
BreachFlows: Simulation-Based Design with
Formal Requirements for Industrial CPS
Alexandre Donzé
Decyphir SAS, Moirans, France
http://www.decyphir.com
alex@decyphir.com

Abstract
Cyber-Physical Systems (CPS) are computerized systems in interaction with their physical environ-
ment. They are notoriously difficult to design because their programming must take into account
these interactions which are, by nature, a mix of discrete, continuous and real-time behaviors. As
a consequence, formal verification is impossible but for the simplest CPS instances, and testing is
used extensively but with little to no guarantee. Falsification is a type of approach that goes beyond
testing in the direction of a more formal methodology. It has emerged in the recent years with
some success. The idea is to generate input signals for the system, monitor the output for some
requirements of interest, and use black-box optimization to guide the generation toward an input
that will falsify, i.e., violate, those requirements. Breach is an open source Matlab/Simulink toolbox
that implements this approach in a modular and extensible way. It is used in academia as well as
for industrial applications, in particular in the automotive domain. Based on experience acquired
during close collaborations between academia and industry, Decyphir is developing BreachFlows,
and extension/front-end for Breach which implements features that are required or useful in an
industrial context.

2012 ACM Subject Classification Software and its engineering; Computer systems organization →
Embedded and cyber-physical systems; Theory of computation → Timed and hybrid models; Theory
of computation → Streaming models; Mathematics of computing → Solvers; Computing method-
ologies → Model verification and validation; Computing methodologies → Simulation evaluation;
Computing methodologies → Simulation tools; Computing methodologies → Machine learning;
Software and its engineering → Software creation and management; Theory of computation →
Mathematical optimization

Keywords and phrases Cyber Physical Systems, Verification and Validation, Test, Model-Based
Design, Formal Requirements, Falsification

Digital Object Identifier 10.4230/OASIcs.ASD.2020.5

Category Extended Abstract

1 Context: CPS Design, Verification and Validation

Cyber-Physical Systems (CPS) such as cars, planes, robots, medical devices, etc, have been
steadily growing in sophistication and complexity. As a consequence, their construction
require advanced design tools to ensure that they achieve their functional and safety goals.
Model-based design (MBD) has become a standard practice to cope with the complexity
and cost of development. In this paradigm, models of the system and its environment of
increasing realism are developed and iteratively verified and validated against a suite of
requirements until the real or production design is achieved. Stemming from the domains
of logic, computation, digital circuits and later software verification, formal methods were
developed to automate the process of proving that a given design satisfy a given requirement
(Model-Checking) or alternatively, creating a design from a given requirement, which is
then proven to be satisfied by construction (synthesis). For decades, various attempts have
been made to bring these approaches to MBD for CPS. However, proving requirements in

© Alexandre Donzé;
licensed under Creative Commons License CC-BY

2nd International Workshop on Autonomous Systems Design (ASD 2020).
Editors: Sebastian Steinhorst and Jyotirmoy V. Deshmukh; Article No. 5; pp. 5:1–5:5

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.decyphir.com
mailto:alex@decyphir.com
https://doi.org/10.4230/OASIcs.ASD.2020.5
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


5:2 Simulation-Based Design with Formal Requirements for CPS

the strictly formal sense, is possible only for the simplest CPS models, e.g., finite state
machines, or in some cases timed automata. Most mathematical and computational models
for CPS are so-called hybrid systems, mixing non-linear continuous and discrete dynamics.
For these, existing formal methods do not scale well in general. This is the case for examples
of most models created with modeling frameworks such as Mathworks tool Matlab/Simulink
[6], which is ubiquitous in the industry. These frameworks are used by engineers mostly
for simple testing using simulation. They sometimes implement formal methods but their
application is restricted to simple models or small components.

