Yet Another Programming Exercises
Interoperability Language

José Carlos Paiva

CRACS - INESC, LA, Porto, Portugal
DCC — FCUP, Porto, Portugal
jose.c.paiva@inesctec.pt

Ricardo Queirés

CRACS - INESC, LA, Porto, Portugal

uniMAD — ESMAD, Polytechnic of Porto, Portugal
http://www.ricardoqueiros.com
ricardoqueiros@esmad.ipp.pt

José Paulo Leal

CRACS — INESC, LA, Porto, Portugal
DCC - FCUP, Porto, Portugal
https://www.dcc.fc.up.pt/~zp
zp@dcc.fc.up.pt

Jakub Swacha

University of Szczecin, Poland
jakub.swacha@usz.edu.pl

—— Abstract

This paper introduces Yet Another Programming Exercises Interoperability Language (YAPEXIL),
a JSON format that aims to: (1) support several kinds of programming exercises behind traditional
blank sheet activities; (2) capitalize on expressiveness and interoperability to constitute a strong
candidate to standard open programming exercises format. To this end, it builds upon an existing
open format named PExIL, by mitigating its weaknesses and extending its support for a handful of
exercise types. YAPEXIL is published as an open format, independent from any commercial vendor,
and supported with dedicated open-source software.

2012 ACM Subject Classification Applied computing — Computer-managed instruction; Applied
computing — Interactive learning environments; Applied computing — E-learning

Keywords and phrases programming exercises format, interoperability, automated assessment,
programming learning

Digital Object Identifier 10.4230/0OASIcs.SLATE.2020.14
Category Short Paper

Funding This paper is based on the work done within the Framework for Gamified Programming
Education project supported by the European Union’s Erasmus Plus programme (agreement no.
2018-1-PL01-KA203-050803).

1 Introduction

Learning programming relies on practicing. Practicing in this domain boils down to solve
exercises. Regardless of the context (curricular or competitive learning), several tools such
as contest management systems, evaluation engines, online judges, repositories of learning
objects, and authoring tools use a different panoply of formats in order to formalize exercises.
Though this approach remedies individual needs, the lack of a common format hinders

interoperability and weakens the development and sharing of exercises among different
© José Carlos Paiva, Ricardo Queirés, José Paulo Leal, and Jakub Swacha;
37 licensed under Creative Commons License CC-BY

9th Symposium on Languages, Applications and Technologies (SLATE 2020).
Editors: Alberto Simoes, Pedro Rangel Henriques, and Ricardo Queirés; Article No. 14; pp. 14:1-14:8

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0003-0394-0527
mailto:jose.c.paiva@inesctec.pt
https://orcid.org/0000-0002-1985-6285
http://www.ricardoqueiros.com
mailto:ricardoqueiros@esmad.ipp.pt
https://orcid.org/0000-0002-8409-0300
https://www.dcc.fc.up.pt/~zp
mailto:zp@dcc.fc.up.pt
https://orcid.org/0000-0002-2214-6989
mailto:jakub.swacha@usz.edu.pl
https://doi.org/10.4230/OASIcs.SLATE.2020.14
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

14:2

YAPEXxIL

educational institutions. Moreover, the existence of a common data format will increase
innovation in programming education with a high practical impact, as it will help to save a
lot of instructors’ time that they would otherwise have to spend on defining new exercises or
recasting existing ones themselves.

At the same time, all of these programming exercise formats focus on describing traditional
programming exercises, such as blank sheet exercises, where the student is challenged to solve,
from scratch, a presented problem statement. In fact, up to this date, there are no open
formats that explore the fostering of new competencies such as understanding code developed
by others and debugging. To enhance these skills, new types of exercises (e.g., solution
improvement, bug fix, gap filling, block sorting, and spot the bug) can be defined and applied
at different phases of a student’s learning path. This diversity can promote involvement and
dispel the tedium of routine associated with solving exercises of the same type. To the best
of our knowledge, there are several formats for defining programming exercises but none of
them supports all the different types of programming exercises mentioned.

This paper introduces a new format developed for describing programming exercises -
the Yet Another Programming Exercises Interoperability Language (YAPExIL). This format
is partially based in the XML dialect PEXIL [4], but (1) it is a JSON format instead of
XML, (2) transfers the complex logic of automatic test generation to a script provided by
the author, and (3) supports different types of programming exercises.

