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Abstract
Nowadays software is everywhere and this is particularly true for free and open source software
(FOSS). Discovering bugs in FOSS projects is of paramount importance and many bug bounty
programs attempt to attract skilled analysts by promising rewards. Nevertheless, developing an
effective bug bounty program is challenging. As a consequence, many programs fail to support an
efficient and fair bug bounty market. In this paper, we present VeriOSS, a novel bug bounty platform.
The idea behind VeriOSS is to exploit the blockchain technology to develop a fair and efficient bug
bounty market. To this aim, VeriOSS combines formal guarantees and economic incentives to ensure
that the bug disclosure is both reliable and convenient for the market actors.
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1 Introduction

Free and open source software (FOSS) is becoming more and more popular.1 Operating
systems and applications that we use daily are often developed and maintained by consortia
of partner industries and communities of developers. FOSS is even mandatory in some cases,
e.g., cryptographic functions are publicly developed for transparency and revision.

Bug bounty programs are essential to attract skilled software analysts for the detection,
disclosure and correction of software errors. In a bug bounty program, a bounty issuer (BI)
offers a reward to any bounty hunter (BH) who discovers a bug in a piece of software. The
offered reward usually depends on the typology and criticality of the bug. For instance,
Google promises to pay up to 15000$ for a sandbox escape vulnerability in the Chrome web
browser.2

Often, BI is the software developer or owner, e.g., Google in the example above. However,
a bounty can be also issued for third-party software. This is the case for FOSS components

1 https://www.forbes.com/sites/taylorarmerding/2019/01/09/the-future-of-open-source-
software-more-of-everything/

2 https://www.google.com/about/appsecurity/chrome-rewards
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involved in some critical systems, either open or proprietary. A prominent example of
bounties for third-parties software is the Free and Open Source Software Audit (FOSSA)
project, sponsored by the European Commission and offering bounties of up to several
hundreds of thousands of euros for vulnerabilities discovered in 14 major FOSS.3 According
to the project executives, FOSSA is a response to Heartbleed, a severe security vulnerability
that affected OpenSSL in 2014.4

Bug bounty programs are subject to numerous challenges. The main one is BI’s lack of
commitment with respect to the eligibility of bugs. Usually, a BH is expected to disclose all
details of a bug to the BI who decides on the severity of the bug and therefore how much to
pay. Clearly, the BI has strong incentives to “downgrade” the bug or declare it not eligible
for the bounty. In this way, the BI depresses the payment to the BH who, at that point, has
no more bargaining power. For example, in 2016 the majority of the security report received
by Google were considered invalid.5 This makes the bounty market inefficient and pushes
BHs to look for other opportunities, such as gray and black markets.6

As a partial answer to this problem, mediation platforms have been created, in an effort
to obtain better terms for the BHs. For instance, HackerOne7 and Integriti8 support ethical
hackers in submitting their reports and collecting rewards. A second answer is to transform
a bug into an exploit, that is an attack leveraging it. This increases the bargaining power of
the BH toward the BI, and in fact some platforms exclusively focus on exploits.9

In this position paper, we present the design and the underlying ideas of VeriOSS, a
blockchain-based platform for bug bounties. Our goal is to increase the reward for BH, so to
foster more bug hunting and, consequently, decrease the appeal of grey and black markets.
To do that, VeriOSS drives both BI and BH though a bug disclosure protocol. The protocol
starts from the BI issuing a bug reward contract where a precise characterization of the
eligible bugs is provided together with the offered reward. When a BH claims the bounty,
she must provide enough information for the BI to check the eligibility without revealing
the details for reproducing the bug. If the BI accepts the transaction, a remote debugging
protocol is executed between the BI and the BH. At each step, BI computes a challenge that
BH can only solve by continuing the debug process and revealing part of the execution trace
reproducing the bug. In exchange, BI provides a commitment to pay a fraction of the total
reward through a smart contract. Eventually, BI and BH either complete the protocol or
interrupt it. In both cases, since BH and BI negotiate the partial rewards at each step, the
protocol ensures a fair trade between the revealed information and the reward.

The rest of the paper is organized as follows. The next section introduces some preliminary
notions. We present the design of VeriOSS and of its main components in Section 3. Section 4
discusses the economic incentives that drive the protocol execution. We discuss the threat
model, some limitations and future extensions in Section 5. Finally, Section 6 compares our
proposal with the literature, and Section 7 draws some conclusions.

