
Agile Requirement Engineering for a Cloud
System for Automated and Networked Vehicles
Armin Mokhtarian
Informatik 11 – Embedded Software, RWTH Aachen University, Germany
mokhtarian@embedded.rwth-aachen.de

Alexandru Kampmann
Informatik 11 – Embedded Software, RWTH Aachen University, Germany
kampmann@embedded.rwth-aachen.de

Bassam Alrifaee
Informatik 11 – Embedded Software, RWTH Aachen University, Germany
alrifaee@embedded.rwth-aachen.de

Stefan Kowalewski
Informatik 11 – Embedded Software, RWTH Aachen University, Germany
kowalewski@embedded.rwth-aachen.de

Bastian Lampe
Institute for Automotive Engineering, RWTH Aachen University, Germany
bastian.lampe@ika.rwth-aachen.de

Lutz Eckstein
Institute for Automotive Engineering, RWTH Aachen University, Germany
lutz.eckstein@ika.rwth-aachen.de

Abstract
This paper presents a methodology for the agile development of a cloud system in a multi-partner
project centered around automated vehicles. Besides providing an external environment model
as an additional input to the automation, the cloud system is also the main gateway for users
to interact with automated vehicles through applications on mobile devices. Multiple factors are
posing a challenge in our context. Coordination becomes especially challenging, as stakeholders are
spread among different locations with backgrounds from various domains. Furthermore, automated
vehicles for different applications, such as delivery or taxi services, give rise to a large number
of use cases that our cloud system has to support. For our agile development process, we use
standardized templates for the description of use-cases, which are initialized from storyboards and
iteratively refined by stakeholders. These use-case templates are subsequently transformed into
machine-readable specifications, which allows for generation of REST APIs for our cloud system.

2012 ACM Subject Classification Software and its engineering

Keywords and phrases agile requirements engineering, cloud architecture, automated vehicles

Digital Object Identifier 10.4230/OASIcs.ASD.2020.4

Funding This research is accomplished within the project “UNICARagil” (FKZ EM2ADIS002). We
acknowledge the financial support for the project by the Federal Ministry of Education and Research
of Germany (BMBF).

1 Introduction

Individual vehicles become part of a larger system for many use cases proposed for automated
driving. Automated shuttles, for example, would require an entity that coordinates a
larger fleet of vehicles and through which humans can summon vehicles through their
smartphone. Automated parcel delivery vehicles, another use case pursued in various efforts,

© Armin Mokhtarian, Alexandru Kampmann, Bassam Alrifaee, Stefan Kowalewski, Bastian Lampe,
and Lutz Eckstein;
licensed under Creative Commons License CC-BY

2nd International Workshop on Autonomous Systems Design (ASD 2020).
Editors: Sebastian Steinhorst and Jyotirmoy V. Deshmukh; Article No. 4; pp. 4:1–4:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5345-4538
mailto:mokhtarian@embedded.rwth-aachen.de
mailto:kampmann@embedded.rwth-aachen.de
mailto:alrifaee@embedded.rwth-aachen.de
mailto:kowalewski@embedded.rwth-aachen.de
mailto:bastian.lampe@ika.rwth-aachen.de
mailto:lutz.eckstein@ika.rwth-aachen.de
https://doi.org/10.4230/OASIcs.ASD.2020.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


4:2 Agile Requirement Engineering for a Cloud System

also depend on an entity for coordination. As depicted in Fig. 1, these coordinating entities
can be implemented as cloud services, which then become an essential component in the
ecosystem of automated vehicles. In particular, they provide the infrastructure which enables
communication within the overall system. Different actors can store or request data and
coordinate with other parties through the cloud system. Thus, the cloud provides the main
interfaces for data exchange between actors, such as a user requesting a taxi by using a mobile
application or an automated delivery vehicle asking for its next destination. Furthermore,
cloud computing provides more computational power, which can be used to enable several
other use cases like fusing real-time sensor data of multiple vehicles to provide feedback on a
more comprehensive environment model [6]. Therefore, a cloud system is not only of high
importance regarding communication but can also aid the overall ecosystem of automated
vehicles by collecting, combining and processing data.

Figure 1 An overview of the cloud and its actors in the UNICARagil project. The ecosystem of
UNICARagil includes four different vehicle types, a charging as well as a packing station, a control
room and an info-bee (drone) [14].