The remainder of this paper is organized as follows. Section 2 surveys the existing formats,
highlighting both their differences and similar features. In Section 3, YAPEXIL is introduced
as a new programming exercises format and four facets are presented. Then, Section 4
validates the format expressiveness and coverage. In the former, the Verhoeff model [6] is
used to validate the expressiveness of YAPEXIL. In the later, the YAPEXIL coverage for new
types of exercises is shown. Finally, Section 5 summarizes the main contributions of this
research and discusses plans for future work.

2 Programming Exercises Format

The increasing popularity of programming encourages its practice in several contexts. In
formal learning, teachers use learning environments and automatic evaluators to stimulate
the practice of programming. In competitive learning, students participate in programming
contests worldwide resulting in the creation of several contest management systems and online
judges. The interoperability between these types of systems is becoming a topic of interest
in the scientific community. To address these interoperability issues, several programming
exercise formats were developed in the last decades.

In 2012, a survey [5] synthesized those formats according to the Verhoeff model [6]. This
model organizes the programming exercise data into five facets: (1) Textual information
- programming task human-readable texts; (2) Data files - source files and test data; (3)
Configuration and recommendation parameters - resource limits; (4) Tools - generic and
task-specific tools; (5) Metadata - data to foster exercise discovery among systems. For each
facet of the model, a specific set of features was analyzed and verified the support of each
format. In that time, the study confirmed the disparity of programming exercise formats
and the lack or weak support for most of the Verhoeff model facets. Moreover, the study
concludes that this heterogeneity hinders the interoperability among the typical systems
found on the automatic evaluation of exercises. To remedy these issues, two attempts to
harmonize the various specifications were developed: a new format [4] and a service for
exercises formats conversion [5].

J. C. Paiva, R. Queirés, J.P. Leal, and J. Swacha

Since then, new formats were proposed to formalize exercises. In this section, we present
a new survey that aims to compare existent programming exercise formats based on their
expressiveness. Based on a comprehensive survey done of systems that store and manipulate
programming exercises, we found about 10 different formats. Since some of them lack a
published description we concentrated on 7 formats, namely: (1) Free Problem Set (FPS);
(2) Kattis problem package format; (3) DOM Judge format; (4) Programming Exercise
Markup Language (PEML); (5) the language for Specification of Interactive Programming
Exercises (SIPE); (6) Mooshak Exchange Format (MEF); and (7) Programming Exercises
Interoperability Language (PExXIL).

The study follows the same logic as its predecessor, but with the following changes:

Expressiveness model - the Verhoeff model is extended with a new facet that analyzes the

support of new types of exercises. For this study eight types of programming exercises

were tackled, namely: blank sheet, extension, improvement, bug fix, fill in gaps, spot bug,

sort blocks, and multiple choice.

Data formats - given that several years have passed since the last study, CATS and Peach

Exchange formats are removed and new formats are added (Kattis, DOM Judge, PEML,

and SIPE).
Each format is evaluated for its level of coverage of all features of each facet. The evaluation
values range from 1 — low support to 5 — full support. Then, all the values are added and a
final percentage is presented corresponding to the coverage global level of each format and
facet, based on the extended Verhoeff model.

Table 1 gathers the current coverage level of the selected programming exercises formats.

Table 1 Coverage level comparison on programming exercises data formats.

Facets/Formats FPS KTS DOMJ PEML SIPE MEF PExIL TOTAL

1. Textual 2 3 3 3 3 4 5 66%
2. Data files 3 2 3 3 3 3 5 63%
3. Config 2 2 1 1 3 3 5 49%
4. Tools 1 3 3 2 2 3 5 54%
5. Metadata 2 2 3 3 3 3 5 60%
6. Ex. types 1 1 1 1 1 2 1 23%
TOTAL 37% 43% 47% 43% 50% 60% 87%

Based on these values, we can see that, regarding format coverage, PEXIL assumes a
prominent role with 87% of facets’ coverage rate based on the Verhoeff extended model. This
is mainly because, despite being a format created eight years ago, it is still one of the most
recent formats (excluding the PEML format). All the other formats cover more or less half
of the facets.

Regarding facets coverage, one can conclude that, on the one hand, textual (66%), data
files (63%), and metadata (60%) facets are the most covered. On the other hand, the support
for different exercise types, beyond the blank sheet type (typical format), is scarce.