3 https://juliareda.eu/fossa
4 http://heartbleed.com
5 https://sites.google.com/site/bughunteruniversity/behind-the-scenes/charts/2016
6 The activities occurring on gray and black markets are hard to document. However, Hacking Team’s

recently hacked emails provide a glimpse on the workings of these markets. See https://tsyrklevich.
net/2015/07/22/hacking-team-0day-market/.

7 https://www.hackerone.com
8 https://www.intigriti.com
9 For instance, Zerodium https://zerodium.com that offers up to 2,000,000$ for a zero-day exploit.

https://juliareda.eu/fossa
http://heartbleed.com
https://sites.google.com/site/bughunteruniversity/behind-the-scenes/charts/2016
https://tsyrklevich.net/2015/07/22/hacking-team-0day-market/
https://tsyrklevich.net/2015/07/22/hacking-team-0day-market/
https://www.hackerone.com
https://www.intigriti.com
https://zerodium.com
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2 Preliminary notions

2.1 Program semantics
A program s is a finite sequence of statements c1, . . . , ck. Statements can be of various types,
e.g., assignments of values to variables or conditional branches. A computation is carried
out through atomic steps. Each step has the effect of modifying the program state σ and
to update the sequence of statements to be run. As usual in program semantics, the state
is a finite mapping from variables (in the scope of the current statement) to values [18].
Thus, a program configuration is a pair 〈σ, s〉. A step is 〈σ, s〉 → 〈σ′, s′〉 to denote that
in the state σ the program s executes one of its statements, becomes s′ and modifies the
state in σ′. For brevity, we write 〈σ, s〉 →∗ 〈σ′, s′〉 as a shorthand for a finite sequence of
steps 〈σ, s〉 → . . .→ 〈σ′, s′〉. Moreover, when a computation terminates, i.e., the destination
configuration contains an empty sequence of statements, we simply write the final state
as 〈σ, s〉 →∗ σ′. We refer to [18] for a general presentation on the formal semantics of
programming languages.

2.2 Hoare logics
The goal of program verification is to prove that a program s complies with a given spec-
ification. The specification is often defined in terms of preconditions and postconditions.
Intuitively, a precondition is a property P that is assumed to hold in the initial state (from
which the computation of s starts) and a postcondition is a property Q that must be guar-
anteed to hold in the final state (assume-guarantee reasoning). In symbols, the problem is
encoded as an Hoare triple {P}s{Q}. The triple is valid if ∀σ, σ′. P (σ)∧〈σ, s〉 →∗ σ′ ⇒ Q(σ′).
The proof system used for reasoning about the validity of Hoare triples is called Hoare logics.
We write |= {P}s{Q} when there exist a proof of validity.

3 VeriOSS

In this section we introduce the main components of VeriOSS and how they interact. Briefly,
VeriOSS has two goals: (i) support the honest BH in collecting a reward under the assumption
of an untrusted BI; and (ii) protect BI against untrusted BHs claiming an undeserved reward.
In particular, VeriOSS achieves these two goals by (i) requiring BI to provide a precise
description of the eligible bugs; and (ii) driving the BH disclosure and rewarding process.

3.1 Workflow overview
The general workflow of VeriOSS is depicted in Figure 1. Initially, BI publishes a bounty on
the blockchain. The bounty contains information about the type of bugs BI is interested in
and the reward. When BH detects a bug that complies with the issued bounty, she can claim
the reward. To do so, BH sends the initial debug information, e.g., the instruction where the
bug was detected. This initial disclosure should allow BI to check the eligibility of the bug.
If BI agree to continue, a disclosure loop starts. At each iteration, BI synthesizes a challenge
for BH to test her knowledge of the bug trace at a specific step. If BH solves the challenge,
she receives a partial reward (expressed as a fraction of the total one) and she provides
information to continue the disclosure loop. Eventually, the protocol terminates when either
the bug is entirely disclosed (proof completed) or one of the participants withdraws.

Below we discuss the components of VeriOSS and their requirements.

Tokenomics 2020
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Figure 1 BPMN representation of the workflow.

float foo( unsigned char c) {
int a = c+1; //@ assert a != 0;
float z = 255/a; //@ assert z != 0;
return 1.0/z;

}

Figure 2 A fragment of C code potentially dividing by zero.

