
Implementation Study of Two Verifiable Delay
Functions
Vidal Attias
IOTA Foundation, Berlin, Germany
vidal.attias@iota.org

Luigi Vigneri
IOTA Foundation, Berlin, Germany
luigi.vigneri@iota.org

Vassil Dimitrov
IOTA Foundation, Berlin, Germany
vassil@iota.org

Abstract
Proof of Work is a prevalent mechanism to prove investment of time in blockchain projects. However,
the use of massive parallelism and specialized hardware gives an unfair advantage to a small
portion of nodes and raises environmental and economical concerns. In this paper, we provide an
implementation study of two Verifiable Delay Functions, a new cryptographic primitive achieving
Proof of Work goals in an unparallelizable way. We provide simulation results and an optimization
based on a multiexponentiation algorithm.

2012 ACM Subject Classification Computing methodologies → Simulation evaluation

Keywords and phrases Blockchain, Distributed Ledger, Verifiable Delay Function, Cryptography,
Simulation, RSA

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2020.9

1 Introduction

In Distributed Ledger Technology (DLT) project, the protocol can ask participants to invest
scarce resources to guarantee their stakes in the good development of the network. These
scarce resources can be time, money, hard drive storage, etc. The most famous mechanism
of proving investment is Proof of Work (PoW) [2] where a user tries to find a correct input
of a hashing function such that the output begins with a certain amount of zeros in its
binary representation. This method originally intended to prove the investment of the user’s
time. However, its parallelizable nature has led to the so-called “mining races”, presenting
now serious environmental and economical concerns. In some alternative protocols, such as
IOTA [22], the network does not make any distinction between miners and users. Hence,
an explicit rate control mechanism becomes necessary to limit user’s transactions and to
prevent synchronicity losses between nodes. The basic idea is to impose on every user the
computation of certain work to cap their throughput. If this work is performed through
PoW, specialized hardware could solve it much faster than low power devices, leading to
unfair advantages and potentially leading to a denial of service attacks. Conversely, our
suggestion is to use an anti-spam mechanism based on Verifiable Delay Functions (VDFs).

A VDF is a function defined formally by Boneh et al. [7] that runs in a minimum amount
of time which cannot be parallelized, but is exponentially easier to verify. One can set a
certain difficulty and a certain amount of time of computing as parameters of the VDF. The
VDF solution is unique and sound, which means an adversary has negligible chances to find
the correct solution by randomly guessing. VDFs have been largely investigated on their
theoretical aspect, however, there are no academic results on implementation metrics to

© Vidal Attias, Luigi Vigneri, and Vassil Dimitrov;
licensed under Creative Commons License CC-BY

2nd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2020).
Editors: Emmanuelle Anceaume, Christophe Bisière, Matthieu Bouvard, Quentin Bramas, and Catherine
Casamatta; Article No. 9; pp. 9:1–9:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-5095-4740
mailto:vidal.attias@iota.org
mailto:luigi.vigneri@iota.org
mailto:vassil@iota.org
https://doi.org/10.4230/OASIcs.Tokenomics.2020.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


9:2 Implementation Study of Two Verifiable Delay Functions

our knowledge although some competitions gave some results on FPGA. In this paper, we
make the following contributions: (i) we study two constructions proposed by Pietrzak and
Wesolowski, (ii) compare their behavior in the experimental aspect, and (iii) we provide an
optimization using a multiexponentiation algorithm.

A VDF is composed of three algorithms.

The setup which initializes the environment in which the VDF will be evaluated, for
example, RSA group or elliptic curves and setups an input space X and an output space
Y.
The evaluation which takes as an input an element x ∈ X and a certain difficulty
τ ∈ N and outputs an element y ∈ Y and eventually a proof π which can speed up the
verification.
The verification where a veryfier takes as an input (x, τ, y, π) and outputs > if y is indeed
the right output otherwise it returns ⊥.

VDFs also have applications in random number generation [7, 18], RSA accumulators
(primitives to produce timestamping and membership testing in a space-efficient way) or
Proof of Replication [3, 15], which is an optimized version of Proof of Space [14].

