A Blockchain Model in Tamarin and Formal
Analysis of Hash Time Lock Contract

Colin Boyd
NTNU - Norwegian University of Science and Technology, Trondheim, Norway

colin.boyd@ntnu.no

Kristian Gjgsteen
NTNU - Norwegian University of Science and Technology, Trondheim, Norway
kristian.gjosteen@ntnu.no

Shuang Wu
NTNU - Norwegian University of Science and Technology, Trondheim, Norway
shuang.wu@ntnu.no

—— Abstract

Formal analysis and verification methods can aid the design and validation of security properties in
blockchain based protocols. However, to generate a reasonable and correct verification, a proper
model for the blockchain is needed. In this paper, we give a blockchain model in Tamarin. Based
on our model we analyze and give a formal verification for the hash time lock contract, an atomic
cross chain trading protocol. The result shows that our model is able to identify an underlying
assumption for the hash time lock contract and that the model is useful for analyzing blockchain
based protocols.

2012 ACM Subject Classification Security and privacy — Formal security models
Keywords and phrases Blockchain model, Tamarin, Hash time lock contract, Formal verification

Digital Object Identifier 10.4230/0ASIcs. FMBC.2020.5

Supplementary Material The source code can be found at
https://github.com/ShuangWul21l/Tamarin-code-for-HTLC-verification

1 Introduction

In a blockchain based protocol, the blockchain serves as a reliable public ledger to deliver
ordered outcomes to all its agents. Protocols can be executed by using smart contracts and
the execution states are recorded on the blockchain. The blockchain essentially performs as
a distributed trusted party to reduce the direct trust between the entities in the system.

In order to formally verify the security properties of protocols built on top of blockchains,
a proper model for blockchains is needed. The model must capture the interesting properties
of blockchains, without becoming too complicated. A blockchain is more than a public ledger.
The dynamics of the growing chain provide a time reference: the relatively stable growth of
the blockchain height offers a “global time”. With respect to this global time, a blockchain
enables a time lock function used as a restriction specifying that a transaction cannot be
added to blockchain before a set time (actually a given chain height). Thus in order to
capture properties of time lock contracts a blockchain model should include the following
features.

Model time. The blockchain model should contain a global time reference in the system.
Different blockchains contain different global time references. The model should be able
to capture time-relevant risks, such as race conditions.

© Colin Boyd, Kristian Gjgsteen, and Shuang Wu;

licensed under Creative Commons License CC-BY
2nd Workshop on Formal Methods for Blockchains (FMBC 2020).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 5; pp. 5:1-5:13

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:colin.boyd@ntnu.no
mailto:kristian.gjosteen@ntnu.no
mailto:shuang.wu@ntnu.no
https://doi.org/10.4230/OASIcs.FMBC.2020.5
https://github.com/ShuangWu121/Tamarin-code-for-HTLC-verification
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2

A Blockchain Model in Tamarin and Formal Analysis of Hash Time Lock Contract

Model the time lock restriction. The time out event of a time lock should be triggered by
the time reference. It should be possible to model the risk introduced by a time lock that
times out earlier or later than is expected.

Clarify the underlying assumptions. If a certain property of the blockchain fails, a protocol
built on top of it will not be safe either.

Related work

In 2014, Andrychowicz et al. [2] modeled a multiparty computation contract in Bitcoin by
using timed automata. Back then the time lock functionality in Bitcoin was limited and
consequently the structure of the contract is different today. Bursuc and Kremer [4] used
Tamarin to model the blockchain as a public ledger, and analysed the ZKCP [7] protocol
built on top of it. But in their model, the executions are not time-relevant. Turuani et
al. [10] give a formal model in ASLan++ of the two-factor authentication protocol used by
the Electrum Bitcoin wallet. Bentov et al. [3] propose a real-time cryptocurrency exchange
service, and they give an informal cryptographic proof for the security of a hash time lock
protocol, with a probabilistic modeling of forking. Sun and Yu [9] give a formal verification
model for five kinds of security issues in the Ethereum blockchain using Coq.

Our contributions

To address the above challenges, we build a blockchain model in Tamarin [8]. The model
defines a public ledger and a global time reference for the system, with time lock functionality
built on top. We also define the security properties of an atomic cross chain trading protocol
and give a formal proof for the security of the hash time lock contract (HTLC). To our
knowledge, this is the first HTLC analysis by formal verification tools. The proof clarifies a
“hidden” security assumption: the growth speed of the two blockchains need to be stable,
otherwise security will fail. We further use our model to analyze an older version of the hash
time lock contract, and Tamarin is able to find a flaw. Even if the assumption looks trivial
and the flaw is somewhat obscure, this demonstrates that our model is able to address the
above challenges and can be used for formal verification of blockchain based protocols.

2 Background

2.1 Hash time lock contract

The goal of the hash time lock contract (HTLC) is to exchange different cryptocurrencies

between two players in a decentralized way. Consider Alice who wants to exchange Bitcoin

for Altcoin, and Bob who wants to exchange Altcoin for Bitcoin. They could do the following:

1. Alice creates a transaction that is locked by a hash value h:= H(sk) to send Bob 1
Bitcoin. Bob can take the funds only if he can provide the hash pre-image. This is Alice’s
commaitment transaction.

