
On the Formal Verification of the Stellar
Consensus Protocol
Giuliano Losa
Galois, Inc., Portland, Oregon, USA
giuliano@galois.com

Mike Dodds
Galois, Inc., Portland, Oregon, USA
miked@galois.com

Abstract
The Stellar Consensus Protocol (SCP) is a quorum-based BFT consensus protocol. However, instead
of using threshold-based quorums, SCP is permissionless and its quorum system emerges from
participants’ self-declared trust relationships. In this paper, we describe the methodology we deploy
to formally verify the safety and liveness of SCP for arbitrary but fixed configurations.

The proof uses a combination of Ivy and Isabelle/HOL. In Ivy, we model SCP in first-order logic,
and we verify safety and liveness under eventual synchrony. In Isabelle/HOL, we prove the validity
of our first-order encoding with respect to a more direct higher-order model. SCP is currently
deployed in the Stellar Network, and we believe this is the first mechanized proof of both safety and
liveness, specified in LTL, for a deployed BFT protocol.

2012 ACM Subject Classification Software and its engineering → Software verification; Networks
→ Protocol testing and verification

Keywords and phrases Consensus, Blockchains, First-Order Logic, Stellar, Ivy Prover, Decidability

Digital Object Identifier 10.4230/OASIcs.FMBC.2020.9

Funding This work was supported by the Stellar Development Foundation.

1 Introduction

Blockchains rely on Byzantine Fault-Tolerant (abbreviated BFT) consensus protocols to
ensure that, despite the presence of malicious participants, the network of participants as a
whole eventually reaches consensus on what block to append next to the blockchain. In many
blockchains, the security of large amount of digital assets depend on the correctness of the
blockchain’s BFT consensus protocol, but designing BFT consensus protocols is notoriously
difficult and serious flaws can remain undetected for years [1].

While formal verification can prevent many correctness issues in BFT consensus protocols,
performing such verification is challenging for several reasons: BFT consensus protocols are
designed to support an arbitrary number of participants; their executions and their reachable
state-space are unbounded; they operate in asynchronous networks where the interleaving of
messages is unpredictable; and finally, verifying termination is as important as verifying that
participants never disagree.

In this paper, we summarize our approach to the formal verification of the main safety
and liveness properties of the Stellar Consensus Protocol (abbreviated SCP) [7] using the
Ivy methodology [10]. Both the safety and liveness proofs apply to a unique model of SCP.
This model is parameterized by a fixed but arbitrary set of participants and denotes a set
of infinite executions. To our knowledge, this is the first work that mechanically proves
both safety and liveness, expressed in LTL, of a deployed BFT protocol under arbitrary
configurations.

© Giuliano Losa and Mike Dodds;
licensed under Creative Commons License CC-BY

2nd Workshop on Formal Methods for Blockchains (FMBC 2020).
Editors: Bruno Bernardo and Diego Marmsoler; Article No. 9; pp. 9:1–9:9

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giuliano@galois.com
mailto:miked@galois.com
https://doi.org/10.4230/OASIcs.FMBC.2020.9
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


9:2 On the Formal Verification of SCP

At a high level, verifying the safety of a protocol with Ivy entails 1) developing a set
of axioms to express the protocol’s underlying domain model as a first-order theory over
uninterpreted sorts; 2) modeling the protocol in Ivy’s procedural language; 3) developing
an inductive invariant that implies the safety properties, while ensuring that verification
conditions fall into the decidable first-order logic fragment EPR [5]. This is facilitated by
Ivy’s modular decomposition features [17].

For termination, or more generally liveness, Ivy provides a liveness to safety reduction [12]
crafted specifically to help produce decidable verification conditions. Given a temporal
property in First-Order Linear Temporal Logic (FO-LTL), Ivy automatically synthesises a
transition system and an associated safety property such that if the synthesized system is
safe, then the temporal property of the original system holds. The user can then verify that
the synthesized transition system is safe using the safety verification methodology.

Producing EPR verification conditions ensures that Z3 can automatically and reliably
determine their satisfiability. Compared to approaches that use automation but do not
require decidability, Ivy’s predictable automation greatly simplifies the mental model of the
prover that the user must keep in mind when developing a proof. The user can thus stop
worrying about the prover and instead focus on the properties of the protocol.

A key challenge in applying the Ivy methodology to SCP is to model SCP’s permissionless
Federated Byzantine Quorum Systems in first-order logic and in a way that is conductive to
decidable reasoning in EPR. In SCP, every participant expresses agreement requirements
with other nodes, and SCP relies on the properties of the resulting graph-like structure to
solve consensus. At first sight, such a complex family of structures seem hard to axiomatize
in first-order logic, let alone EPR.