The rest of the paper is organized as follows: in Section 2 we will present the previous
work on VDFs and a multiexponentiation method; in Section 3, we will show how these VDFs
behave when implemented, and in 4 we will present two VDF optimizations; in Section 5, we
will discuss the aforementioned results and how to choose the RSA modulus choice, and we
will conclude our paper in Section 6.

2 Related work

A simple way to impose a rate control mechanism in DLT protocols is to ask users to compute
some work which takes a roughly predictable time as proposed in [2]. However, this proposal
suggests the usage of PoW. Its parallelizable nature leads to very different solution time
between specialized and non-specialized hardware. In this section, we present other functions
that take a long time to compute but are simple to verify.

Rivest et al. [24] have first defined in 1978 time-lock puzzles based on squaring in an RSA
group and are tasks inherently sequential with a difficulty easy to set. Bitansky et al. [4]
then provided a formal framework for time-lock puzzles. Nonetheless, a verifier needs to
know a private key to verify the puzzle solution, which prevents from building a universally
verifiable mechanism.

Later, Boneh et al. [7] have formalized VDFs providing a high-level framework: in this
context, two constructions were proposed by Pietrzak [21] and Wesolowski [26] both using
RSA groups, in a similar but new way than time-lock puzzles, and differing in their proofs.
VDFs in their most general definition, are universally verifiable functions taking a sequential
time to compute. De Feo [12] proposed a third construction based on elliptic curves. However,
this construction allows only one difficulty per setup which is a critical flaw when we need a
dynamic challenge.

In the next subsections, we introduce some definitions (Section 2.1), we present the
details of Wesolowski and Pietrzak’s constructions (Section 2.2 and 2.3 respectively), and we
provide optimization for the evaluation of the Wesolowski VDF based on multiexponentiation
(Section 2.4).



V. Attias, L. Vigneri, and V. Dimitrov 9:3

2.1 RSA environments
The RSA setup [24] is one of the oldest public key ciphering cryptosystems and yet still
massively used. The idea is to generate a big number N = p · q with p and q two prime
numbers of the same order and N a λ-bits number. Typically we use λ = 2048 for high
security. We then define φ(N) = (p− 1) · (q− 1) the Euler’s totient function. Then the group
Z
nZ = {0, 1, . . . , N − 1} is called an RSA group.

2.2 Efficient VDF - Wesolowski
2.2.1 Setup
The Wesolowski’s VDF setup requires λ, and a security parameter k (typically between
128 and 256) as an input. It generates an RSA public modulus N of bit length λ and a
cryptographic hashing function H : {0, 1}∗ 7→ {0, 1}2k. We then define, for anym ∈ {0, 1}∗,
Hprime(m) = next_prime(H(m)) returning the closest prime numbers larger or equal to
H(m).

2.2.2 Evaluation
The evaluation takes as input τ ∈ N and m ∈ {0, 1}∗, and then computes x = H(m) and
solves the challenge y = x2τ mod N . It is important to know that if the evaluator knows
φ(N), it can cut this computation because x2τ mod N = x2τ mod φ(N) mod N which reduces
considerably the exponentiation cost.

2.2.3 Proof
The proof begins by computing l = Hprime(x+ y) and then π = xb2

τ/lc mod N . This can be
parallelized and for s cores it takes a 2τ

s log(τ) time. At the end of this phase, the evaluator can
publicly use the pair (l, π) as a proof of computation. In Algorithm 1 we present a pseudo
code of evaluation and proof phases.

Algorithm 1 Evaluation and proof of the Wesolowski construction.

input :m ∈ {0, 1}∗, τ ∈ N
output : π ∈ [0, N − 1], l prime ∈ [0, 22k − 1]
x← H(m)
y ← x

for k ← 1 to τ do
y ← y2 mod N

end
l← Hprime(x+ y)
π = xb2

τ/lc mod N

return (π, l)

2.2.4 Verification
A verifier takes as an input (m, τ, l, π) and computes x = H(x) and r = 2τ mod l and then
y′ = πl · xr mod N and finally checks whether Hprime(x+ y′) = l. This operation takes a
time λ4 and is thus independant of T . In Algorithm 2 we present a pseudo code for this
phase.