2. After Alice’s commitment transaction has been confirmed on the Bitcoin blockchain, Bob
creates a transaction (contract) to send 1 Altcoin to Alice, locked using the same hash
value h := H(sk). This is Bob’s commitment transaction.

3. Alice takes Bob’s Altcoin by providing her signature and the pre-image of the hash lock.
Bob learns the hash pre-image and unlocks the Bitcoin that Alice sent to him.

In order to avoid an interrupted protocol leaving players’ funds locked forever, the
commitment transactions are also locked by time locks. After the time lock times out, the
transaction can be redeemed by the sender. The time lock of Alice’s commitment transaction

C. Boyd, K. Gjgsteen, and S. Wu

Alice commitment transaction

IF: (hash)(Sigg) Pay Bob 1 Bitcoin > tAcom Bob commitment transaction
ELSE: (Timeout)(Siga) Pay Alice 1 Bitcoin tBecom X IF: (hash)(Siga) Pay Alice 1 Altcoin
T T
: ! ELSE: (Timeout)(Sigg) Pay Bob 1 Altcoin
|
! ! Reveal hash| |
. I I
| | Reveal hash pre-image
| | .
! ' pre-image tBopen <- - - - - - pay Alice 1
| |)
! ! pay Bob |
I T T T TTT T T T T > thopen . Timeout
! |
. ! pay Bob
Timeout ! thout < Py BEob | N
pay Alice !
<""""‘ > thout
'
timeline

Figure 1 Hash time lock contract execution.

should be longer than Bob’s commitment transaction, since in the case that Alice takes Bob’s
Altcoin at the last moment before Bob’s commitment transaction timed out, her commitment
is still locked by the time lock and Bob still has time to take Alice’s Bitcoin. A successful
execution of a hash time lock contract can be seen in figure 1. Notice that in the figure we
use the same structure (script) to describe Altcoin and Bitcoin, but in fact we just consider
two Bitcoin-like blockchains. As long as the blockchain supports both timelock and hash
lock functionalities, the hash time lock contract protocol can be used.

The above description is the latest version of the hash time lock contract [6], where a
time lock restricts when a transaction can be spent by its following transaction. Thus the
two potential outputs of a commitment transaction are specified inside the commitment
transaction. The previous version [5, 1] utilizes a time lock that only restricts when a
transaction can be added to blockchain. The time lock is then not specified in the commitment
transaction, but in the redeem transaction. In this case the redeem transaction must be
signed by multiple signatures, thus the procedure involves two players exchanging signatures
on transactions.

2.2 About Tamarin

Tamarin [8] is an automatic symbolic protocol verification tool. Given a protocol, the user
specifies the roles running the protocol and their behaviors, the adversary model and the
security properties by using the Tamarin programming language. Tamarin applies malicious
adversarial behavior to the roles and uses a backward search method to generate counter-
examples to the security claims. Tamarin ends up with either a proof that demonstrates that
the given protocol satisfies the security properties, or Tamarin would give an attack for a
failed security claim.

In Tamarin, the communication messages, fresh randomness and the states of the protocols
are represented by symbolic terms called facts. There are two special facts to model the
interaction with the untrusted environment: In(x), Out(x),representing the protocol’s input
and output from and to the environment. All the messages forwarded by In(x) and Out(x)
can be learned by the adversary. The fact K(x) denotes the adversary learning x. Some facts
are linear, which means that they can be used only once. The protocols and the specifications

5:3

FMBC 2020

5:4

A Blockchain Model in Tamarin and Formal Analysis of Hash Time Lock Contract

of the adversaries are modeled by using multiset rewriting rules. These rules and facts define
a labeled transition system. Security properties are either defined in terms of traces of the
transition system or the observational equivalence of two transition systems.

A role in the protocol is specified by Tamarin multiset rewriting rules. A rule consists of
three elements: (L, A, R):[L] — [A] — [R], the left side facts L (states, messages of the protocol)
are the premises of the rule, the right side facts R are rule conclusions, and the actions
in the middle square brackets A are to label the traces. A rule can be executed as long
as its premises exist in the current system states. Then the facts in the premises will be
removed from the current system states, while the facts in conclusion will be added. Users
can also add restrictions to enforce that only traces satisfying the restrictions are considered
by Tamarin’s backward search.

We illustrate Tamarin syntax by introducing a toy Diffie-Hellman key exchange protocol:

rule Server_1:
[Fr(~a) |——>[S_1(~a, 'g""~a), Out('g""~a)]

rule Client:
[Fr(~b), In(X)]——[Key(X "~b) |=>[Out('g’ "~b)]

rule Server_2:
[S_1(a 'g7a), In(Y)]——[Key(Y a)]—>[]

In the first step, the server generates fresh randomness ~a (the symbol ~ denotes a fresh
nonce, the function Fr(x) means generating a fresh nonce), sends g% to client by the fact
Out('g' “~a), and it records the inner state by the fact S_1(~ a, 'g’ "~a) . This state will be
used in next step of the server with the name Server_ 2.

