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—— Abstract

Real-time financial settlements constrain traders to have the cash on hand before they can enter a

trade [3]. This prevents short-selling and ultimately impedes liquidity. We propose a novel trading
protocol which relaxes the cash constraint, and manages chains of deferred payments. Traders can
buy without paying first, and can re-sell while still withholding payments. Trades naturally arrange
in chains which contract when deals are closed and extend when new ones open. Default risk is
handled by reversing trades.

In this short note we propose a class of novel financial instruments for zero-risk and zero-
collateral intermediation. The central idea is that bilateral trades can be chained into trade lines.
The ownership of an underlying asset becomes distributed among traders with positions in the trade
line. The trading protocol determines who ends up owning that asset and the overall payoffs of the
participants. Counterparty risk is avoided because the asset itself serves as a collateral for the entire
chain of trades. The protocol can be readily implemented as a smart contract on a blockchain.

Additional examples, proofs, protocol variants, and game-theoretic properties related to the
order-sensitivity of the games defined by trade lines can be found in the extended version of this
note [1]. Therein, one can also find the definition and game-theoretic analysis of standard trade-lines
with applications to trust-less zero-collateral intermediation.
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1 Bilateral contracts

A bilateral contract between traders u, v is a set of clauses describing their time-dependent
payment and delivery obligations.

An atomic clause for x in {u, v} is a triple (a,b) in Ry x R, where a > 0 is the activation
payment, b the passive effect, and x is the active trader. The first component a specifies the
amount x needs to pay to trigger the clause. The second component b is the payment which
ensues, with the convention that b > 0 if x receives the payment.

A constant clause is a disjunction of atomic ones ie an element of Pg, (R4 x R).

A clause is a finite piecewise-constant function from Z to Pg, (R4 x R).

Time corresponds to block number in a blockchain implementation.

The domain of a clause is |©] = {t | |©(¢)| > 0}.

We write € C Z — :Pﬁn(R%’_) for the set of clauses.

We say a clause © is: deterministic, if |O(t)] < 1; eventually defined if [M, +o0) C |O] for
some M. We write Gy, C. C € for the associated sets.
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Clauses can be merged using two operations: (0 + 0')(t) = O(¢) + ©'(t) where the sum
on the right is taken pairwise {0;} + {0} = {0; + 0 }; and (O vV ©')(t) = ©(t) U ©'(t).

The triple (C,V,+) is a commutative idempotent semi-ring, with sub-semi-ring the set
of eventually defined clauses (but not the deterministic ones Cp). The domain map is a
semi-ring morphism from (€, V, +) to (Pgn(Z),U,N).

A bilateral contract between u and v consists of a backward clause § for u, and a forward
clause ¢ for v. Ome can depict a contract as a game (Fig. 1). The forward/backward
distinction only makes sense when contracts are composed (see next Section).

A contract ¢, 8 between u and v is said to be: exclusive if |¢| N |B] = 0; in an F-state
(B-state) if active payments requested by ¢ (/) have been made by v (u); idle if neither in a
B-state or an F-state; eventually-F (B) if ¢ (8) is eventually defined.

Notice that the game tree is not strictly speaking that of a sequential game [2]: the
availability of moves to either player is context-dependent and so are the payoffs; and moves
may (depending on the context) be available simultaneously to both players.

dvu
Uu——=u

Bu|fuv Buv Fy|pvu

/ \
("2.°) (")

Figure 1 A contract as a game: ¢ is the constant cost of a move (gas); mp (7r) is the aggregated
payoff to u (v); move B, (F,) is available in contexts where 8 (¢) holds.

A basic example is the standard bilateral contract with forward and backward clauses
$(t) =t <X+ (a,0), and B(t) =t > A — (0,p). This means that v may buy u’s asset at
price a at any time ¢ < X; while u may cancel the deal at any time t > A and be paid a
penalty p by v. One has |¢| = (—00,X), |5| = [A, +00). Hence this contract is: eventually-B;
idle during the [X, A) interval if ¥ < A; and exclusive iff ¥ < A.

Absent the property of exclusivity, traders may move simultaneously. As a consequence, in
a blockchain implementation, outcomes may depend on the order in which moves are ordered
by the block-makers. A form of order-insensitivity can be achieved (see Supp. Inf. [1]).