Tokenomics 2020



9:4 Implementation Study of Two Verifiable Delay Functions

Algorithm 2 Verification of the Wesolowski VDF.

input : x, τ, π, l
output :> or ⊥
x← H(m)
r ← 2τ mod l

y ← πl · xr mod N

if l = Hprime(x+ y) then
return >

else
return ⊥

end

2.2.5 Overhead on the network

The output size of a VDF can be a critical matter in network considerations. Fortunately,
Wesolowski’s VDF has a tiny footprint. An evaluation output is composed of elements of the
RSA group π which is at most λ bits long and a prime number of size at most 2 · k.

2.3 Simple VDF - Pietrzak

2.3.1 Setup

The setup part of the Pietrzak’s VDF is the same the Wesolowski’s one.

2.3.2 Evaluation

The evaluation part is also similar, i.e., computing y = x2τ mod N .

2.3.3 Proof

We assume τ = 2t for the sake of simplicity. Computing the proof uses some variables defined
as following. We set (x1, y1) := (x, y) and for i ∈ [1, t],

µi := x2τ/2i

i mod N

ri := H(xi + yi + µi)
xi+1 := xrii · µi mod N

yi+1 := µrii · yi mod N

The proof is thus π = {µi}i∈[1,t]. One can see it is heavier than the Wesolowski’s VDF as
there are log(T ) numbers of size λ to transmit, which can be about 40KB in usual conditions.
This step has a complexity of 2τ

s
√

(τ)
with s being the amount of processors. In Algorithm 1

we show pseudocode to compute the verification and proof of the Pietrzak’s VDF.



V. Attias, L. Vigneri, and V. Dimitrov 9:5

Algorithm 3 Evaluation and proof of the Pietrzak construction.

input :m ∈ {0, 1}∗, τ ∈ N
output : π ∈ [0, N − 1]t
t← blog2(τ)c
x← H(m)
y ← h

for k ← 1 to τ do
y ← y2 mod N

end
(x1, y1)← (x, y)
for i← 1 to t do

µi ← x2τ/2i

i

ri ← H(xi + yi + µi)
xi+1 ← xrii · µi mod N

yi+1 ← µrii · yi mod N

end
return π ← {µi}i∈[1,t]

2.3.4 Verification
In the verification part, the verifier will parse π and check that each element is in the SA group
Z
NZ . If so, it will recompose xt+1 and yt+1 in the same way as the prove part by computing

ri := H(xi + yi + µi)
xi+1 := xrii · µi mod N

yi+1 := µrii · yi mod N

and then check that

yt+1
?= x2

t+1 mod N (1)

and output > if it holds or ⊥ otherwise.
This step can be achieved with a complexity of log(T ). In the Algorithm 4 we present a

pseudocode computing this verification.

2.4 Dimitrov’s multiexponentiation
The Wesolowski’s construction operates double exponentiation in the verification phase when
computing πl · xr mod N . The use of a modular multiexponentiation algorithm is then
profitable. A multiexponentiation is computing xa · yb mod n. However, computing xa
mod , yb mod n, and then their product, even with the optimal algorithms available, is
not the optimal way to do so [13]. Thus, Dimitrov et al. [13] proposed two algorithms to
compute multiexponentiations with better average performances. It presents two versions, a
first one performing similarly to the binary exponentiation method [17] and a second one very
lookalike but using recoding to reduce the number of multiplications. The first algorithm
can be found in Algorithm 5. Computing the two separate exponentiations should require in
average 2 log 2(max(a, b)) multiplications while the Dimitrov’s algorithms claims to require
in average 7

4 log 2(max(a, b)) multiplications.