3.2 Bug specification
When publishing a bounty, BI has to provide a rigorous description of the bugs that are
eligible for the reward. Such a description contractualizes the commitment of BI to pay for
a compatible bug. Some classification techniques exist to define bugs and vulnerabilities.
For instance, the Common Vulnerability Scoring System10 (CVSS) aims at describing a
vulnerability and measuring its criticality. Also the Common Weaknesses Enumeration11
(CWE) specification language is used to identify different vulnerability types. Since these
approaches focus on describing the severity of vulnerabilities and exploits, they are not
suitable for bug bounty programs. In fact, often the BI aims at disclosing bugs even without
knowing their possible impact and severity. Moreover, since they have no formal semantics,
they can hardly support an automatic validation process.

A more promising direction is to consider specification languages for contract-driven
development [14]. These languages are used to define the properties of a piece of code in terms
of preconditions (what must be true before the execution) and postconditions (what must be
true after the execution). Moreover, they are usually provided with a formal semantics as
well as tools for the automatic reasoning. Intuitively, program specifications can be adapted
to define the conditions under which a bug shows up. The bug conditions can be expressed
as assertions that the program violates during a bugged execution. To clarify, let us consider
an example based on the ANSI C Specification Language (ACSL), used by the Frama-C
framework [12].

I Example 1. Consider the C code of Figure 2. If we are interested in spotting out divisions
by 0, there are two candidate instructions, i.e., the assignment to z and the return statement.
In terms of properties to be satisfied, the preconditions for the two statements are a 6= 0 and

10 https://www.first.org/cvss/specification-document
11 https://cwe.mitre.org/cwss/cwss_v1.0.1.html

https://www.first.org/cvss/specification-document
https://cwe.mitre.org/cwss/cwss_v1.0.1.html
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Figure 3 The P2K protocol message sequence diagram.

z 6= 0, respectively. In ASCL the corresponding assertions are placed right before the target
instructions as in Figure 2. Here, the bug is exposed (only) when c = 255. As a matter of
fact, due to the integer division 255/256, 0 is assigned to z, so violating the second assertion.

3.3 Challenge-response interaction

By definition, the bounty claim protocol is a Proof of Knowledge (PoK) protocol, also called
Σ−protocol (see [10] for further details). A PoK consists of a prover and a verifier interacting
through a challenge-response process.

However, our working conditions are slightly different. The reason is that both parties
need to prove something: BH must prove she knows the bug and BI must prove she is willing
to pay the reward. This is an instance of a two-party fair exchange protocol [15] that we call
Pay-per-Knowledge (P2K).

The main difference between a standard PoK is that the two parties play both roles, i.e.,
prover and verifier. Their individual goal is to acquire the other’s knowledge/reward. Also,
the global goal of the protocol is that the two parties only achieve their individual goals
together. Notice that “together” does not mean simultaneously. For instance, a party could
receive the other’s knowledge while providing an effective commitment to release her own
knowledge (e.g., within a certain time).

Intuitively, a way to implement P2K is to rely on a trusted third party (TTP) that
mediate and drive the interaction between the two participants. However, having a TTP is a
restrictive assumptions. Smart contracts can support the same kind of operation. Indeed,
a smart contract can carry out a certain task when a certain condition is satisfied, e.g.,
someone knows the answer to a challenge. We discuss this aspect in Section 3.6.

Figure 3 shows the P2K message flow of the bounty claim protocol. The bug disclosure is
based on a remote debugging process (see Section 3.4) replicating the execution of a buggy
program trace. The protocol starts with BH claiming the bounty by describing the bug
without disclosing it. For instance, the bug description can consist of a buggy state reached
by the program at the end of the execution trace. This initial disclosure allows the BI to
check the eligibility and severity of the bug, without being able to replicate it nor verify its
actual existence. Contextually, the BH commits the debug trace. The commitment amounts
to the hash values of the program states appearing in the trace. The trace commitment
ensures that a dishonest BH can neither craft a trace not diverge from the nominal protocol
execution (see Section 3.3).

Tokenomics 2020
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The challenge-response loop proceeds as follows. BI stores a challenge-reward smart
contract on the blockchain. Briefly, the smart contract consists of a payment, i.e., a partial
reward, activated when a certain input is provided. The contract input is the answer to
the challenge computed by BI. In particular, the challenge is solved by a program state
from which the buggy state is reachable (in a certain number of steps). BH checks the
challenge and the amount. If she agrees with the partial reward, she submits the program
state. If this program state correctly solves the challenge, and at the same time is consistent
with the obfuscated trace, then the BH can collect the reward. Since the blockchain is
public, BI retrieves the submitted state. The loop is repeated by replacing the buggy state
with the next state provided by BH. Eventually, the loop terminates when BH provides an
initial state of the program or one of the parties retires from the protocol. We describe
the challenge generation procedure and the smart contract implementation in Sections 3.5
and 3.6, respectively.