The client receives the message from server by fact In(X), it then generates the session
key according to the Diffie-Hellman key exchange protocol. This trace and its parameters
are recorded by the action Key(X"~b), this will later be used to claim the security property
of the protocol. The server’s next step generates a similar action.

The security properties to be evaluated are defined by lemmas. In the above example we
want to claim there is no adversary that can learn the secret key.

lemma Key_secrecy:
" All key #i . Key(key)@ ==> not Ex #j . K(key)@j "

The lemma Key secrecy specifies that in all the traces that have an action Key(key), no
adversary could learn the input of the action, namely, the value key, expressed by statement
that there is no fact K(key) in the trace.

3 Tamarin Blockchain model

3.1 Simplification

A complete blockchain model would be too complex for Tamarin to work with, if it could
even be expressed. We have simplified the structures of the transactions and blocks to make
our blockchain model simpler, while still expressive enough to capture the essential elements
for describing attacks on the protocols, and thus making verification possible. We let the
blocks only include zero or one transactions, and forks are not allowed, thus we only consider
the blocks that are already stable. The consensus protocol and cost are not modeled in our
work. A transaction contains six elements: the id of the transaction that is being spent, the
sender’s address (we simply denote the addresses as public keys), the input signature (or
script), output address (or script), the block sequence and the id of this transaction.

We set the relative growing speeds of the two blockchains to be the same. This simplifica-
tion will not change the primary mechanism of the protocol because if the speed of Alice’s

C. Boyd, K. Gjgsteen, and S. Wu

blockchain is two time faster than Bob’s blockchain, the time lock of Alice will be twice as
long to ensure that it is longer than Bob’s time lock in real time.

3.2 Tamarin blockchain model rules

We describe the rules of our blockchain model in two parts: the ledger rules and the global
time rules. The ledger rules add a transaction to a block. The global time rules generate the
time state called 'Tick’ to specify the time point of a block being added to the blockchain.

Tick(x) Tick(x+'1’)

/|_> Tick(x+'1'+'1")

LedgerTick(x+'1'+'1’)

l

LedgerTick(x+'1'+'1")

Tick(x+'1'+'1’)
4|—> Tick(x+'1'+'1'+'1")

LedgerTick(x+'1'+'1'+'1’)

1] i

Tick(x+'1")

LedgerTick(x+'1")

transaction ...

Figure 2 Tick chain.

In the global time rules, each time Tick has a unique parameter time. (It also has another
parameter to tie a Tick to a specific blockchain, so that block chains can grow at different
speeds. For simplicity we leave it out of Figure 2.) When generating a new Tick, an older
Tick that has the largest time will be consumed and the time will be increased by one. Thus
the Ticks form a time state transition chain that we call a Tickchain. Given the uniqueness
of each Tick and since “time” is always increasing, each Tick can be considered as an empty
block and the Tickchain can serve as base for a blockchain. We refer the blockchain in our
Tamarin model as Tickchain and its blocks are called Tickblocks. In order to model adding
a transaction to a certain Tickblock, a LedgerTick with a parameter Height equal to time is
generated along with a new Tick. The ledger rules consume a LedgerTick to create a new
transaction. In this way we bind a transaction to a Tickblock. The parameter Height also
implies a sequence of transactions. After the executions of a protocol, there may be some
LedgerTicks left without being consumed, which means that no transaction was added to the
corresponding Tickblock.

Global time rules. There are two rules: Tick_start and Tick to create a blockchain. (We
also use Tick to name the rule that generates a Tick state.) The rule Tick_start initiates the
clock and the rule Tick updates the clock, i.e. increase the clock by adding 1. There are three

facts involved in the global time rules: Chain(BC), Tick(BC, time) and LedgerTick(BC, height).

Chain(BC) specifies which blockchain. Tick(BC,x) and LedgerTick(BC,x) denote a certain
block with the block height x. Tick(BC,x) will be consumed by the Tick rules to updates
the clock by iteration. LedgerTick(BC,x) will be consumed by the ledger rules to link a
transaction to a block. All these facts are linear facts that can be only consumed one time.

Global time rules

Tick
Input: Tick(BC, time)
Output: Tick(BC,time +'1'),
LedgerTick(BC, time +' 1)

Tick_Start
Input: Chain(BC)
Output: Tick('l"),LedgerTick('1’)

5:5

FMBC 2020

5:6

A Blockchain Model in Tamarin and Formal Analysis of Hash Time Lock Contract

Ledger rules. The ledger rules model the nodes in blockchain network: the nodes get
transaction information from the network, check its validity and then record the transaction
to the blockchain.