Tokenomics 2020



9:6 Implementation Study of Two Verifiable Delay Functions

Algorithm 4 Verification of the Pietrzak construction.

input : x, τ, π
output :> or ⊥
for µ in π do

if µ >= N then
return ⊥

end
(x1, y1)← (x, y)
for i← 1 to t do

ri ← H(xi + yi + µi)
xi+1 ← xrii · µi mod N

yi+1 ← µrii · yi mod N

end
if yt+1 = x2

t+1 then
return >

else
return ⊥

end

3 Simulation results

We present now the implementation results of the Wesolowski and Pietrzak VDFs to get real-
life estimations. We run the simulations for values of τ between 216 and 220 which requires
an evaluation time in the order of seconds or minutes. We have also studied the influence of
the RSA modulus bit length λ on the performances and used values in {512, 1024, 2048}. All
the x-axes are in log2-scale if not specified otherwise.

3.1 Evaluation time analysis
In Figure 1, we present the evaluation time for Pietrzak and Wesolowski VDFs with the
x-axis in linear scale. We have identical values for Pietrzak and Wesolowski VDFs. We can
see a clear linear growth allowing an easy tuning of the difficulty. It is important to see the
clear impact of the RSA group’s size as it yields a great variation.

3.2 Proof time analysis
In Figure 2, we show the proving time for Pietrzak and Wesolowski VDFs. They are of
the same order of the evaluation which is a serious drawback, forcing users to spend more
time after having evaluated the VDF. Reducing the proof computation time is one of the
important goals of both constructions. As predicted in the theoretical part, Pietrzak VDF
achieves better timing.

3.3 Verification time analysis
In Figure 3, we display the verification time for both constructions. We can see that the
Pietrzak construction achieves timing under 1 ms even with 2048 bits RSA groups. However,
it is more complicated for the Wesolowski VDF which achieves good timing only for RSA
groups with a bitlength under 1024. We can also see the dependence on τ for the Pietrzak
verification time grows in O(log τ) where the Wesolowski one is independent of τ .



V. Attias, L. Vigneri, and V. Dimitrov 9:7

Algorithm 5 Dimitrov multiexponentiation algorithm.

For n ∈ N, we have {ni}i∈N such as n =
∑∞
i=0 ni2i and ni = 0 ∀ i > blog2(n)c

input : x, y, a, b,N
output : xa · yb mod N

h := max(blog2 ac+ 1, blog2 bc+ 1)
z = 1
q = x · y mod N

for i = h− 1 down to 0 do
z := z ∗ z mod N

if ai = 1 and bi = 0 then
z := z ∗ x mod N

else if ai = 0 and bi = 1 then
z := z ∗ y mod N

else if ai = 1 and bi = 1 then
z := z ∗ q mod N

end
return z

It is here interesting to see the impact of the security parameter k in the verification time.
We run for a 2048 bits RSA group different values of k in {96, 128, 160} for the Wesolowski
VDF, and observed the effect. We can see that choosing the right value for k plays a great
role in the verification time. The plot can be found in the Figure 4.

4 VDF optimizations

In the Wesolowski construction, there is a need for the evaluator and the verifier to compute
a multiexponentiation, πlxr mod N . Using the Dimitrov’s multiexponentiation could speed
up this part. We can split the computing time of this algorithm into two main parts. On
the one hand, the actual modular multiplication which is uncompressible and we rely on the
arbitrary precision library, NTL [25] to be as fast as possible on these operations. On the
other hand, we have the whole bit scanning process which determines which multiplication
to make and which can be optimized. We have tried several implementations to attempt
optimizing performances and address the fact that we evaluate the most significant bits first
when multiplying and it is not trivial to find them efficiently.

4.1 Techniques used

4.1.1 Using strings

The original Dimitrov’s algorithm [13] requires to find the binary representation g of a and b
in the Pekmestzi’s “binary-like” complex representation [20] which is actually interlacing a
and b’s binary representations such as g2k+1g2k = akbk∀ ∈ N (these are not numbers products
but strings concatenations). The algorithms will scan g by packets of 2 bits in order to make
multiplications.