In the last decade or so, an intermediate approach between simple testing and formal
methods has emerged. On one side, it is still based on simulations; but as simulator technology
has progressed, it has become easier to produce large amount of simulation data, making it
possible to perform different types of analysis such as statistical (a la Monte-Carlo), guided
search, learning, etc. On the other side, this approach retain some characteristics of formal
methods, e.g., the use of formal specifications languages such as temporal logics and their
quantitative semantics. One popular example is falsification. Given a system S with inputs
u and a formal requirement ϕ, its goal is to find some input u∗ such that the behavior of S
using u∗ falsifies or violates ϕ. The most common approach to solve this problem makes use
of numerical black-box optimization and quantitative semantics. The satisfaction of ϕ can
be estimated by a function u 7→ ρ(ϕ, S(u)) where ρ(ϕ, S(u)) < 0 implies that u falsifies ϕ.
Therefore looking to minimize J(u) = ρ(ϕ, S(u)) can lead to finding an input u∗ such that
J(u∗) < 0, meaning that u∗ is a falsifying input. Conversely, if J(u∗) ≥ 0 can be proven to
be a global minimum, then we have proven that ϕ is always satisfied by S.

2 Breach Features Overview

The falsification concept and core ideas can be described in a few words but its application in
practice can be much more daunting. Breach [3] is an open source Matlab/Simulink toolbox
that implements the required ingredients in such a way that each one can be dealt with
in a modular and reusable way, thus applying a separation of concern approach. In the
following, we use the automatic transmission system pictured in Figure 1 to describe and
briefly illustrate these components. They can be broadly categorized as follows:

Interfaces, which define which signals in the models are inputs and outputs for Breach.
In our example, throttle and brake are inputs, RPM, gear and speed are outputs for
the model, but Breach can also monitor internal signals such as the OutputTorque or
ImprellerTorque. Various parameters can also be part of an interface.
Input generators, which define the search space or variable domain for the inputs. E.g.,
we might consider steps, pulses, piecewise-linear signals, etc. An input generator is often
responsible for converting infinite domains (dense time, real-valued set of signals) into
finite sets of variables suitable for an optimization problem. For example, if throttle
is chosen to be a step signals going from zero to some value, then only two variables
are enough to define the throttle signal at all times t: the time of the step and and its
amplitude.
Requirements, which define formally the requirements to be falsified. Breach supports
Signal Temporal Logics (STL) [7], a formal specification language adapted for CPS. An
example of a requirement easily expressed in STL is the following: ϕ= “whenever the
car is in gear 4, the speed is above 30 miles per hour.” Breach implements the efficient
quantitative monitoring algorithm of [4], so that computing the quantitative satisfaction
of a requirement is generally a negligible overhead compared to computing a simulation
of the system.



A. Donzé 5:3

Modeling an Automatic Transmission Controller

gear
3

RPM
2

speed
1

VehicleTransmission

Ne

gear

Nout

Ti

Tout

ThresholdCalculation

run() gear

throttle

down_th

up_th

ShiftLogic

speed

up_th

down_th

gear

CALC_TH

Engine

Ti

Throttle
Ne

2

throttle
1

ImprellerTorque

EngineRPM

TransmissionRPM

VehicleSpeed

OutputTorque

Figure 1 Automatic transmission system. This model simulates the behavior of an automatic
gearbox as a function of throttle and braking from the driver.

Solvers, which define the automated strategies that will solve the underlying optimization
problem defined to find a falsifying input for the requirement. Solver go from “barbaric”
random searches to genetic algorithm, local search with gradient estimation, etc.

Breach provides a collection of classes for each of these components (interfaces for data
and Simulink models, basic input generators, STL, and optimization solvers) but one of its
design goals was that this collection could be also extensible with reasonable ease. Examples
of such extensions can be found in [5], where Breach is interfaced with a driving simulator
written with the Unity engine and a neural network controller in Python; in [1], a different
quantitative semantics for STL is implemented; in [2] a new stochastic local search solver is
implemented; etc.

3 BreachFlows: An Engineer Friendly Interface to Breach

When applying falsification methods (or similar simulation-based approaches with formal
requirements) in an industrial context, one is faced with the following challenges:

Models complexity, heterogeneity and changeability. As one may expect,
industrial-scale models are typically larger and more complex than theoretical/academic
ones. The first consequence is that simulation has a higher computational cost so that
performing as few simulations as possible is of paramount importance. Furthermore, a
Simulink model can typically embed legacy code, or co-simulate with a different external
simulator, import data or post-process outputs. Finally models are often under constant
development by different engineers or teams of engineers so that new version with changes
can be pushed frequently.
Abundance of requirements and lack of formalized requirements for inputs
(test cases) and outputs. Requirements for a given system design are about as
complex and heterogeneous as models, but they are also typically informal and qualitative.