3.4 Remote debugging
The challenge-response protocol described above implements a remote debugging process.
Remote debugging occurs when the target program runs on a different location, e.g., a remote
host. Under our assumptions, BH executes the target program12 and BI debugs it.

Remote debugging is common and many debug tools support it. However, there is a
crucial difference with the (standard, forward) remote debugging process: our debugging
procedure proceeds backward. As a matter of fact, the debugging starts from a (buggy) final
state and proceeds toward an initial state (reverse debugging).

In principle, reverse debugging does not prevent the early disclosure of the execution
trace. In fact, in many cases the state of a program is deterministically determined by its
predecessors. Hence, BI might infer the predecessor state without interacting with BH.

I Example 2. Consider again the code of Example 1 and the final state reached when c
= 255. Such a state is σ = [z←[ 0, a←[ 256, c← [ 255]. Trivially, since σ(c) is defined, the
actual parameter of foo, i.e., the initial state, is exposed.

To address this issue BH only partially reveals the debug state: she only discloses the
variables that are necessary to the current statement, i.e., those occurring in the expressions
to be computed.

I Example 3. We simulate a reverse debug session starting from σ as in Example 2. The
state σ refers to the statement return 1.0/z (where only the variable z appears). Thus,
BH sends to BI the state σz = [z← [ 0]. In this way, BI effectively verifies that the division
by 0 occurs. Still, she cannot easily infer the values of a (that determines the value of z). As
a matter of fact, any state where a is larger than 255 is a candidate predecessor. Assuming
that each iteration correspond to a single debug step, the next state revealed by BH is
σa = [a← [ 256]. The debug step succeeds when BI verifies that the execution of the current
statement on state σa results in state σz.

3.5 Challenge generation
As stated above, the challenge is a boolean condition that drives a decision procedure encoded
as a smart contract. In particular, given a program state σ, the challenge must precisely

12 In principle, BH might even reply a recorded execution trace without executing the program. This is
also called Post-mortem debugging.
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characterize a state σ′ being a valid predecessor of σ in the debug procedure. Moreover, to
solve the challenge, both σ and σ′ must belong to the execution trace initially committed by
BH (see Section 3.3).

A prominent technique for this task is backward symbolic execution [16, 2]. Backward
symbolic execution is used to obtain valid preconditions for the execution of a statement
starting from its postconditions. This is typically achieved by means of a weakest precondition
calculus [3]. Briefly, given a program s and a postcondition Q, a weakest precondition is the
most general predicate P such that |= {P}s{Q}.

I Example 4. Consider again the ASCL code of Example 1. The predicate z 6= 0 is
a postcondition for the statement float z = 255/a. The weakest precondition for the
statement is a predicate P such that P ⇒ z 6= 0. Since z = 255/a this becomes P ⇒
255/a 6= 0. Moreover, due to the semantics of the integer division operator in C this is
equivalent to P ⇒ a ≤ 255. Clearly, the most general (weakest) predicate P that satisfies
the implication is a ≤ 255.

To generate a challenge, BI can follow the strategy below. First, BI converts the current
debug state to a predicate Q defined as

∧
x∈Dom(σ) x = σ(x). The predicate Q is the

precondition to the current debug statement. Also, Q is the postcondition of all the previous
statements, i.e., those to be debugged to reach the initial state of the execution. Hence,
BI selects a number n of backward steps. From the code, BI extracts all the sequences of
statements of length n that can precede the current statement. Via backward symbolic
execution on the selected statements, BI computes the weakest preconditions for Q. The
resulting predicate is the challenge for BH that she answers by providing the actual state
that satisfies the precondition.

I Example 5. Consider the debug session given in Example 3. The final state σz results
in the predicate z = 0. Assuming n = 1, the challenge for BH is a > 255 (trivially from
Example 4). Then, BH successfully answers by providing σa.

It is evident from the example above that the choice of n is critical. In general, the size
of a predicate computed through backward symbolic execution can grow exponentially with
n [8]. Intuitively, the exponential blow-up is caused by the conditional statements.