We propose a slight improvement here which bypasses the computation of g but directly
tests the value of ai and bi without using g. This is what we wrote in Algorithm 5.

Tokenomics 2020



9:8 Implementation Study of Two Verifiable Delay Functions

220221 222 223 224 225

Number of exponentiations

0

10

20

30

40

50
Ti

m
e 

(s
)

Evaluation time C++
=512
=1024
=2048

Wesolowski
Pietrzak

Figure 1 Evaluation time for Pietrzak and Wesolowski VDFs in C++.

4.1.2 Using powers of 4

As the std::string C++ structure is quite low when compared to numbers manipulation,
we suggest to make use of numbers and consider g as a number such as g =

∑
k∈N gk4k with

gk = ak + 2bk. It is easy to see that this form covers exactly the four cases encountered when
multiplying. Thus we only need to make divisions by 4i and a modulus 4 to get the values gi
for i ∈ N. Then we multiply accordingly to the value of gi.

4.1.3 Using chunked numbers

The problem with the latter improvement is that with big exponents, g can become huge,
and then we are forced to consider it as a NTL arbitrary precision number and it slows down
the execution and the multiple divisions by 4i require an increasing time as the exponent
grows. So we tried to split g in multiple chunks of a fixed size (typically some unsigned int
or unsigned char) and store them. However, as we wanted to have an algorithm working
with exponents of unknown size, we need to use a dynamically growing container such as the
std::vector.

4.1.4 Using chained lists

In our last improvement, we tried to optimize even more this process by using chained lists
to get rid of the std::vector. We believed this would have better performances because
we get rid of the std::vector overhead and starting from the most significant bit is not a
problem anymore because the current pointer points to the most significant chunk.



V. Attias, L. Vigneri, and V. Dimitrov 9:9

20 21 22 23 24 25
Number of exponentiations

0

10

20

30

40
Ti

m
e 

(s
)

Proof time C++
=512
=1024
=2048

Wesolowski
Pietrzak

Figure 2 Proof time for Pietrzak and Wesolowski VDFs in C++.

4.2 Multiexponentiation performances
We have run the various optimizations proposed for multiexponentiation and compared them
with the naive separate exponentiations using NTL. As expected, we can see that the strings
method is the slowest, followed by the power of 4 one. However, using chained lists is slower
than chunks contrary to our expectations. This can be explained by the use of memory
allocations for each new element of the chained list. We could improve this by allocating
multiple elements at the same time to reduce the overhead. However, despite all our efforts,
we were unable to compete with the built-in separate exponentiations. This can be explained
by the thin theoretical improvement of Dimitrov’s multiexponentiation which is only 8

7 times
as fast. Furthermore, the NTL library is optimized to the bones so competing with it requires
more advanced programming skills.

4.3 Exponentiation with constant radix in Pietrzak VDF
In this construction, almost every exponentiation which is computed in actually an expo-
nentiation in radix x, the input value. Pietrzak [21] provides an example of how to leverage
this property to improve performances but we extend this idea. This optimization is merely
identical in the evaluation and the verification parts. We use a logarithmic notation meaning
that for a number z, we define xz = z. Then we have the recursive definition for the following
values

µi = 2
Ti
2 · xi

xi+1 = ri · xi + µi

yi+1 = ri · µi + yi

Tokenomics 2020



9:10 Implementation Study of Two Verifiable Delay Functions

220 221 222 223 224 225

Number of exponentiations

0.0

0.2

0.4

0.6

0.8
Ti

m
e 

(m
s)

Verification time for Pietrzak and Wesolowski s VDF

=1024
=2048
=3072

Figure 3 Verification time for Pietrzak and Wesolowski VDFs in C++.

It is then straightforward to show that the values µ′i, µi and xi are exponentiations of x.
Then keeping a trace of these values allows quick exponentiation when using precomputations
however one should be aware that without precomputations it does not bring any improvement.
Besides, this technique has a low memory consumption as we do not need to store the different
values xi and yi because of the iterative aspect of the calculation. We have not implemented
this technique yet and it would be interesting to see if we have a sensible performance
improvement.