ASD 2020



5:4 Simulation-Based Design with Formal Requirements for CPS

Figure 2 Top level GUI of BreachFlows.

Furthermore, although formalism such as (signal) temporal logic are languages that
relatively simple in terms of their syntax and core semantics, they can be tricky to use
properly. What is worse, engineers are rarely trained to use them and often reluctant or
not able to invest time in learning them. Test cases used for testing those requirements
are also typically under-specified and custom-made at the discretion of the developers or
test engineers.

BreachFlows was developed on top of Breach to address these specific problems. It is
essentially a user friendly front-end for Breach which can be used to build requirements sets
and setup and maintain falsification problems and other types of analysis, so that they can be
applied iteratively to support a CPS design at all stages of developments in a consistent way.
Several features and characteristics and how they try to answer to the various challenges
described above are the following:

Configuration management: at the top level, BreachFlows is a GUI creating and
managing configuration files for Breach typical workflows. They are clearly divided into
three sections: models or data, requirements, and analysis, as illustrated on Figure 2.
Sections can be imported from configuration to another, and they are designed to be
robust to model or requirement changes, so that, e.g., a small change in the model can
be reflected by a small change in a corresponding configuration;



A. Donzé 5:5

Various features helping with high cost of simulation and heterogeneity:
Use of parallel computation when possible;
System of efficient disk caching mechanism to reload previously computed simulations
with the same parameters;
Use of custom scripts and functions (user-defined callbacks) for model initialization,
inputs and requirements;
A mechanism of pre-conditions on input signals with constraints possibly expressed in
STL so that whenever a test case or input is invalid, the corresponding simulation is
skipped;

Input and requirement builders consisting of a GUI pre-loaded with a collection
of parameterized templates. Requirement templates are expressed in structured plain
English which are mapped to STL formulas.

Breach is available as open source at https://github.com/decyphir/breach and Breach-
Flows is available on request at info@decyphir.com.

References

1 Koen Claessen, Nicholas Smallbone, Johan Liden Eddeland, Zahra Ramezani, Knut Åkesson,
and Sajed Miremadi. Applying valued booleans in testing of cyber-physical systems. In
MT@CPSWeek, pages 8–9. IEEE, 2018.

2 Jyotirmoy V. Deshmukh, Xiaoqing Jin, James Kapinski, and Oded Maler. Stochastic local
search for falsification of hybrid systems. In ATVA, volume 9364 of Lecture Notes in Computer
Science, pages 500–517. Springer, 2015.

3 Alexandre Donzé. Breach, A toolbox for verification and parameter synthesis of hybrid systems.
In Proc. of CAV 2010: the 22nd International Conference on Computer Aided Verification,
volume 6174 of LNCS, pages 167–170. Springer, 2010.

4 Alexandre Donzé, Thomas Ferrère, and Oded Maler. Efficient robust monitoring for STL.
In Proc. of CAV 2013: the 25th International Conference on Computer Aided Verification,
volume 8044 of LNCS, pages 264–279. Springer, 2013.

5 Tommaso Dreossi, Alexandre Donzé, and Sanjit A. Seshia. Compositional falsification of cyber-
physical systems with machine learning components. J. Autom. Reasoning, 63(4):1031–1053,
2019. doi:10.1007/s10817-018-09509-5.

6 Mathworks Inc. Test generated code with sil and pil simulations.
Cf. https://www.mathworks.com/help/ecoder/examples/software-and-processor-in-the
-loop-sil-and-pil-simulation.html.

7 Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals. In
FORMATS/FTRTFT, pages 152–166, 2004.

ASD 2020

https://github.com/decyphir/breach
info@decyphir.com
https://doi.org/10.1007/s10817-018-09509-5
https://www.mathworks.com/help/ecoder/examples/software-and-processor-in-the-loop-sil-and-pil-simulation.html
https://www.mathworks.com/help/ecoder/examples/software-and-processor-in-the-loop-sil-and-pil-simulation.html

	Context: CPS Design, Verification and Validation
	Breach Features Overview
	BreachFlows: An Engineer Friendly Interface to Breach