2 Composite contracts

A tradeline is a non-empty list of composable contracts:

¢7I,7
s, 2y o L,
B1 B2 Bn-1

uy is called the origin and u,, the end of the trade line. If u; = u,,, one says the trade line is
resolved. If, in a given context, no contract is in an F- or a B-state, one says the trade line
is irreducible; if every contract is in an F- or a B-state, one says the trade line is connected.

A trade line represents a game being played between the owners of its positions. We
distinguish two types of moves.

Contractions are moves whereby the owner of an active position acquires an adjacent
position. Below the active (acquired) position is in red (blue). Boundary cases where v is
the end of the trade line (indicated by the symbol v-) are shown on the right. Payments
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consequent to clauses being triggered are left implicit.

b ¢ v o+9’ ¢ Fy
U— U — W v ———w Uu—v: — U-
B B’ ] Bvp’ 8 ¢
’ ’ B.
ui>vi>w é u¢+—¢>w uinw — U -
B8 B’ B BV B! B B

If the trade line fully resolves under contraction, the owner of the last remaining position is
now in full possession of the underlying asset.

The idea adding forward clauses is that the payment just made (or once promised) by v is
transferred onto w’s forward clause. The idea of taking the union of backward clauses is that
u is carrying over his original cancellation condition in the new contract with w. Specifically,
the new backward clause 8V 8’ which ties in u and w is implied by 8. This means that the
player triggering the B-move does not have to stop after the first contraction and can sweep
the entire trade line if she wishes to, for as long as 8 holds.

Let v, 7/ be trade lines, and suppose 7 contracts to v under the rules above. The
following holds: (i) if 7 is connected, so is +'; (ii) if v is exclusive, so is +/; (iii) if all arcs in
are eventually-B or -, so are the ones in 7.

We can return to the standard contracts and compute their reductions. With simplified
and self-evident notations we get the following contraction rules:

31,01 32, a2 B, min(3y,32), a1+as2

U —— ) ——w — u w fort > Aq
A1, p1 Az, po v—=Plu A1,p1VA2, p2
Y1, a1 Yo, as F, min(X1,X2), a1+as
— Y ———w = v w fort <3
Ay, p1 Az, p2 v—=1lu Ay, p1VA2, p2

For ¢ > max(Aj, Ay) the trader with the backward clause will pick the highest of p; or ps.

2.1 Extension

We also need a move to grow a trade line. Any trader at the end u of the trade line can
extend it using the sell rule S, (¢, 5) and append a new contract with clauses ¢, 3, thereby
adding a new position v to the game:

Sauv (¢,
(¢.8) u_qﬁ_}v.

If extensions were not constrained to happen the end of the trade line, the owner of the
origin could introduce a new position ug left of it:

uO — ul ... un
—oo<t—(0,a)

and sweep through the entire line by iterating B,, and collect an arbitrary fee a from
everyone. We show below that our design choices prevent such catastrophic events.

3 Soundness of the trade game

We establish now an upper bound on the expenses incurred by playing the game.

The simplify the derivation we assume deterministic clauses. Let v be a trade line, and
let t be a time. We denote by < the positional ordering in . For any position ¢ € v not at
the end of v, we denote by ¢;(t), 8;(t) the clauses where i is in backward position.
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Payoffs at fixed time are specified by pairs of real numbers: ¢! (t) > 0 is the active
payment i’s Buyer makes to i to complete the deal; and ¢3(t) is the (possibly negative)
passive payment from ¢ to his Buyer which follows. When ¢’s Buyer plays that forward move,
i’s payoff is therefore: ¢} (t) — ¢?(t). We suppose henceforth that ¢} (t) > ¢3(t), so that
a forward move is always profitable to the passive player. This constraint is stable under
contractions.

Likewise: 3} (t) > 0 is the active payment i needs to make to i’s Buyer to cancel the deal;
and (B2 (t) is the (possibly negative) passive payment from i’s Buyer to i which follows. When
i plays that backward move, i’s payoff is therefore: 32(t) — B} (¢).