5 Discussion

5.1 Comparison between Pietrzak and Wesolowski VDFs
The simulations of Pietrzak and Wesolowski’s constructions give a clear advantage for
Pietrzak’s one in terms of the performance of the verification step. However, we have to
take into account the overhead induced in the network. As Pietrzak’s proof consists of log(τ)
elements of the RSA group, the verifier should transmit log(t) + 1 elements of 2k bits which
can represent an overhead of 40KB only for the rate control protocol. This is not viable
for DLT protocols, where transaction size must be small to optimize network throughput.
Conversely, the Wesolowski’s proof is a single element of the RSA group and a small prime
number thus the overhead represents only a few KB.

5.2 The RSA modulus
The RSA modulus is a fundamental parameter in the Pietrzak and Wesolowski’s constructions,
and keeping its factorization is the heart of their security. Indeed, someone knowing its
factors p and q can easily compute the Euler totient function φ(N) = (p−1) · (q−1) and then
compute the evaluation in a quasi-instant time because x2τ mod N = x2τ mod φ(N) mod N .



V. Attias, L. Vigneri, and V. Dimitrov 9:11

Figure 4 Verification time Wesolowski VDF when varying k with λ = 2048.

The factorization hardness of an RSA modulus is directly related to its bit length. In
Table 1, we present the equivalency between RSA key length and its bit-level security. A
k bit-level security means that it takes around 2k operations to break it. It is estimated
that 112-bits security is sufficient until 2030 [10] but for further uses a 128 bit-level security
should be chosen. We then suggest using a 2048 bit long RSA modulus for VDF use.

Table 1 Equivalency between RSA keys length and bit-level security [19].

RSA key length Bit-level security
1024 80
2048 112
3072 128
7,168 192
15,360 256

Finally, a crucial point of using VDFs for DLT applications, especially for permissionless
technologies, is how to generate such a modulus in a decentralized way and guarantee that
no one can retrieve the factorization, even the nodes having participated in its generation.
The distributed generation of RSA keys has first been studied by Boneh and Franklin [8],
and its security and performances have been then improved by [1, 11, 23, 9, 6]. The most
recent algorithm designed by Frederiksen et al. guarantees a (n− 1) security (i.e., at least
one of the participants is honest and follows the rules) with very fast performances [16].

Tokenomics 2020



9:12 Implementation Study of Two Verifiable Delay Functions

0

8 9 10
Bit length of the numbers

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Co

m
pu

ta
tio

na
l t

im
e 

(m
s)

Comparison between multiexponentiation techniques
Strings
Power of 4
Chained lists
Chunks
Built-in

Figure 5 Multiexponentiation improvements comparison.

Table 2 Performance comparison between PoW and VDF.

Hardware PoW VDF
Hash/s (speedup factor) Squaring/s (speedup factor)

CPU 104 (×1) 106 (×1)
FPGA 1010 (×106) 3 · 107 (×30)
ASIC 1012 (×108) n/a

5.3 Comparison with Proof of Work

As mentioned in Section 1, VDFs can be used as a non-parallelizable PoW. Therefore, it
is interesting to see the VDF performance when using highly specialized hardware such
as FPGAs or ASICs which normally speed the PoW computation up to several orders of
magnitude. In Table 2, we have collected the potential performance increase between PoW
and VDF for different hardware [5]. In Table 3, we have estimated the potential bandwidth
occupation when hardware generates IOTA transactions [22] which are encoded in 1.6KB.
The difference between PoW and VDF is clear: the intrinsically not parallelizable nature
of VDFs allows us to keep a very low throughput for a node even with an FPGA hardware.
Currently, no ASICs are available for the computation of VDFs.

6 Conclusion

In this paper, we have presented an analysis of two VDFs, Wesolowski and Pietrzak’s
constructions, both based on exponentiations in RSA groups. Our work focused on simulating
the computation of such VDFs to study the viability of their use in rate control for DLTs. We



V. Attias, L. Vigneri, and V. Dimitrov 9:13

Table 3 Spamming potential comparison between PoW and VDF.