There are two types of transaction in our model: SimpleTx(BC, InTx, InSig,
OutPk, tx, height) to model the transactions without the hash and time lock, and
CommitTx(BC, InTx, InSig, OutScript, tx, height) to model the transactions locked by a hash
and a time lock. In these two transactions, BC denotes which blockchain the transaction
belongs to; InTx is a nonce that identifies a previous unspent transaction owned by the sender;
InSig is the sender’s signature. tx is a nonce that identifies this transaction; height specifies
in which block this transaction has been recorded. In the simple transaction, the OutPk is
the receiver’s address, while the OutScript in a commitment transaction is a hash time lock
contract script, specifying the hash value, time lock value and receiver’s address.

There are five rules to model the blockchain behaviors, Mine_Coin, Simple_ Tx,
Commit_ Tx, Commit_open and Commit_ timeout. The purpose of these rules are to generate
blocks that contain different types of transactions and append the block to the blockchain.
Mine_ Coin creates the original coins of the blockchain. Simple_ Tx spends a simple transac-
tion and creates a new unspent simple transaction. Commit_ Tx creates a transaction that
is locked by a hash and a time lock. Commit_open models the transaction that is spent by
revealing the hash pre-image. The Commit_ timeout model the commit transaction that is
spent by sender redeeming the transaction in the case of timeout.

Ledger rules

Mine_ Coin Commit__open
Input: Fr(~n), PK(A, pkA), ledgerTick(BC,t) Input: Commit_Tx(BC, InTx, InSig, (pkA,
Output: SimpleTx(BC, 0’0/, pkA, n,t) timelock, hash, pkB), n, height),
Simple_ Tx In(((Scriptl, Script2), PKaddress)),
Input: SimpleTx(BC, InTx, InSig, Pk, n, height), LedgerTick(BC,t),
In((tx, Sig, pkB)), ledgerTik(BC, 1) Output: SimpleTx(BC, n, Sig, pkB, tx, t)
Output: SimpleTx(BC, n, Sig, pkB, tx, t) Commit__timeout
Commit_ Tx Input: Commit_Tx(BC, InTx, InSig, (pkA,
Input: SimpleTx(BC, InTx, InSig, Pk, n, height), timelock, hash, pkB), n, height)
In((Sig, (pkA, timelock, hash, pkB))), In({Scriptl, PKaddress))
LedgerTick(BC, t) LedgerTik(BC,t)

Output: Commit_Tx(BC,n, Sig, (pkA, timelock, ~ Output: SimpleTx(BC, n, Scriptl, Pk, tx, t)
hash, pkB), tx, t)

Restrictions. The no double spending property of blockchain is guaranteed by restriction
rule. When a transaction has been spent, an action Spend(BC, tx, M, t) will be recorded in
the Tamarin system to identify the event. On a single blockchain, for a transaction x, there
can only exist one Spend(BC, x, M, t).

restriction DoubleSpending:
"All BC x n m t1 t2 #i #j .Spend(BC,x,n,t1)@i &Spend(BC,x,m,t2)@j==>#i=#j"

To help Tamarin reason more efficiently, we add one more restriction HappenBefore. This
restriction simply tells Tamarin that a transaction that has a larger block number should
happen later than a transaction that has a smaller block number.

C. Boyd, K. Gjgsteen, and S. Wu 5:7

restriction HappenBefore:
"All BC t1 t2 #i .HappenBefore(BC,t1,t2)@i==>Ex x .t2=t1+x"

4 Model HTLC in Tamarin

We model the two roles Alice and Bob in the hash time lock contract. Alice is the contract
initiator, Bob is the responder. Alice is not allowed to set up a hash time lock contract with
herself. The roles send data to blockchain network by using fact Out(x), i.e. they send data
to the environment directly. It models the blockchain network as public, where the adversary
learns anything sent to and received from the network.

4.1 HTLC rules

Alices’ rules. Alice is defined by two rules: Alice_send and Alice_receive. The rule
Alice send broadcasts Alice’s commitment transaction and redeem transaction to the block-
chain network. The rule Alice_ receive broadcasts the transaction to open Bob’s commitment
transaction. Note that even though Alice broadcasts her commitment transaction and
its redeem transaction at the same time, the redeem transaction cannot be added to the
blockchain until the time lock of Alice’s commitment transaction expires.

Alice_send

The rule takes a simple transaction tx, Alice’s secret keys, Bob’s address and a fresh nonce
as input. It outputs Alice’s commitment transaction, Alice’s redeem transaction, and a state
Alice_1_ record to record the hash pre-image. It spends the simple transaction tx with signa-
ture SigA and outputs a commitment transaction that has (pk(ItkAl),timelock A, hash, pkB3)
as output. The two potential ways to spend this commitment transaction are: 1) Redeem
by Alice: when the time lock timelock A timed out, Alice could redeem the commitment
transaction by providing the signature of the public key pk(ltkAl). 2) Opened by Bob: Bob
can take the funding by providing the pre-image of the hash lock and the signature of pkB3.
The rule outputs the redeem transaction at the same time, since Alice desires to broadcast
the redeem transaction earlier so that it can be added on the blockchain as soon as the time
lock expires. The Tamarin code is listed below.