The development of an ecosystem centered around automated driving is pursued in the
UNICARagil project, which is a multi-partner project aiming to develop four fully automated
vehicles of different characteristics [14]. As the vehicle on-board software is implemented
following a service-oriented software architecture (SOA) [5], the cloud software also follows a
SOA approach. A total of over 100 developers spread over 15 university chairs and 6 industrial
partners are involved in this four-year project. Having a large number of participants, the
communication and coordination of the development becomes extra challenging. First,
because researchers and developers are spread among different locations. Second, because
they have different academic backgrounds. This may result in numerous, non-uniform and
poorly communicated specifications. Additionally, our cloud system has to serve four vehicle
types which all share the same platform concept but have a different use.



A. Mokhtarian et al. 4:3

autoELF: A family vehicle intended for private use [12].
autoTAXI: A vehicle for short-term general use.
autoCARGO: A fully automated parcel service.
autoSHUTTLE: Public transportation of multiple people.

The vehicle variants rely on a cloud system for coordination and for optional input
to the automation algorithms through an external environment model. Although there
are several commonalities between these vehicle types, they have different requirements
for the cloud. The autoCARGO, for example, is the only platform that needs additional
interfaces to communicate with a logistics management service. Hence, we have platform
specific requirements in addition to requirements arising from automated driving scenarios.
Furthermore, due to the early development stage, different platforms and a large number
of developers with different backgrounds, the process from requirement engineering to
implementation becomes very challenging. In this case, agile development is unavoidable. In
particular, since the requirements change during the implementation, we need to simplify
the overhead for adjustments.

Another challenging aspect arises since the cloud system and the project are developed
simultaneously. In the early stages of a project, the requirements and specifications of the
final system are often unavailable. Thus, the simultaneous development of the cloud and
the overall system requires a scalable and adaptable system for being able to adjust to
changing requirements. Consequently, this requires a modular, expandable and adjustable
concept. The necessity of an adaptable cloud system increases with an increasing number
of stakeholders. In this paper, we present our approach for the design of a cloud system to
overcome the aforementioned challenges.

1.1 Related Work
Cloud systems have various use in the automotive domain. [7] claims, that cloud systems are
the go-to solution for deploying frameworks suitable for automotive tasks. A cloud-based
artificial intelligence framework for continuous training and self-driving is presented by [8].
Their system supports the collection of data which is used to develop and train machine
learning models to leverage the cloud as a model performance booster. Hence, the cloud is
an essential component in their ecosystem.

According to [3], the most common reason for software project failures is bad or incomplete
requirements engineering. Therefore, requirement engineering plays a critical role in our
approach. Several methods and guidelines were developed in order to not only prevent project
failures but also to allow an efficient approach. A novel approach, which is investigated by
Paetsch et al. [9], is to combine classic requirement engineering concepts, e.g. Waterfall
model [1], with agile methods like Scrum [13].

2 Method

A system development lifecycle usually consists of the following steps. By starting with a
requirements analysis, the developers investigate the properties and qualities their system
should provide. At this phase, detailed communication with the customer is required to
elaborate a solid groundwork. The system design, which includes the complete hardware
and software setup is derived based on the requirements. Consequently, the system design
is broken down into modules in the architectural design phase. In the module phase, these
modules are designed in detail to be implemented afterwards.

ASD 2020



4:4 Agile Requirement Engineering for a Cloud System

If it turns out that the requirements were not levied correctly or changed during the
development lifecycle, it may require to restart the development process from scratch in the
worst case. Thus, in order to reduce the overhead, it is desired to have robust requirement
engineering and an adaptable development process. Agile requirements engineering methods
like Scrum are prepared for new or changing requirements as their incremental mode of
operation intends to provide adaptability to the current set of tasks. Furthermore, a modular
groundwork enables the basis for implementing new requirements.

In this section, we present a methodology, which relies on template-based requirement
engineering. This method enables to adapt to new requirements with lower effort and thus
provides the basis for an incremental way of working.