The rest of the paper focuses on the first-order logic modeling of Federated Byzantine
Quorum Systems. This model abstracts over significant aspects of SCP’s quorum system.
To provide evidence that the abstraction is sound, we verify some of its key properties with
respect to a more concrete model in Isabelle/HOL.

With a first-order theory of Federated Byzantine Quorum Systems established, we verify
that SCP’s balloting protocol [7] satisfies its agreement property and that, under eventual
synchrony, it satisfies its termination property (i.e. that every node eventually decides). This
safety and liveness proof largely follows patterns identified previously during the verification
of other consensus protocols in Ivy [14, 12, 3], and it is not described in this paper.

Our paper supplies evidence that BFT consensus protocol can be verified with decidable
logics, which enables powerful yet stable automation, using the Ivy methodology. The proof
is available online [8], and, for a more complete reference, we plan to publish an extended
version of this paper with a detailed account of the safety and liveness proof that are omitted
here.

2 Solving Consensus in a Federated Byzantine Quorum System

SCP must solve consensus, guaranteeing agreement and termination, in a permissionless
system where nodes can join or leave without any synchronization and without the permission
of any gatekeeper. There is thus no common notion of the set of all nodes. Moreover, the
system is susceptible to Sybil attacks, in which attackers create a large number of identities
to try to overwhelm the system. In such an environment, traditional threshold-based quorum
systems, defined in terms of the total number of nodes, are thus of no use.

Other permissionless protocols like Bitcoin or Algorand use Proof-of-Work or Proof-of-
Stake to defend against Sybil attacks. Stellar takes a different approach. The Stellar Network
is intended as a platform to exchange digitized real-world assets (e.g. land parcels, retail



G. Losa and M. Dodds 9:3

coupons, national currencies, agricultural goods, etc.). Most participants are thus expected
to engage with recognized identities and have real-world relationships with some (but not
all) other participants in the network. SCP leverages these real-world relationships to defend
against Sybil attacks, counting on real-world relationships to be difficult for an attacker to
establish.

Concretely, each node in the Stellar Network is required to independently declare a set
of slices, where each slice is a set of nodes. The intent is that a node n accepts some new
information it hears on the network if and only if one of its slices unanimously agrees that
the information is correct. Thus slices can be thought of as agreement requirements. Nodes
advertise their slices throughout the network, and each node forms its own, personal notion
of quorum based on its own slices and on the slices of other nodes it knows about, as follows.
A quorum of n is defined as a set Q of nodes such that a) n has a slice included in Q and b)
each member of Q has a slice included in Q. In other words, a quorum of n is a set that
n satisfies the agreement requirement of n and of all its members. Formally, let slices(n)
denote the set of slices of node n. Then a set of nodes Q is a quorum of a node n if a)
∃S ∈ slices(n). S ⊆ Q and b) ∀m ∈ Q. ∃S ∈ slices(m). S ⊆ Q. The resulting quorum system
is called a Federated Byzantine Quorum System (abbreviated FBQS).

2.1 Intact and Intertwined Sets

With the notion of quorum in place, it seems possible to take a traditional threshold-based
BFT consensus protocols, and only change how quorums are defined in order to obtain a
consensus protocol for the Stellar Network. However, FBQS have some unusual properties
that complicate the task. First, the notion of quorum is not global to the system; instead,
each node has its own view of what a quorum is. Second, the quorums of a node depend on
what slices other nodes declare; thus, Byzantine nodes can influence a well-behaved node’s
notion of what a quorum is. Third, it is possible that a subset of the nodes have quorums
that intersect enough to guarantee safety, while some other subsets do not; thus, consensus
may be solvable for only a strict subset of the system; there may even by two or more disjoint
subsets of the system that form consensus islands that nevertheless diverge from each other.

What properties must a set of nodes satisfy in order for consensus to be solvable among
its members? We do not know a precise answer to this question [9]. However, we can prove
that SCP solves eventually synchronous consensus among sets of nodes called intact sets.
A set I of well-behaved (non-Byzantine) nodes is intact when, regardless of what slices
Byzantine nodes advertise: a) I enjoys quorum availability, i.e. the set I is a quorum for
all its members, and b) I enjoys quorum intersection, i.e. if n1 and n2 are members of I,
if Q1 is a quorum of n1, and if and Q2 is a quorum of n2, then the intersection of Q1 and
Q2 contains a member of I. An important property of intact sets is that the union of two
intact sects that intersect is also an intact set; thus maximal intact sets are disjoint and form
consensus islands within the network.