Hardware PoW VDF
CPU 1.4 kbps 1.9 kbps
FPGA 1.3 Gbps 58 kbps
ASIC 120 Gbps n/a

have seen that, although the Pietrzak’s construction has better performances, its overhead
on the network makes it not viable in certain contexts. Hence, the Wesolowski’s one makes a
better candidate, although its verification times is larger. Besides, we have suggested using
multiexponentiation algorithms to compute faster Wesolowski’s verification.

References
1 Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient computation modulo a shared

secret with application to the generation of shared safe-prime products. In Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 2442, pages 417–432, 2002. URL: https://eprint.iacr.
org/2002/029.pdf.

2 Adam Back. Hashcash - A Denial of Service Counter-Measure. Technical Report August,
Hashcash, 2002.

3 Juan Benet, David Dalrymple, and Nicola Greco. Proof of Replication. Technical report,
Stanford University, 2017. doi:10.1007/s00221-007-1153-3.

4 Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, and Vinod Vaikuntanathan.
Time-lock puzzles from randomized encodings. In ITCS 2016 - Proceedings of the 2016
ACM Conference on Innovations in Theoretical Computer Science, pages 345–356, 2016.
doi:10.1145/2840728.2840745.

5 Bitcoin Wiki. Mining hardware comparison - Bitcoin Wiki. URL: https://en.bitcoin.it/
wiki/Mining_hardware_comparison.

6 Simon R. Blackburn, Mike Burmester, StevenD. Galbraith, and Simon Blake-Wilson. Weak-
nesses in Shared RSA Key Generation Protocols. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinform-
atics), volume 1746, pages 300–306. Springer, Berlin, Heidelberg, December 1999. URL:
http://link.springer.com/10.1007/3-540-46665-7_34.

7 Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), volume 10991 LNCS, pages 757–788, 2018. URL:
https://eprint.iacr.org/2018/601.pdf.

8 Dan Boneh and Matthew Franklin. Efficient generation of shared RSA Keys. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 1294(4):425–439, July 1997. doi:10.1007/BFb0052253.

9 Clifford Cocks. Split knowledge generation of RSA parameters. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 1355, pages 89–95, 1997. doi:10.1007/bfb0024452.

10 Cybernetica. Cryptographic Algorithms Lifecycle Report 2016. Technical report,
Cybernetica, 2016. URL: https://www.ria.ee/sites/default/files/content-editors/
publikatsioonid/cryptographic_algorithms_lifecycle_report_2016.pdf.

11 Ivan Damgård and Gert Læssøe Mikkelsen. Efficient, robust and constant-round distributed
RSA key generation. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 5978 LNCS:183–200, 2010.

Tokenomics 2020

https://eprint.iacr.org/2002/029.pdf
https://eprint.iacr.org/2002/029.pdf
https://doi.org/10.1007/s00221-007-1153-3
https://doi.org/10.1145/2840728.2840745
https://en.bitcoin.it/wiki/Mining_hardware_comparison
https://en.bitcoin.it/wiki/Mining_hardware_comparison
http://link.springer.com/10.1007/3-540-46665-7_34
https://eprint.iacr.org/2018/601.pdf
https://doi.org/10.1007/BFb0052253
https://doi.org/10.1007/bfb0024452
https://www.ria.ee/sites/default/files/content-editors/publikatsioonid/cryptographic_algorithms_lifecycle_report_2016.pdf
https://www.ria.ee/sites/default/files/content-editors/publikatsioonid/cryptographic_algorithms_lifecycle_report_2016.pdf


9:14 Implementation Study of Two Verifiable Delay Functions

12 Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay functions
from supersingular isogenies and pairings. In Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume
11921 LNCS, pages 248–277, 2019. URL: https://defeo.lu/.

13 Vassil S. Dimitrov, Graham A. Jullien, and William C. Miller. Complexity and fast algorithms
for multiexponentiations. IEEE Transactions on Computers, 49(2):141–147, 2000. doi:
10.1109/12.833110.