In software verification, large predicates pose serious limitations. Indeed, satisfiability
modulo theories (SMT) [6] is used to verify whether a certain predicate admits a model, i.e.,
an assignment of values that satisfy the predicate. The SMT problem is computationally
hard, but its complexity varies with the underlying theory. In our context, bit-vectors are
the most common theory. The SMT problem for bit-vectors is known to be (in the best case)
NP-complete [13]. Nevertheless, this is not a limitation in our context as BH already knows
a solution to the challenge, that is the program state that she has committed.

3.6 Smart contracts and blockchain
In this section we describe the structure of the smart contracts used by VeriOSS. There

are two smart contracts, i.e., the bounty issuing contract and the partial reward contract.
The first one is straightforward. Its role is to describe the bug and the offered reward. The
second contract requires more attention. As a matter of fact, it is responsible for the partial
rewarding defined in Section 3.3.

Figure 4 shows an example Solidity [5] contract for the challenge of Example 5, i.e.,
a > 255. The contract handles three pieces of information (lines 2-4), i.e., the address of the
bounty hunter, the amount of the reward and an expiration time. The main function of the

Tokenomics 2020
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1 contract PartialReward {
2 address public hunter = /* ... */;
3 uint public reward = /* ... */;
4 uint public expire = /* ... */;
5
6 function challenge ( bytes4 [] state) public {
7 if( decommit (state) && solve(state))
8 hunter . transfer ( reward );
9 }

10 function solve( bytes4 [] state) private returns (bool) {
11 if(state [0] <= 255) /* a ≤ 255 */ return false;
12 return true;
13 }
14 function decommit ( bytes4 [] state) private returns (bool)
15 { /* check state hash */ }
16 function timeout () public { require (now >= expire );
17 selfdestruct (this); }
18 }

Figure 4 An instance of the partial reward smart contract.

contract is challenge (line 6). The hunter invokes the function by providing the program
state as a list of bytes. Then, the contract invokes two functions, i.e., decommit and solve
(line 7). The former (line 14) decommits the input state (i.e., it checks its hash code against
the list initially provided by the BH). The latter verifies that the provided state is a valid
solution to the challenge. If both the checks succeed, the contract transfers the reward to
the hunter. The function solve (line 10) encodes the challenge. It consists of a sequence of
conditional statements. Each statement checks whether a single clause of the challenge is
violated. In that case, solve returns false. When all the checks are passed, the function
returns true. Finally, the contract has a timeout function (line 16) to void it when the
deadline expires.

Few aspects of the contract of Figure 4 need a further discussion. In the first place,
the structure of function solve. Clearly, it is the most expensive function in terms of
computation and, since on chain computation is not for free [19], efficiency might be an issue.
As highlighted in Section 3.3, checking the solution to a challenge is linear in the number
of constraints. However, this number grows exponentially with n. Thus, a proper trade-off
must be considered.

4 Incentives

From the economic viewpoint, VeriOSS aims at allowing a profitable trading between a seller
(BH) and a buyer (BI) of information (the bug). The protocol of Section 3 can accomplish
this goal, but BH and BI may refuse to run it. The main reason is hold-up [1], i.e., the
buyer can refuse to pay after she leaned the information. This could prevent potentially
profitable exchanges due to stall between the seller (who wants to be paid before disclosing
the information) and the buyer (who wants to evaluate the information before paying it).

VeriOSS overcomes this issue by delegating the verification of the information and the
payment of the reward to a smart contract. By itself, however, this is not sufficient to give
BI and BH the correct economic incentives to follow the protocol of Section 3. Below we list
the incentives problem faced by BI and BH at every step of the protocol, and how VeriOSS
addresses them.
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1. Since BI puts forward the reward when publishing the initial bounty contract, the reward
offered by BI might be inadequate for BH. However, we expect a round of communication
between BI and BH to occur beforehand to ensure that BI and BH agree on the reward.
Also, due to the guarantees of the P2K protocol, BI and BH can negotiate under the
assumption that the counterpart is honest.

2. The cost of the off-chain computation of BI is not negligible. In particular, computing
the weakest preconditions may be computationally hard. For this reason, it is crucial
that the information initially disclosed by BH provides a proper incentive to set up the
challenges. For instance, BH might need to initially reveal some extra details about the
debug trace. What is the right amount of information is an open research question, e.g.,
see [11].