3 YAPExIL

Yet Another Programming Exercises Interoperability Language (YAPEXIL) is a language
for describing programming exercise packages, partially based in the XML dialect PExIL
(Programming Exercises Interoperability Language) [4]. In comparison to PExIL, YAPEXIL
(1) is formalized through a JSON Schema instead of a XML Schema, (2) removes complex

14:3

SLATE 2020

14:4

YAPEXxIL

logic for automatic test generation while still supporting it through scripts, (3) supports
different types of programming exercises and (4) adds support for a number of assets (e.g.,
instructions for authors, feedback generators, and platform information).
YAPEXIL aims to consolidate all the data required in the programming exercise life-cycle,
including support for seven types of programming exercises:
BLANK_SHEET provides a blank sheet for the student to write her solution source code
from scratch;
EXTENSION presents a partially finished solution source code (the provided parts are not
subject to change by the student) for the student to complete;
IMPROVEMENT provides correct initial source code that does not yet achieve all the goals
specified in the exercise specification (e.g., optimize a solution by removing loops), so the
student has to modify it to solve the exercise;
BUG_FIX gives a solution with some bugs (and, possibly, failed tests) to foster the student
to find the right code;
FILL_IN_GAPS provides code with missing parts and asks students to fill them with the
right code;
SPOT_BUG provides code with bugs and asks students to merely indicate the location of
the bugs;
SORT_BLOCKS breaks a solution into several blocks of code, mixes them, and asks students
to sort them.

To this end, the YAPEXIL JSON Schema can be divided into four separate facets:
metadata, which contains simple properties providing information about the exercise;
presentation, which relates to what is presented to the student; assessment, which
encompass what is used in the evaluation phase; and tools, which includes any additional
tools that the author may use in the exercise.

Figure 1 presents the data model of YAPEXIL format, with the area of each facet
highlighted in a distinct color. The next subsections describe each each of these facets.

3.1 Metadata Facet

The Metadata facet, highlighted in blue in Figure 1, encodes basic information about the
exercise that can uniquely identify it and to which subject(s) it refers to. Elements in this
facet are mostly used to facilitate searching and consultation in large collections of exercises
and the interoperability among systems. For instance, an exercise can be uniquely identified
by its id, which is a Universally Unique Identifier (UUID) of the exercise.

Furthermore, the metadata includes many other identifying and non-identifying attributes
such as the title of the programming exercise, the module in which the exercise is in (i.e.,
a description of its main topic), the name of the author of the exercise, a set of keywords
relating to the exercise, its type — which can be BLANK_SHEET, EXTENSION, IMPROVEMENT,
BUG_FIX, FILL_IN_GAPS, SORT_BLOCKS, or SPOT_BUG —, the event at which the exercise
was created (if any), the platform requirements (if any), the level of difficulty (one of
BEGINNER, EASY, AVERAGE, HARD, or MASTER), the current status (i.e., whether it is still
a DRAFT, a PUBLISHED or UNPUBLISHED exercise, or it has been moved to TRASH), and the
timestamps of creation and last modification (created_at and updated_at, respectively).

3.2 Presentation Facet

The Presentation facet, highlighted in green in Figure 1, includes all elements that relate to
the exercise visualization, both by the students and the instructors. More precisely, these
will be the elements placed on the screen while the student solves the problem, and when
the teacher firstly opens the exercise.

J. C. Paiva, R. Queirés, J.P. Leal, and J. Swacha

Presentation
0-* FormattedText
Instruction
Metadata pathname : string
1-* format : string
- Statement natLang : string
Exercise =4
: . 0- 3
id : string S
title : string Embeddable
module : string >— 0% Resource
author : string Skeleton
type : string ——> pathname : strin
difficulty : string }Eype . string
status : string 0-*
keywords : string[] @p———
event : string Tools
platform : string
created_at : date
updated_at : date TestGenerator Executable
‘ {> pathname : string
commandLine: Strin
FeedbackGenerator ¢
* Evaluation
0-*
Libraries
1-%
0-*
DynamicCorrector
0—* Code
StaticCorrector K
—D pathname : string
1% lang : string
TestSet Test
description: string 1-* input string
weight : double {p——> output : string
visibility : boolean args ¢ string([]
weight : double
visibility: boolean

Figure 1 Data model defined by the YAPEXIL format.

The supported elements include instruction — a formatted text file with instructions to
teachers about how to deliver or some remarks on the exercise —, statement — a formatted
text file with a complete description of the problem to solve —, embeddable — an image, video,
or another resource file that can be referenced in the statement —, and skeleton — a code
file containing part of a solution that is provided to the students, from which they can start
developing theirs.

All of these elements are allowed multiple instances, being required only a single statement
in this facet to have a complete exercise. Hence, formatted text files may be translated to
other natural languages or formats whereas code files can be written in several programming
languages.