rule Alice_send:
let
timelock_A="1"+'1"
hash=HTLChash(~hsk)
SigA=sign(<'BC1’ tx,pk(ItkA),<pk(ItkAl),timelock_A hash,pkB3>> ItkA)
CommitTxAlice=TXhash(<tx,SigA,<pk(ItkAl),timelock_A,hash,pkB3>>)
SigAl=sign(<'BC1’,CommitTxAlice, < pk(ItkA1),timelock_A, hash,pkB3>,pkA2> ItkA1)
in
[!SimpleTx('BC1’,'0",'0", pk(ItkA),tx,t) ,!PK(A,pk(ItkAl)),!PK(A,pkA2),!PK(B,pkB3),
Fr(~hsk)]
——[InEq(A,B) |—>
[Out(<tx,SigA,<pk(ItkA1),timelock_A, hash,pkB3>>),0ut(<CommitTxAlice,SigAl,pkA2>)
,Alice_1_record(hash,~hsk)]

Alice_receive

The rule takes a commitment transaction that has Alice as receiver, a state record
Alice_1_record and Alice’s address as inputs. It outputs a transaction spending the commit-
ment transaction and a fact Reveal(hsk). The rule opens the pre-image of hash and provide

FMBC 2020

5:8 A Blockchain Model in Tamarin and Formal Analysis of Hash Time Lock Contract

the signature SigA3 for pkA3. This spending transaction will be added to the blockchain by
the ledger rule Commit__open, it transfers the funding to the target address.

rule Alice_receive:

let
SigA3=sign(<'BC2’,CommitTxBob,<pkB1,timelock_B,hash,pk(ltkA3)>,pkA4>,ItkA3)

in
['CommitTx('BC2’,tx0,SigB0,<pkB1,timelock_B,hash,pk(ItkA3)>,CommitTxBob,t)
,Alice_1_record(hash,hsk),!PK(A,pkA4)]

——[Alice_receive(CommitTxBob) |—>
[Out(<CommitTxBob, <hsk,SigA3>,pkA4,hsk>)]

Bob’s rules. Bob is specified by the rules Bob_send, Bob_receive and a restriction
Not_Spend. The rule Bob_send generates the commitment transaction and its redeem
transaction, and broadcasts them to the blockchain network. The rule Bob_ receive is to
open Alice’s commitment transaction and the restriction Not_Spend checks that Alice’s
commitment transaction has not been spent.

Bob_send

The rule takes Alice’s commitment transaction, a simple transaction, Alice’s receiving address,
Bob’s redeem address and Bob’s secret key as input. The restriction Not_ Spend checks if
Alice’s commitment transaction is just added to the blockchain. If it is, the rule will output
Bob’s commitment transaction, its redeem transaction and Bob 1 record to record the hash
lock and the transaction id of Alice’s commitment transaction. The output script in Bob’s
commitment transaction is (pk(ItkB),timelock B, hash, pkA3). The hash is the same with
the hash lock in Alice’s commitment transaction.

rule Bob__send:
let
timelock_B="1"
SigB=sign(<'BC2’" tx,pk(ItkB),<pk(ItkB1),timelock_B,hash,pkA3>> ItkB)
CommitTxBob=TXhash(<tx,SigB,<pk(ItkB1),timelock_B,hash,pkA3>>)
SigB1l=sign(<'BC2’',CommitTxBob,<pk(ItkB1),timelock_B,hash,pkA3>,pkB2>,ItkB1)
in
[!SimpleTx('BC2’,'0",'0",pk(ItkB),tx,t1),!PK(B,pk(ItkB1)) ,!PK(B,pkB2),!IPK(A,pkA3)
JJCommitTx('BC1’,tx_0,SigA_0,<pkA, timelock_A,hash,pkB>,CommitTxAlice,t)]
——[Not_Spend(CommitTxAlice)]—>
[Bob_1_record(hash, CommitTxAlice)
,Out(<tx,SigB,<pk(ItkB1),timelock_B,hash,pkA3>>)
,Out(<CommitTxBob,SigB1,pkB2>)]

Bob__receive

The rule takes a state record Bob_1_record, the hash pre-image In(hsk), Bob’s address
and Alice’s commitment transaction as inputs. It outputs the transaction to open Alice’s
commitment transaction. By providing the signature of the public key pk(ItkB3) and the
pre-image of the hash lock, Bob transfers the funding to his address pkB4.

rule Bob_ receive:
let
SigB3=sign(<'BC1’,CommitTxAlice, <pkAl,timelock_A hash,pk(ItkB3)>,pkB4> 1tkB3)
in
[Bob_1_record(hash,CommitTxAlice),In(hsk),!PK(B,pkB4)
/CommitTx("BC1’,tx0,SigA0, <pkAl,timelock_A, hash,pk(ltkB3)>,CommitTxAlice,t)]
——[Bob_receive(CommitTxAlice) |—>
[Out(<CommitTxAlice,<hsk,SigB3>,pkB4,hsk>)]