3. A malicious BI could intentionally craft an incorrect challenge. The main motivation
here is inferring as much information as possible from BH’s answer. For example, BI
might submit an unsatisfiable challenge to make the protocol fail even if the provided
answer is correct. In this way, BI may collect the next state without paying the partial
reward. However, BH can also compute the weakest preconditions and detect an incorrect
challenge. In such a case, she can retire from the protocol with no loss.

4. Even if BH has always answered correctly, BI could decide to interrupt the protocol before
the end. For instance, BI may believe that the information still to be released by BH is
worth than the remaining reward. This boils down to correctly establishing the partial
rewards, so to adequately compensate BH while encouraging BI to continue. As long as
they correctly price each iteration, BI is not motivated to interrupt the protocol.13

5. BH may attempt to renegotiate the reward after BI computes a challenge, i.e., BH can
hold up BI. Indeed, since it is costly, BI may accept to pay an higher partial reward to
avoid recomputing the challenge. Note, however, that the total reward is established at
the beginning of the protocol. Hence, an honest BH would no obtain an higher total
payment. Since it reveals that BH is malicious, no BH (malicious or honest) is motivated
to renegotiate.

Finally, note that the above analysis assumes the presence of a single BH and a single BI.
This is not the case in general. The presence of other BIs and BHs may affect the incentives
faced by the protocol’s participants, and hence the performance of the protocol. We discuss
this issue in the next section.

5 Discussion

In this section we provide a detailed discussion on some aspects that may affect the imple-
mentation of VeriOSS, some open issues and future developments.

5.1 Implementation details
The implementation will need to address issues about some aspects we left abstract in the
previous sections. A first issue concerns how to represent the commitment trace of BH.
Intuitively, this trace can be obtained by computing the hashes of each state in the original
debug trace. However, this may be impractical because of the length of the debug trace.
Thus, we need an implementation that compresses these traces without compromising the
validity of the protocol.

13This issue can also be more directly addressed by using an escrow (see Section 5.2).

Tokenomics 2020
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Another issue is about the number n of iterations of the challenge-response protocol.
This choice is quite critical: different choices of n may lead to different cost in term of
(i) cryptocurrency paid by the parties and (ii) efficiency of the protocol. Finding a good
trade-off is left as future work.

5.2 Threat model
The design of VeriOSS is based on a threat model where both BI and BH do not trust
each other and both may be malicious. On the one hand, a malicious BI aims at collecting
information about a bug without paying the corresponding reward. Our protocol opposes
this behavior and forces BI to behave honestly by (i) requiring a precise specification of the
eligible bugs (Section 3), (ii) increasing the bargaining power of the BH, (iii) providing the
partial reward mechanism in which a small portions of the bounty is paid in each iteration
for each piece of revealed information (Section 3.3).

On the other hand, a malicious BH aims at obtaining an undue reward. For instance, BH
might submit a partial or a false bug trace during the remote debug protocol. Also, a malicious
BH could attempt a reply attack by re-submitting an old, already paid trace. VeriOSS protects
honest BIs against malicious BHs by (i) establishing a commitment phase (Section 3.3), (ii)
providing a challenges-response protocol. In particular, the trace commitment ensures that
past traces are automatically detected, e.g., because they terminate with the very same state
of a previously executed trace. Instead, the challenge-response protocol ensures that each
step of the trace is correct.

In addition, the protocol can be easily extended by introducing a second smart contract
acting as an escrow that collects all the partial rewards and then forwards them to the BH
only if the bug is entirely disclosed. In this way, a malicious BH cannot obtain any partial
reward and, at the same time, a malicious BI cannot gain by strategically interrupting the
protocol. As future work, we plan to further study the robustness of our mechanisms against
this attacker model.

5.3 Future extension
Here, we outline some future directions for the development of VeriOSS.

The current design of VeriOSS allows a single BH and a single BI to efficiently exchange
the bug trace against a reward. However, this is just an intermediate goal, because the bug
bounty market consists of several actors. Currently, our bug disclosure process in exclusive
between one BI and one BH. Instead, “open” sessions might allow other parties to interact,
e.g., by offering a better reward.