14 Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak. Proofs
of space. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 9216, pages 585–605, 2015. URL:
https://eprint.iacr.org/2013/796.pdf.

15 Ben Fisch, Joseph Bonneau, Nicola Greco, and Juan Benet. Scaling Proof-of-Replication for
Filecoin Mining. Technical report, Stanford University, 2018. URL: https://web.stanford.
edu/{~}bfisch/porep_short.pdf.

16 Tore Kasper Frederiksen, Yehuda Lindell, Valery Osheter, and Benny Pinkas. Fast distributed
rsa key generation for semi-honest and malicious adversaries. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 10992 LNCS, pages 331–361. Springer Verlag, 2018.

17 C. K. Koc. High-speed RSA implementation. Technical report, RSA Laboratories, 1994. URL:
ftp://ftp.rsasecurity.com/pub/pdfs/tr201.pdf.

18 Arjen K. Lenstra and Benjamin Wesolowski. Trustworthy public randomness with sloth,
unicorn, and trx. International Journal of Applied Cryptography, 3(4):330–343, January 2017.
doi:10.1504/IJACT.2017.089354.

19 NIST. Recommendation for Key Management - Part 1: General. NIST Special Publication
800-57, Revision 3(July):1–147, January 2012. doi:10.6028/NIST.SP.800-57pt1r4.

20 K. Z. Pekmestzi. Complex number multipliers. IEE Proceedings E: Computers and Digital
Techniques, 136(1):70–75, 1989. doi:10.1049/ip-e.1989.0010.

21 Krzysztof Pietrzak. Simple verifiable delay functions. In Leibniz International Proceedings in
Informatics, LIPIcs, volume 124, 2019. doi:10.4230/LIPIcs.ITCS.2019.60.

22 Serguei Popov. The Tangle. Technical report, IOTA Foundation, 2018.
URL: https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/
45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf.

23 Michael O. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory,
12(1):128–138, 1980. doi:10.1016/0022-314X(80)90084-0.

24 R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM, 21(2):120–126, 1978. doi:
10.1145/359340.359342.

25 Victor Shoup. NTL - A Library for doing Number Theory, 2019. URL: https://www.shoup.
net/ntl/.

26 Benjamin Wesolowski. Efficient verifiable delay functions. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), volume 11478 LNCS, pages 379–407, 2019. URL: https://eprint.iacr.org/
2018/623.pdf.

https://defeo.lu/
https://doi.org/10.1109/12.833110
https://doi.org/10.1109/12.833110
https://eprint.iacr.org/2013/796.pdf
https://web.stanford.edu/{~}bfisch/porep_short.pdf
https://web.stanford.edu/{~}bfisch/porep_short.pdf
ftp://ftp.rsasecurity.com/pub/pdfs/tr201.pdf
https://doi.org/10.1504/IJACT.2017.089354
https://doi.org/10.6028/NIST.SP.800-57pt1r4
https://doi.org/10.1049/ip-e.1989.0010
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85dd9f4a3a218e1ec/iota1_4_3.pdf
https://doi.org/10.1016/0022-314X(80)90084-0
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://www.shoup.net/ntl/
https://www.shoup.net/ntl/
https://eprint.iacr.org/2018/623.pdf
https://eprint.iacr.org/2018/623.pdf

	Introduction
	Related work
	RSA environments
	Efficient VDF - Wesolowski
	Setup
	Evaluation
	Proof
	Verification
	Overhead on the network

	Simple VDF - Pietrzak
	Setup
	Evaluation
	Proof
	Verification

	Dimitrov's multiexponentiation

	Simulation results
	Evaluation time analysis
	Proof time analysis
	Verification time analysis

	VDF optimizations
	Techniques used
	Using strings
	Using powers of 4
	Using chunked numbers
	Using chained lists

	Multiexponentiation performances
	Exponentiation with constant radix in Pietrzak VDF

	Discussion
	Comparison between Pietrzak and Wesolowski VDFs
	The RSA modulus
	Comparison with Proof of Work

	Conclusion