C. Boyd, K. Gjgsteen, and S. Wu

5 Tamarin Security analysis

5.1 Preliminaries

We describe a transaction as a tuple of six elements: TX{BC, InTx, InSig, Output, n, height},
where BC is the blockchain which this transaction belongs to, InTx is the ID of the input
transaction, InSig is the input signature, n is the id of this transaction, and height specifies
which block contains this transaction. For a simple transaction, the parameter Output
is simply a public key, while for a commitment transaction, the Output will be a tuple
(pky, timelock, hash, pky) that contains two public keys pk; and pks, a time lock and a hash
lock. The commitment transaction can be spent by revealing the hash pre-image and the
signature of pky or providing the signature of pk; if the time lock timed out. The parameter
height is ignored if a transaction is not recorded on the blockchain yet.

For a specific time lock, we denotes its value as A. It restricts a commitment transaction
can be spent only if there is at least A blocks appended after the block that contains this
commitment transaction. We specify the corresponding real time duration of generating these
A blocks as §. The relationship is typically simple, for instance, in the Bitcoin blockchain
the approximate time to generate 20 blocks is 200 minutes, so with timelock A = 20 we get
real time § = 200. The reason why the real time also involved in the formula is that we are
dealing with two blockchains. Each of the two blockchains can be seen as a time reference,
but these two time references might get out of sync, thus we need a single global clock.

When a commitment transaction is added on the blockchain, we denote the event as
he, A
{r sk, ESA

o A ot, Tick}, which means Alice’s commitment transaction is recorded on blockchain at

time point t in block sequence Tick, locked by Aa and a hash with pre-image hgk. The open and
timeout of the commitment transaction are specified as {r*;;;;jn, t, Tick} and {nggf, t, Tick},
respectively.

5.2 Security claim

For Alice, the hash time lock contract should satisfy the first two properties. For Bob, the
protocol should guarantee the last two security properties:

Property 1. Bob cannot open Alice’s commitment transaction and take her funding unless
Bob has created a commitment transaction to Alice.

V{rh5k7A tAopemTiCkAopen} ::>3{rh5k)A tBcoms TiCchom}

Aopen’ Bcom?

The equation claims that for all the events that Alice’s commitment transactions have been
opened, there must exist an event that Bob made a commitment transaction before. The
commitment transaction made by Bob should use the same hash lock generated from hgy
and it sends funding to Alice’s address.

lemma Security_1_ Alice:
" All A tx1 SigA pkA1 timelock_A hash pkB3 CommitTxAlice
TickAcom TickAopen #tAcom #tAopen #Apkl .

IPK(A,pkA1)@Apkl
&!CommitTx('BC1’,tx1,SigA, <pkAl,timelock_A, hash,pkB3>,CommitTxAlice, TickAcom)@tAcom
&Spend('BC1’,CommitTxAlice,'CommitOpen’, TickAopen)@tAopen

==>Ex tx2 SigB pkB1 timelock_B pkA3 CommitTxBob
TickBcom #tBcom #Apk2 .

5:9

FMBC 2020

5:10

A Blockchain Model in Tamarin and Formal Analysis of Hash Time Lock Contract

IPK(A,pkA3)©@Apk2
&!CommitTx('BC2',tx2,SigB,<pkB1,timelock_B,hash,pkA3>,CommitTxBob, TickBcom)©@tBcom
&#tBcom<#tAopen

Tamarin verifies the first security claim is true.

Property 2. Bob can redeem his funding only if the time lock of his commitment transaction

timed out.
v({rh2e Tick rhoa Tick == 5
({ Beom> tBcom; |1C Bcom} A { Bred » tBred; l'IC Bred})——> tBred > tBcom + 0B

Since in a single blockchain, a transaction recorded early has a smaller height than those
recorded later. We reduce this security property to:

V{TEES tgeom, Tickgeom} A {T a2, tared, Tickgred })==> Tickpred > Tickeom + A

Bcom?

The equation claims that the duration between the time point Bob’s commitment trans-
action is added to the blockchain and the time point Bob’s redeem transaction is added
to the blockchain is always larger than the duration of its time lock. Bob cannot redeem
his commitment transaction before it timed out. This property guarantees that there is no
race condition between Bob’s redeem transaction and the transaction of Alice to open Bob’s
commitment transaction.

lemma Security_2_ Alice:
" All tx2 SigB pkB1 timelock_B hash pkA3 CommitTxBob TickBcom #tBcom
TickBTout #tBTout .

1CommitTx('BC2’,tx2,SigB,<pkB1,timelock_B,hash,pkA3>,CommitTxBob, TickBcom)@tBcom
&Spend('BC2’,CommitTxBob,' CommitTout’, TickBTout)@tBTout
==>Ex x. TickBTout=TickBcom+timelock_B-x

Tamarin verifies the above security claim is true.