2.1 Requirements Engineering

In order to have consistent feedback, we created a survey with concrete questions, which was
handed out to all project stakeholders. Moreover, to take care of the difficulty regarding the
different academic backgrounds, we asked for use cases instead of operational requirements.
To illustrate the interaction of the use cases as well as the actors within the system, UML
diagrams can be used [10]. However, the number of attributes and details we want to capture
would cause UML diagrams to appear confusing. Furthermore, due to a large number of
participants, we could not assume that everyone is familiar with UML. Hence, we decided
on a questionnaire with 8 attributes which are listed in Table 1 and adapted from [2]. This
assures that the collected use cases all have the same format and enable easy extraction of
the essential information. Our survey resulted in 47 use cases that had to be evaluated and
processed.

Although we tried to get uniform results by providing a specific template, the survey
showed that the participants answered the questionnaires with a varying level of detail. Thus,
the next step of our method transforms the questionnaires into a uniform, understandable
and transparent representation. For this purpose, as recommended by Christine Rupp [11],
we investigated the results concerning completeness, consistency, understandability, necessity,
feasibility, clarity and traceability. To assure this quality features, we decided to use a
pattern-based approach shown in Fig 2. This approach maps a use case into four parts.

Table 1 One of 47 use cases gathered with the template-based survey in the UNICARagil project.

ID 3.5
Use Case Title Deliver Notification
Description Customer is notified about the delivery of his parcel.
Actors Cloud, Customer (App), Parcel Box
Frequency Daily
Condition Parcel Box has booked delivered parcel correctly.
Guarantee of Success Customer can pick up his parcel at the parcel box.
Trigger Parcel was delivererd to the parcel box by autoCARGO.
Actions 1. Cloud notifies Customer via App about delivered parcel.

2. Customer enters pin code at parcel box.
3. Parcel box provides parcel.
4. Parcel box notifies the cloud about the parcel pickup status.



A. Mokhtarian et al. 4:5

Figure 2 Pattern based approach for requirement description adapted from [11].

1. Logical operator
Most of the functionalities and processes start after a series of preconditions or are
triggered through events. Therefore, the temporal component is mapped here.

2. Priority
Different use cases have different priorities for the same functionalities in the cloud. For
being able to distinguish between the relevance of a requirement, a three-level rating
system is introduced.

3. System
Requirements that are created by this approach are phrased in an active sentence. Since
these requirements are gathered in the context of the cloud only, it is always the subject.

4. Process
The main focus of every requirement is the functionalities of the system. At this point,
the desired system behavior is described.

After transforming 47 use cases into this pattern with regard to quality features, 42 require-
ments were derived.

2.2 System Design
After processing the gathered use cases into requirements, the next step consists of breaking
down the cloud system into individual cloud services. We will use the exemplary use case
3.5 Deliver Notification shown in Table 1 to explain the procedure. This use case describes
the situation of an autoCARGO delivering a parcel to the parcel box. Afterwards, the user
gets a notification via the App and receives a pin code that is needed to pick up the parcel
at the parcel box.

In this case, there exist three actors: The user, the parcel box and the cloud. This
scenario creates the need for two services to manage user and parcel box data. Hence, the
user management and the logistics management are introduced. Any endpoint can use their
API to store and request data. Now, we use the Actions from Table 1 to derive the necessary
communication interfaces of the aforementioned cloud services. The resulting relation table
is shown in Table 2.

ASD 2020



4:6 Agile Requirement Engineering for a Cloud System

Table 2 System view on an exemplary use case.

3.5 Deliver Notification
Action From To HTTP-API
3.5.1 Logistics Mgmt User Mgmt PUT:/parcel/status
3.5.2 App User Mgmt GET:/user/parcel/receive

3.5.3 Parcelbox Logistics Mgmt HEAD:/infrastructure/parcelbox/
{PBOX_ID}/pincodecheck

3.5.4 Parcelbox Logistics Mgmt PUT:/infrastructure/parcelbox/
{PBOX_ID}/parcel/{PARCEL_ID}/status

In the course of our process, we maintain traceability by linking use case questionaries,
derived requirements and final system specifications with an ID. This allows for identifying
components that may be affected by a change in the underlying requirements. Besides an
ID, the system view contains Action, From, To and API.