3.3 Assessment Facet

The automated assessment is the end goal of a programming exercise definition language. In
order to evaluate a programming exercise, the learner must submit the source code to an
evaluation engine. The evaluation engine will then use the necessary and available elements
to judge it.

All the elements used in the evaluation belong to the Assessment facet, highlighted in red
in Figure 1, and include template — code file containing part of a solution that wraps students’
code without their awareness —, library — code library that can be used by solutions, either

14:5

SLATE 2020

14:6

YAPEXxIL

in compilation or execution phase —, static_corrector — external program (and associated
command line) that is invoked before dynamic correction to classify/process the program’s
source code —, dynamic_corrector — external program (and associated command line) that
is invoked after the main correction to classify each run —, solution — a code file with the
solution of the exercise provided by the author(s), test — a single public/private test with
input/output text files, a weight in the overall evaluation, and a number of arguments —, and
test_set — a public/private set of tests.

Each element in this facet also supports multiple instances, being required only a single
solution and either a test or a testset with one test. Hence, multiple correctors, libraries,
and test/testsets, and solutions in different programming languages may be provided.

3.4 Tools Facet

The Tools facet, highlighted in yellow in Figure 1, encompasses any additional scripts that
may be used during the programming exercise life-cycle. These include external programs
(and their associated execution command line) that generate (1) the feedback to give to the
student about her attempt to achieve a solution (i.e., feedback_generator) and the test
cases to validate a solution (i.e., test_generator).

4 Validation

YAPEXIL was designed to fulfil two objectives: (1) support the definition of different types of
programming exercises, in addition to the traditional ones; (2) cover all aspects of the model
proposed by Verhoeff [6], while being simple and easily convertible. Hence, the validation of
YAPEXIL must prove the two objectives of this new data model for programming exercises.

The validation of the first objective consists of iterating through each proposed type of
exercise and describing how YAPEXIL can fulfil its requirements. Table 2 presents the results
of this validation.

Table 2 Fulfilment of proposed exercise types.

Type Fulfilment

BLANK_SHEET Traditional programming exercise that only requires a statement, a test
generator (or tests), and a solution. All these elements are part of
YAPEXIL.

EXTENSION In addition to a BLANK_SHEET exercise, this one requires a skeleton, which
is part of YAPEXIL.

IMPROVEMENT In addition to an EXTENSION exercise, this one needs to test other program

metrics besides its acceptance. This is achieved through static and/or
dynamic correctors.

BUG_FIX This type requires the same elements as an EXTENSION exercise (skeleton
can be the code with bugs).

FILL_IN_GAPS This type requires the same elements as an EXTENSION exercise (skeleton
can be the code with gaps marked with gap placeholder).

SORT_BLOCKS This type requires the same elements as an EXTENSION, but multiple
skeletons. This is supported by YAPExXIL.

SPOT_BUG This exercise requires a statement, a skeleton with bugged code, and one

test where the output is the bug(s) location. All these elements are part
of YAPEXIL.

The evaluation of the expressiveness of programming assignments’ formats has already
been conducted in several works [2, 3, 6]. Table 3 validates the expressiveness of YAPEXIL
according to the model proposed by Verhoeff [6]. In particular, it iterates through each facet
and correspondent features of the model and explains its fulfilment with YAPExIL.

J. C. Paiva, R. Queirés, J.P. Leal, and J. Swacha

5

14:7

Table 3 Fulfilment of Verhoeff expressiveness model for programming exercise packages.

Facet Feature Fulfilment
Multilingual Multiple statements and instructions are supported and
each of them can have a natural language associated
(see Subsection 3.2).
Textual HTML format Statements and instructions support HTML files (see
Subsection 3.2).
Other open standard Statements and instructions support Markdown files
text formats (see Subsection 3.2).
Presentation formats Statements and instructions support PDF files (see Sub-
section 3.2).
Image Embeddables can be images (see Subsection 3.2).
Attach files Embeddables can be attachments (see Subsection 3.2).
Description The description is provided in a statement. (see Subsec-
tion 3.2).
Solution Solution is an element of YAPEXIL (see Subsection 3.3).
Skeleton Skeleton is an element of YAPEXIL (see Subsection 3.3).
Multi-language All kinds of elements with source code support mul-
tiple files and an associated programming language (see
Data files

Tests

Test groups
Sample tests
Grading
Feedback

Subsection 3.3).

Test is an element of YAPEXIL (see Subsection 3.3).
Test elements can be part of a set (see Subsection 3.3).
Tests can be public (see Subsection 3.3).