Fig. 2 summarises the situation. For F,,, B, v is the active trader; for B,,, F},, v is passive

»* (1) =o' (1) B2 (1) —B"1 ()

B () —B%(t) ¢t (1) —9"2(t)

Figure 2 Contractions which change the balance of v together with the subsequent payoffs.

and evicted by the move. Accordingly, from v’s viewpoint ¢2(t) — ¢'(t), and B'2(t) — 5’1 (t)
are the active payoffs, and B1(t) — 82(t), ¢'1(t) — ¢'%(t) the passive ones.
We define the leftward bounds (leaving out positions where payoffs are undefined):

(v, 1)
¢(v, 1)

max; <, (sup,> (67 (s) — i (s))) passive expense on a B-move

D icn SUPs (@ () — 7 (s)) active expense on an F-move

The idea is that (v, t) is an upper bound for the expenses v may incur upon eviction by
a B-move, whichever is the trace followed. Likewise, ¢(v,t) is an upper bound for the price
v will ever have to pay to acquire the underlying (by buying all left positions using a series
of F-moves). Both quantities depend only on contracts left of v in .

We define also the rightward bounds:

n2(t) = supes(Bh(s) — B2(s)) active expense on a B-move

The idea is that nZ(¢) upper bounds the active payment made by v on a B-move. This
bound assumes no trader is fool enough to pick an option worse than his original backward
clause. Here the control is local to v, because v’s 3 clause self-propagates under reduction.
Note that nZ(t) < 0 if v’s backward clause always specifies a profit for v. There is no need to
define a symmetric n% () to control for passive expenses on an F-move, as we have assumed
above that F-moves are always profitable to the Seller.

» Proposition 1 (max expenses). Let v be a trade line, and v a position in . Along any
trace starting from v where v plays no extension, v’s expenses are upper bounded by:

¢(v,t) + B(v,t) + Ny (t)

with N the number of B, moves played by v. If nB(t) <0, v’s expenses are upper bounded
by B(v,t) + ¢(v, ).
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To cope with traces where v extends the trade line, ie plays with moves of type Sy (8%, ¢r),
one can readily adapt nZ(¢) to also maximise over such moves k:

iy (t) = maxgsup,s,(B(s) — Bi(s))
If all these payments are Seller-positive, ie 72 () < 0, we can forget this additional term.

One can also show that the evolution of a trade line cannot lead to a solution where a
Seller receives less than the originally asked price for a forward as well as a backward move.

» Proposition 2 (Monotonicity). Let y be a trade line, and v a position in v: v’s forward
payoff (as Seller) is non-decreasing, and v’s backward payment is invariant.

Note that even if there are Buyers waiting to join, v’s forward payoff may never happen.
Suppose v faces a w who extends the tradeline with a forward-dead contract S, (0, 3), and
w never plays F,,. The only way out for v is to B-sweep the trade line entirely.

4 Aside on implementation

Trade lines and their evolution rules can be interpreted by a dedicated smart contract
connected to an external custodial contract to define the ownership of the assets traded in
the protocol. When the game starts, the owner of the asset transfers its property to an
account of the custodial contract which is controlled by the interpreter contract.

To implement passive payments which are essential to the protocol, one could forward
payment obligations to an external system managing the players’ debts. Prop. 1 gives a
solution for a trust-less implementation. Using the associated upper bounds, the contract can
statically compute the amount of cash a trader needs to stake in, upon joining. By asking
traders to fully provision potential expenses, one does not have to trust them to honour their
debts. Depending on specific time-dependencies, provisions can be partially returned as time
advances and provisions are re-evaluated. There is no such concern for active payments, as
these are payments which players have to make to change the state of the game.

When the trade line finally resolves, it remains for the interpreter contract to ask the
custodial contract to transfer the ownership of the asset to the owner of the one remaining
position in the game (which implies that the owner is known to the custodial contract).

5 Conclusion

We have defined a consistent trade protocol to manage chains of reversible bilateral contracts.
Its design derives entirely from a simple premise: the need for a theory of deferred payments
which allows one to postpone payments, and resell an asset one has not paid for yet. To do
this one has to keep somehow a memory of past transactions, and introduce mechanics to
revert some, as the need may occur. This leads to a protocol where chains of transactions
define the state of an open game; the evolution of which relies on the reversibility of the
component games.
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