For the first Action of this use case (3.5.1), the user management provides two endpoints.
One is offered by the cloud internal HTTP API for the logistics management and the other
one is offered by consumer mobile application HTTP API. We determined

PUT /parcel/status (1)

to be accessed by the logistics management for notifying the user management about parcel
status changes. Further, we determined

GET /user/parcel/receive (2)

to be used by the App for requesting status information about parcels. Its response also
provides the pin code for the parcel pickup. The next Action (3.5.2) does not describe any
interaction with the cloud and can be skipped. Action 3.5.3, in turn, needs to be handled by

HEAD /infrastructure/parcelbox/pbox_id/pincodecheck (3)

in order to check if the combination of parcel and pincode is correct. Finally, Action 3.5.4
asks the system to update the status of the parcel which is done by

PUT /infrastructure/parcelbox/pbox_id/parcel/parcel_id/status (4)

This approach proved itself to be structured and expedient, as it allowed us to quickly come
to an initial system design consisting of more than 20 cloud services with over 70 endpoints.
The resulting HTTP-APIs are specified with OpenAPI1 which is an API description format
for REST APIs. The specifications are written in YAML and thus are readable to both
humans and machines.

The YAML files are processed by the OpenAPI Generator to generate a Python flask
server [4]. Furthermore, bootprint2 is used to generate static HTML pages of the OpenAPI
specification. We decided for this setup, in order to enable rapid prototyping during our
development process.

1 https://swagger.io
2 https://github.com/bootprint/bootprint

https://swagger.io
https://github.com/bootprint/bootprint


A. Mokhtarian et al. 4:7

2.3 Code Generation
Since OpenAPI was used to specify the HTTP API for every service, it is possible to convert
those into a static HTML page by using bootprint. Furthermore, those specifications are used
to generate a Python flask server with code stubs for the implementation of all HTTP APIs.
This code does not contain the actual functionality of the service but is runnable and allows
for speeding up the implementation process. For this purpose, a Git repository with GitLab
Continuous Integration was set up. Tagging a commit with generate_code, generate_doc or
generate when pushing to the master branch, the Git runner is triggered. This generates the
HTML documentation, Python flask servers or both for all services. Finally, everything just
generated is pushed to the Git repository. Hence, for every change made to the specification,
the code is generated automatically and can be tested directly.

3 Conclusion

Based on the Cloud system in the UNICARagil project, we presented a methodology to
deal with arising challenges in a multi-partner project. Together with a large number of
different stakeholders, covering four different platforms makes the development challenging.
Thus, our method was chosen to provide consistent and scalable requirements engineering.
Furthermore, due to the early stage within the overall project, it was of high importance to
use a method which provides fast prototyping and is adaptable to upcoming changes in the
requirements

Therefore, we first created a template-based survey that was handed to everybody who
intends to work with the cloud. The survey returned 47 use cases which then were examined
regarding quality measurements and processed afterward. A pattern-based approach helped
to transform the use cases into 42 requirements. Based on these requirements, we derived
relation tables to provide a structured way to define interfaces and endpoints. The interfaces
were specified with OpenAPI, which enabled the generation of Python flask server code and
an HTML documentation. Both code and documentation then are pushed to Git and allows
for automated test with GitlabCI3.

We presented a method that allows processing new requirements into the system with
lower effort to allow an incremental way of operation. At the same time, a modular and
lightweight groundwork derived by the template-based requirements engineering enabled
fast prototyping. This methodology combined classic requirements engineering and agile
development. Neither of both would have suited our needs if they were used separately. Our
methodology proved itself as suitable for our project since it allowed fast prototyping and
easy adaptability to new requirements, while still capturing system specifications from the
beginning of the project.

References
1 Barry W Boehm. A spiral model of software development and enhancement. Computer,

21(5):61–72, 1988.
2 Alistair Cockburn. Basic Use Case Template. Humans and Technology, Technical Report, 96,

1998.
3 Jeremy Dick, Elizabeth Hull, and Ken Jackson. Requirements engineering. Springer, 2017.

3 https://docs.gitlab.com/ee/ci/

ASD 2020

https://docs.gitlab.com/ee/ci/


4:8 Agile Requirement Engineering for a Cloud System

4 Miguel Grinberg. Flask web development: developing web applications with python. " O’Reilly
Media, Inc.", 2018.

5 A. Kampmann, B. Alrifaee, M. Kohout, A. Wüstenberg, T. Woopen, M. Nolte, L. Eckstein,
and S. Kowalewski. A dynamic service-oriented software architecture for highly automated
vehicles. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pages 2101–2108,
October 2019. doi:10.1109/ITSC.2019.8916841.