Property 3. After Alice takes Bob’s funding, Bob has time to take Alice’s funding before
Alice’s commitment transaction time out.

h,A . h.A .
V({F " tAcom; T|CkAcom} A {r ° tBopen; T|CkBopen}::> tAcom + 0a > tBopen

Acom? Bopen?

The equation claims that if Alice takes Bob’s funding at the last moment before it
timed out, Bob should always have some time left before Alice’s commitment transaction is
timed out. This property avoids the risk of the race condition between Bob opening Alice’s
commitment transaction and Alice redeems her commitment transaction.

lemma Security_3_Bob:

All CommitTxAlice hash timelock_A pkAl tx1 SigA pkB3 TickAcom #tAcom
CommitTxBob timelock_B pkB1 tx2 SigB pkA3 TickBcom #tBcom
#tBopenl #tAToutl #tBopen #tATout .

ICommitTx('BC1’,tx1,SigA,<pkAL,timelock_A hash,pkB3>,CommitTxAlice, TickAcom)@tAcom
&!CommitTx('BC2',tx2,SigB,<pkB1,timelock_B,hash,pkA3>,CommitTxBob, TickBcom)®@tBcom

&Spend('BC2’,CommitTxBob,' CommitOpen’, TickBcom+timelock_B)®@tBopenl
&LedgerTick('BC2’, TickBcom-+timelock__B)@tBopen

&LedgerTick('BC1’, TickAcom+timelock_A+'1")@tATout
&Spend('BC1’,CommitTxAlice,'CommitTout’, TickAcom-timelock_A+'1")@tAToutl
==> #tBopen<#tATout

Tamarin gives a counterexample to this security claim, because the growth speed of the
blockchains may differ. We explain in detail in the next subsection.

C. Boyd, K. Gjgsteen, and S. Wu

Property 4. Alice could redeem her funding only if her commitment transaction timed out.
V h,Ap H h,An H J—
({rAcomatAcoma T|Ck/-\com} A {rAred s TAred, T|CkAred})——> tAred > tAcom + dA

The equation removes the same race condition risk that Alice has as described in security
property 2.

lemma Security_4_ Bob:

All tx1 SigA pkAl timelock_A hash pkB3 CommitTxAlice TickAcom #tAcom #tATout
TickATout .

ICommitTx('BC1’,tx1,SigA,<pkAl,timelock_A,hash,pkB3>,CommitTxAlice, TickAcom)@tAcom
&Spend('BC1’,CommitTxAlice,’ CommitTout’, TickATout)@tATout
==>Ex x. TickATout=TickAcom+timelock_A-x

Tamarin verifies this security claim is true.

5.3 Discussion on property 3

The failure of property 3 claims that after Alice taking Bob’s funding, there exists a case that
Bob has no time to open Alice commitment transaction before it expires. Tamarin shows
that this attack happens in the case that the blockchain on which Alice made a commit
transaction grows faster than is expected. Thus Alice’s commitment transaction expires
earlier even before Bob’s commitment transaction expires. Therefore Alice has the chance to
redeem her funding and also take Bob’s funding.

Therefore, we need to have a blockchain that not only has liveness and consistency but
also keeps a stable growth speed for the block height. Based on the Tamarin result, we add
an extra restriction to restrict the growing speed of the blockchain “BC2” to be at least as
fast as “BC1”, and then evaluate the security property again.

restriction stable_growing_ blockchain:
"All height #i .Tick('BC1’,height)@i==>Ex #j.Tick('BC2’,height)®j"

Tamarin now proves that property 3 holds. Notice that in the real scenario we expected
both two blockchains should have stable growing speed, but this condition is not necessary
for HTLC. The result shows that as long as “BC” grows relatively no slower than “BC1”,
HTLC is secure. The reason is Alice holds the pre-image of the hash, she only needs to
observe the height of “BC2” to take Bob’s funding before its timelock expires, she doesn’t
need to worry Bob will take her funding since he doesn’t know the hash pre-image. While
for Bob, if he publishes his commitment transaction, he needs to make sure Alice cannot
withdraw her funding earlier than Alice taking his funding.

6 Analysis of the old version of HTLC

The old version of the hash time lock contract was used when the time lock functionality
could only constrain the time point that a certain transaction is allowed to be added to
blockchain. In this case, the time lock is specified in the redeem transaction rather than the
commitment transaction. To make an agreement for the time lock duration of the redeem

transaction, the two players need to exchange their signatures on the redeem transaction.
The multi-signatures are checked by the nodes before they add the transaction into a block.

The signature exchanging procedure is done before the players publish their commitment
transaction, otherwise, they might be unable to redeem their commitment transactions.

5:11

FMBC 2020

5:12

A Blockchain Model in Tamarin and Formal Analysis of Hash Time Lock Contract

We claim the same four security properties from section 5 for the old version hash time
lock contract. Tamarin verifies that the protocol satisfies the security claims given that Alice
is allowed to only use a fixed duration of timelock in the contract. However, in reality, Alice
might use the timelock with different durations. In this case, there is an attack that allows
Alice to redeem her funding earlier than the time period that Bob has signed.