The blockchain used by VeriOSS allows parties that do not know or trust each other to
interact. Sometimes this is not desirable, e.g., when knowing the identity of the BI necessary
to discriminate between legitimate companies and malicious actors. As a mitigating, we
could allow the BI creating the smart contract to “sign” it using its private keys, therefore
allowing everybody to verify that a given challenge was indeed created by a reputable BI.
This, of course, would not prevent malicious actors from creating their own smart contracts
using VeriOSS, but it would make public that a given (supposedly malicious) actor posted a
challenge and obtained information regarding a bug. Discriminating between legitimate and
malicious BIs is a future work.

Also, many different firms may benefit from discovering and fixing bugs in FOSS. This
gives rise to what is known as “free rider” problem. The maximum payment a BH can receive
depends on the willingness to pay for the bug report of the firm valuing it the most. Such
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a payment can be significantly lower than the overall benefit of finding the bug. VeriOSS
can include a mechanism to aggregate rewards from several BIs. For instance, this can be
achieved by introducing reward rise contracts that BIs can use to offer a further incentive
toward the disclosure of a certain bug. Again, this is future work.

Finally, the presence of other actors is also relevant for the issue of “responsible disclosure”.
In most bug bounty programs, all parties are contractually forbidden from publicly disclosing
the bug for a period of time. Such a time span may be legally imposed and it is intended to
give the BI enough time to fix the bug. In VeriOSS, instead, the bug is immediately public,
which implies that a malicious actor could exploit it before the BI manages to implement a
remediation. This is also a direction where we plan to improve the protocol.

5.4 Limitations
Here, we briefly discuss some limitations of our proposal. In the design of VeriOSS we assume
that BH has a copy of the software to test. This is not a problem for mobile apps, or desktop
software that the BH can download from the network and run on her machines. However,
when the target software is a web application or web service our remote debugging protocol
cannot be applied as is. Indeed, in those situations the BH can mainly interact with the
software by providing inputs and receiving outputs (a.k.a. black box testing). Hence, BH
does not have access to the full program state, which is partially stored on a remote server.

Another limitation is the assumption that a bounty is only issued for a bug, i.e., a faulty
state of the target program. Often, a BI only offers a reward for a bug that actually impacts
on the security of the software. Said differently, a BI might ask for an exploit exposing
her software to concrete attacks, e.g., data breaches. Thus, the offered reward depends on
the value of the assets that an attacker can steal or compromise. At the moment VeriOSS
does not support this kind of bounty programs. Furthermore, although formal specification
languages can precisely characterize a failure condition, one could argue that some types
of bugs cannot be expressed (easily or even at all). For instance, think about the remote
code execution caused by a ROP chain [17]. For these reasons, we plan to introduce multiple
languages for the specification of bugs and exploits. The main requirement for the bug
definition languages is that they must provide a sound eligibility check (so that BI cannot
repudiate an eligible bug) and support the challenge-response process.

6 Related work

VeriOSS is made of different components each based on a specific technology. Here, we follow
the line of Section 3 and compare each component of VeriOSS with similar proposals.

6.1 Remote attestation
Remote attestation [4] allows a remote host (the challenger) to authenticate the hardware and
software configuration of another remote host (the attestator) which is charge of performing
some computation. The attestator is equipped with a suitable Trusted Platform Module
(TPM) chip, which she uses to attest the states of its software components to the challenger.
Typically, this verification is based on digital signatures, i.e., the challenger only verifies that
the signatures sent by the attestator are as expected. This basic attestation mechanism can
be used as a building block to check other security properties. For example, [9] proposes the
implementation of a trusted virtual machine that not only allows running a program but
also attesting to a remote entity that the running program satisfies a given set of security
properties at run time.

Tokenomics 2020
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At a first sight, one may think that the challenge-response interaction protocol of
Section 3.3 may be implemented using remote attestation. However, this is not the case
because mainly remote attestation only allows BI to avoid a malicious BH, but not vice versa.
Furthermore, remote attestation requires that BH is equipped with a specific hardware, i.e.,
TPM chip, that increase the cost of entering the market. Our protocol, instead, provides a
mechanism to protect both participants and does not require any specific hardware.

6.2 Remote debugging
Modern development environment allows debugging applications remotely. This is very useful
when the development system is different than the production one. The underlying idea
is that the debugger is installed on the production server and that it provides a network
channel for interacting with the debbuged program. The programmer uses a client that
completely abstract the interactions through the network. In this way, debugging a program
remotely is almost the same as doing it locally. In particular, this means that the client can
stepwise run the program and can inspect its memory.