Tests can have a weight (see Subsection 3.3).

Rich feedback can be provided by a generator.

Memory limit

May be provided as an argument of a test.

Configuration & Size limit Checked through a static corrector command line.
recommendation Time limit May be provided as an argument of a test.
Code lines Checked through a static corrector command line.
Test gen. Test generator is an element of YAPEXIL (see Subsec-
tion 3.4).
Tools Feedback gen. Feedback generator is an element of YAPEXIL (see Sub-
section 3.4).
Corrector Static and dynamic correctors are elements of YAPExXIL
(see Subsection 3.3).
Library Library is an element of YAPEXIL (see Subsection 3.3).
Title Title is an element of YAPEXIL (see Subsection 3.1).
Topic Module is an element of YAPEXIL (see Subsection 3.1).
Difficulty Difficulty is an element of YAPEXIL (see Subsection 3.1).
Metadata Author Author is an element of YAPEXIL (see Subsection 3.1).
Event Event is an element of YAPEXIL (see Subsection 3.1).
Keywords Keywords are elements of YAPEXIL (see Subsection 3.1).
Platform Platform is an element of YAPEXIL (see Subsection 3.1).
Management Status, creation date, and update date are elements of
YAPEXIL (see Subsection 3.1).
Conclusion

There are plenty of programming exercise formats nowadays. The need for automated

assessment of programming exercises led to a massive proliferation of formats following

the emergence of automated assessment tools [6, 2, 3, 4]. Notwithstanding, despite some

attempts to converge into a common format [5], the interoperability and reusability were left

behind, resulting in the absence of a standard open format for representing programming
exercises and working tools to convert among them.

SLATE 2020

14:8

YAPEXxIL

In addition to the current inability to share and reuse exercises, the focus of existing
formats, largely due to programming contests, has been on traditional programming exercises
where the solver must develop a complete solution, starting from a blank file. However,
different kinds of programming exercises can foster other programming skills and/or are more
adequate at the different stages of learning programming (e.g., spot the bug, fill-in the gaps).

This paper introduces YAPEXIL, a JSON format that aims to fulfill both of the identified
gaps by building upon an existing (and failed) candidate to standard open format, PExIL. To
this end, YAPEXIL addresses the pinpointed flaws of PExIL: (1) the exaggerated complexity
of the test generation mechanism; (2) using the slower and heavier language XML comparing
to JSON format; and (3) the lack of support for non-traditional programming exercises.

YAPEXIL is independent of the evaluation engine, heading all efforts to expressiveness
and easy conversion from/to other programming exercise formats. Moreover, it is already
being used as the main format of a collaborative web programming exercises editor, developed
as open-source software [1]. This editor has an internal conversion mechanism for the most
known formats, currently supporting two.

Our most immediate future work is the development of support for new formats within
this tool, to build a large open collection of programming exercises (featuring gamification in
a separate layer).

—— References

1 FGPE AuthorKit. http://fgpe.dcc.fc.up.pt, 2020.

2 Stephen H. Edwards, Jiirgen Borstler, Lillian N. Cassel, Mark S. Hall, and Joseph Hollingsworth.
Developing a common format for sharing programming assignments. SIGCSE Bull., 40(4):167—
182, November 2008. doi:10.1145/1473195.1473240.

3 A. Klenin. Common problem description format: Requirements, 2011. accessed on April 2019.
URL: https://ciiwiki.ecs.baylor.edu/images/1/1a/CPDF_Requirements.pdf.

4 Ricardo Queirds and José Paulo Leal. PExIL: Programming exercises interoperability language.
In Conferéncia Nacional XATA: XML, aplicagdes e tecnologias associadas, 9.% pages 37-48.
ESEIG, 2011.

5 Ricardo Queirés and José Paulo Leal. Babelo - an extensible converter of programming
exercises formats. IEEE Trans. Learn. Technol., 6(1):38-45, 2013. doi:10.1109/TLT.2012.21.

6 Tom Verhoeff. Programming task packages: Peach exchange format. International Journal

Olympiads In Informatics, 2:192-207, 2008.

http://fgpe.dcc.fc.up.pt
https://doi.org/10.1145/1473195.1473240
https://ciiwiki.ecs.baylor.edu/images/1/1a/CPDF_Requirements.pdf
https://doi.org/10.1109/TLT.2012.21

	Introduction
	Programming Exercises Format
	YAPExIL
	Metadata Facet
	Presentation Facet
	Assessment Facet
	Tools Facet

	Validation
	Conclusion