The attack is as follows: Alice will initiate two hash time lock contracts with Bob, these
two hash time lock contracts are the same except the second one has longer time lock than the
first one. She aborts the first one when she gets Bob’s signature on her redeem transaction.
Bob will also abort the contract since Alice doesn’t publish her commitment transaction.
Alice initiates the second contract with Bob, using the same hash lock, but longer time lock.
(Bob could in principle notice that he has signed the same hash before, but this requires Bob
to keep track of earlier contracts, which is impractical.) In this scenario, after both players
publish their commitment transactions to blockchains, Alice can use the redeem transaction
of the fist hash time lock contract to unlock her commitment transaction in the second hash
time lock contract. Because the second redeem transaction has a shorter time lock, she can
redeem the commitment transaction earlier than Bob’s expectation.

When we enable different timelocks in our Tamarin model, Tamarin finds the attack
and shows that security property 3 fails even with the synchronization between the two
blockchain growth speeds.

7 Conclusion

In this paper, we give a formal model for blockchain in Tamarin. Using this model we give
a formal verification for security of the hash time lock contract. The verification result
from Tamarin shows that the security of HTLC is based on the security assumptions of
the underlying blockchain, but also requires that the responder blockchain (the blockchain
that Bob operates on) needs to grow at least as fast as the initiator’s blockchain. This
result demonstrates that our Tamarin blockchain model can be used to find security issues in
blockchain-based protocols. We note that the verification process of Tamarin needs human
guidance to some extent, which could be improved in future work. Also, the model can be
improved to allow forks to be more comprehensive.

—— References

1 Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and f.ukasz Mazurek. Fair
two-party computations via bitcoin deposits. In Rainer Bohme, Michael Brenner, Tyler Moore,
and Matthew Smith, editors, Financial Cryptography and Data Security, pages 105-121, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

2 Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Y.ukasz Mazurek. Modeling
bitcoin contracts by timed automata. In Axel Legay and Marius Bozga, editors, Formal
Modeling and Analysis of Timed Systems, pages 7-22, Cham, 2014. Springer International
Publishing.

3 Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and Ari Juels. Tesseract:
Real-time cryptocurrency exchange using trusted hardware. In Lorenzo Cavallaro et al.,
editors, Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2019, pages 1521-1538. ACM, 2019. doi:10.1145/3319535.3363221.

4 Sergiu Bursuc and Steve Kremer. Contingent payments on a public ledger: models and
reductions for automated verification. In ESORICS 2019 - The 24th European Symposium on
Research in Computer Security, Luxembourg, Luxembourg, September 2019. URL: https:
//hal.archives-ouvertes.fr/hal-02269063.

https://doi.org/10.1145/3319535.3363221
https://hal.archives-ouvertes.fr/hal-02269063
https://hal.archives-ouvertes.fr/hal-02269063

C. Boyd, K. Gjgsteen, and S. Wu

10

Christian Decker and Roger Wattenhofer. A fast and scalable payment network with bitcoin
duplex micropayment channels. In Andrzej Pelc and Alexander A. Schwarzmann, editors,
Stabilization, Safety, and Security of Distributed Systems, pages 3—18, Cham, 2015. Springer
International Publishing.

Thaddeus Dryja Joseph Poon. The Bitcoin Lightning Network: Scalable off-chain instant
payments, 2016. URL: https://lightning.network/lightning-network-paper.pdf.

Gregory Maxwell. Zero knowledge contingent payments, 2011. URL: https://en.bitcoin.

it/wiki/ZeroKnowledgeContingentPayment.

Simon Meier, Benedikt Schmidt, Cas Cremers, and David Basin. The tamarin prover for the
symbolic analysis of security protocols. In Proceedings of the 25th International Conference
on Computer Aided Verification - Volume 8044, CAV 2013, page 696-701, Berlin, Heidelberg,
2013. Springer-Verlag.

Tianyu Sun and Wensheng Yu. A formal verification framework for security issues of blockchain
smart contracts. Electronics, 9:255, February 2020. doi:10.3390/electronics9020255.
Mathieu Turuani, Thomas Voegtlin, and Michael Rusinowitch. Automated verification of
electrum wallet. In Jeremy Clark, Sarah Meiklejohn, Peter Y.A. Ryan, Dan Wallach, Michael
Brenner, and Kurt Rohloff, editors, Financial Cryptography and Data Security, pages 2742,
Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

5:13

FMBC 2020

https://lightning.network/lightning-network-paper.pdf
https://en.bitcoin.it/wiki/Zero Kn owledge Contingent Payment
https://en.bitcoin.it/wiki/Zero Kn owledge Contingent Payment
https://doi.org/10.3390/electronics9020255

	Introduction
	Background
	Hash time lock contract
	About Tamarin

	Tamarin Blockchain model
	Simplification
	Tamarin blockchain model rules

	Model HTLC in Tamarin
	HTLC rules

	Tamarin Security analysis
	Preliminaries
	Security claim
	Discussion on property 3

	Analysis of the old version of HTLC
	Conclusion