6 Bastian Lampe, Timo Woopen, and Lutz Eckstein. Collective driving-cloud services for
automated vehicles in unicaragil. In 28. Aachen Colloquium Automobile and Engine Technology:
October 7th–9th, 2019, Eurogress Aachen, Germany / scientific management: Univ.-Prof.
Dr.-Ing. Lutz Eckstein, Univ.-Prof. Dr.-Ing. Stefan Pischinger ; organizational management:
Michaela Heetkamp (M.Sc.), Jonas Müller (M.Sc.) ; organized by: Institute for Automotive
Engineering, RWTH Aachen University; Institute for Combustion Engines, RWTH Aachen
University., pages 677–703. Institute for Automotive Engineering, RWTH Aachen University,
2019. doi:10.18154/RWTH-2019-10061.

7 Andre Luckow, Matthew Cook, Nathan Ashcraft, Edwin Weill, Emil Djerekarov, and Bennie
Vorster. Deep learning in the automotive industry: Applications and tools. In 2016 IEEE
International Conference on Big Data (Big Data), pages 3759–3768. IEEE, 2016.

8 Cristian Olariu, Haytham Assem, Juan Diego Ortega, and Marcos Nieto. A cloud-based
ai framework for machine learning orchestration: A “driving or not-driving” case-study for
self-driving cars. In 2019 IEEE Intelligent Vehicles Symposium (IV), pages 1715–1722. IEEE,
2019.

9 Frauke Paetsch, Armin Eberlein, and Frank Maurer. Requirements engineering and agile
software development. In WET ICE 2003. Proceedings. Twelfth IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprises, 2003., pages 308–313.
IEEE, 2003.

10 Bernhard Rumpe. Modellierung mit UML. Xpert.press. Springer Berlin, 2nd edition edition,
September 2011.

11 Christine Rupp et al. Requirements-Engineering und-Management: Aus der Praxis von klassisch
bis agil. Carl Hanser Verlag GmbH Co KG, 2014.

12 Tobias Schräder, Torben Stolte, Inga Jatzkowski, Robert Graubohm, and Markus Maurer.
An approach for a requirement analysis for an autonomous family vehicle. In 2019 IEEE
Intelligent Vehicles Symposium (IV), pages 1597–1603. IEEE, 2019.

13 Ken Schwaber and Mike Beedle. Agile software development with Scrum, volume 1. Prentice
Hall Upper Saddle River, 2002.

14 Timo Woopen, Bastian Lampe, Torben Böddeker, Lutz Eckstein, Alexandru Kampmann, Bas-
sam Alrifaee, Stefan Kowalewski, Dieter Moormann, Torben Stolte, Inga Jatzkowski, Markus
Maurer, Mischa Möstl, Rolf Ernst, Stefan Ackermann, Christian Amersbach, Hermann Winner,
Dominik Püllen, Stefan Katzenbeisser, Stefan Leinen, Matthias Becker, Christoph Stiller, Kai
Furmans, Klaus Bengler, Frank Diermeyer, Markus Lienkamp, Dan Keilhoff, Hans-Christian
Reuss, Michael Buchholz, Klaus Dietmayer, Henning Lategahn, Norbert Siepenkötter, Martin
Elbs, Edgar v. Hinüber, Marius Dupuis, and Christian Hecker. UNICARagil – Disruptive
Modular Architectures for Agile, Automated Vehicle Concepts; 1st edition. In 27. Aachener
Kolloquium Fahrzeug- und Motorentechnik : October 8th–10th, 2018 – Eurogress Aachen, pages
663–694, Aachen, October 2018. 27th Aachen Colloquium Automobile and Engine Technology
2018, Aachen (Germany), 8 Oct 2018 – 10 Oct 2018, Aachener Kolloquium Fahrzeug- und
Motorentechnik GbR. Zweitveröffentlicht auf dem Publikationsserver der RWTH Aachen
University. doi:10.18154/RWTH-2018-229909.

https://doi.org/10.1109/ITSC.2019.8916841
https://doi.org/10.18154/RWTH-2019-10061
https://doi.org/10.18154/RWTH-2018-229909

	Introduction
	Related Work

	Method
	Requirements Engineering
	System Design
	Code Generation

	Conclusion