There are at least two crucial differences between a standard remote debugging and the
approach described in Section 3.4. The first is that in standard remote debugging there is
only an agent interacting with the program that is the client (the server only makes available
the state of the program to the client); then, the client and the server trust each other, or
both are under the same administrative domain. Whereas in our setting, BI and BH are two
different agents in the system that does not trust each other.

The second important difference is that the standard remote debugging proceeds forwards
and the client can access the entire state of the execution. In our approach, instead, the
debugging proceeds backward and the BI can access only a specific part of the state of the
execution.

6.3 Information flow
Information flow control (IFC) is a mandatory access control mechanism that enforces some
restrictions on a piece of data and on all data derived from it. It was introduced in [7] as
mechanism to enforce non-interference across security levels. IFC is continuously enforced
at every information exchange. The underlying idea is that each piece of information is
associated with a policy (tags working as metadata) describing its level of secrecy and
integrity. Moreover, also entities of a system are associated with a security level, describing
the sensitivity of the data they are allowed to handle. The mechanism guarantees that
entities with a lower security clearance cannot read/write up to information with higher
security level. Symmetrically, it also ensures that entities with higher security clearance
cannot write down by making a disclosure of information.

During our remote debugging process the BH should not reveal too much information
about the execution state, so that a malicious BI cannot reconstruct all the execution state.
To do that, our protocol prescribes that BH shares only a part of the state. To determine
which part of the state to be disclosed, the BH should follows an approach based on IFC.

6.4 Secure multi-party computation
A multi-party computation occurs when two or more entities join together to compute a
certain function f . More precisely, consider n parties P1, . . . , Pn, each with its own input xi,
which want to compute f(x1, . . . , xn). A secure multi-party computation [10] is a multi-party
computation where each participant Pi aims to preserve the privacy of its input xi.
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Our challenge-response protocol fits this setting where the function f to compute consists
in the challenge verification process. Indeed, the BI provides as input a pair q made of the
challenge and of the commitment contract; whereas the BH provides the corresponding state
σ. The function f then perform the relevant checks and return a pair q′ containing the
reward for BH and the computation state for the BI. However, differently from the case of
the secure multi-party computation, the input of BH is private, whereas the one of BI is
public (and indeed published on a blockchain).

6.5 Information sharing

The inefficiencies of bug bounty programs are commont to all markets for information and
have been known at least since [1]. Several authors have studied mechanisms to resolve these
inefficiencies. The most closely related work is [11], which proposes a protocol in which the
seller of information sustains several tests. Every time a test is successfully completed, the
buyer sends the seller a partial payment. In their baseline model, the tests are such that if
the seller really has the piece of information, then she passes the test. If she does not, then
she can complete the test with probability p < 1, where lower values of p correspond to more
stringent (and hence more informative) tests. In the first round of the protocol, the seller
reveals some information by sustaining a test for free. After observing the result of the test,
the buyer updates his belief regarding whether the seller has the piece of information, and
with it the expected benefit of learning it. The buyer then sends a payment to the seller who
sustains another test, and so on. The information is thus revealed in stage (by sustaining
each test) and to each revelation stage corresponds a partial payment.

Crucially, [11] assumes a total lack of commitment: the buyer is free to withhold the
payment to the seller, even after the seller passes the test. In the equilibrium with information
revelation the prospect of learning additional information motivates the buyer to follow the
protocol. But many other equilibria exist, including some in which no information is ever
revealed.

The part of VeriOSS that is most closely related to [11] is the initial exchange of
information, in which the BH reveals the initial state. The reason is that, at this stage, the
BI is under no obligation to set up the smart contract and start the protocol. This lack of
commitment implies that the intuition in [11] applies here as well. However, once the smart
contract is set up and the iteration of challenge/response begins, [11] ceases to be relevant.
The reason is that the BI can commit to pay the BH if and only if the BH has the correct
piece of information. The fact that information is revealed in stages (with corresponding
partial payments) is done exclusively for practical reasons. As already discussed, the protocol
could run with a single test and a single answer revealing the entire trace, but crafting such
test is computationally very expensive. For this reason the information generation protocol
is split in different stages.

7 Conclusion

In this paper we presented VeriOSS, a novel paradigm for the construction of bug bounty
programs. VeriOSS-based programs provide concrete guarantees that a bounty hunter
will receive her rewards without trusting the bounty issuer. Together with other relevant
properties natively supported by the blockchain, we expect this to favor the flourishing of
the bug bounty market.
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