://middlewareblog.redhat.com/2017/12/05/the-state-of-microservices-survey-2017-eight-trends-you-need-to-know/
https://middlewareblog.redhat.com/2017/12/05/the-state-of-microservices-survey-2017-eight-trends-you-need-to-know/
https://doi.org/10.1109/MIPRO.2015.7160271
https://doi.org/10.1109/MIPRO.2015.7160271
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://hal.inria.fr/hal-01944464
https://martinfowler.com/articles/practical-test-pyramid.html
https://12factor.net/
https://12factor.net/
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0

	Introduction
	Background and Related Work
	Case Study
	Composing Microservices with PREvant
	Architecture
	Conventions on Microservices and Application

	Development and Quality Assurance Workflows
	Feature Branch Based Development
	Configurable and Isolated Environments
	Version Picking

	Companions and Recipes
	Service Databases
	API Gateway

	Summary