Sets which have quorum intersection but which lack quorum availability are called
intertwined sets. Precisely, a set S of nodes is intertwined when, if n1 and n2 are members
of S, if Q1 is a quorum of n1, and if Q2 is a quorum of n2, then the intersection of Q1
and Q2 contains an intertwined member. SCP also guarantees that there will not be any
disagreement among an intertwined set.

FMBC 2020



9:4 On the Formal Verification of SCP

2.2 Termination and the Cascade Theorem
Thanks to the quorum intersection property, it is easy to guarantee agreement to an inter-
twined set. However, termination is more difficult to achieve. Traditional BFT consensus
protocols often rely on eventual synchrony [4] to ensure termination. The idea is that, once
the system becomes synchronous, the protocol can rely on all nodes having the same view of
the system.

For example, suppose that, in a threshold quorum system, a quorum Q unanimously
agrees on statement X. If the network is synchronous, then all nodes shortly notice that Q

unanimously agrees on X. In this sense, they all form the same view of the fact “there is
a quorum that is unanimous about X”. Instead, if the quorum system is not a threshold
quorum system but an FBQS, then no such common view arises because Q may be a quorum
only of some nodes but not others.

SCP circumvents this problem using an epidemic propagation phenomenon that guarantees
that, once the system is synchronous, if an intact node witnesses a unanimous quorum, then
the knowledge that there is such a quorum soon propagates to the entire intact set, and
Byzantine nodes cannot prevent propagation.

The epidemic propagation phenomenon is enabled by the Cascade Theorem. This theorem
relies on the notion of slice-blocking set. A set B is a slice-blocking set for a node n when
every slice of n intersects B. The cascading theorem states that if n is intact, Q is a quorum
of n, and U is a superset of Q, then either all intact nodes belong to U , or U slice-blocks
some intact node m /∈ U .

Let us now get back to the example in which a quorum Q of an intact node unanimously
agrees on statement X. We would like that all intact nodes learn the fact “there exists a
quorum of an intact node that unanimously agrees on X”. By the Cascade Theorem, either
all intact nodes already know the fact, or there must be an intact node n that does not know
it but that is slice-blocked by a set of intact nodes that know it. Thus, if we add the rule
that n must accept a fact if slice-blocked by a set that already accepted the fact, then n

newly accepts the fact. This process then repeats until the knowledge of the existence of Q

propagates to the entire intact set.
Finally, we must also be sure that malicious nodes cannot use epidemic propagation to

propagate forged facts. This is guaranteed because if n is intact and S slice-blocks n, then S

contains an intact node.

3 Modeling Federated Byzantine Quorum Systems in EPR

In this section, we describe the first-order theory of Federated Byzantine Quorum System.
This is the model we use in our proofs of safety and liveness (the proofs themselves are not
described in detail in this paper).

3.1 Enabling Decidable Reasoning
We craft the FBQS model to meet two constraints: on the one hand, the model must enable
decidable automated reasoning in EPR; on the other hand, the model must accurately
capture the properties that FBQSs have in practice. Our solution is to abstract over some
important aspects of FBQSs to make decidable reasoning possible, while formally verifying
that the model is sound with respect to a more concrete model developed in Isabelle/HOL.
By doing so, we trade off a relatively small manual proof effort in Isabelle/HOL in exchange
for decidable automated reasoning in Ivy.



G. Losa and M. Dodds 9:5

To enable decidable reasoning with Ivy, we model FBQSs as a first-order theory consisting
of: a) a set of uninterpreted sorts, b) constants, functions, and relations over those sorts, and
c) first-order axioms that constrain the models of the theory to structures that have properties
sufficient for the balloting protocol to be correct. Moreover, we must use quantifier alternations
and functions carefully, as those will impact our ability to keep protocol verification conditions
in EPR.

A verification condition is in EPR when its sorts are stratified: for every pair of sorts a

and b, say that b depends on a if either a) an existential quantifier on sort b is in the scope of
a universal quantifier on sort a, or b) there is a function symbol of type a1, · · · , an → b with
a = aj for some j ∈ 1 · · ·n; sorts are stratified if the dependencies between sort do not form
any loops or cycles. For example, in the formula ∀x.∃y.P (x, y) where x is of sort a and y is
of sort b and P is a predicate symbol, sort b depends on sort a but the formula is stratified.
However, if both x and y have the same sort, then there is a sort dependency loop and the
formula is not stratified.

Protocol verification conditions are formulas of the form A ∧ I ∧ T ∧ ¬I ′, where A is
the conjunction of the FBQS theory axioms, I is a protocol invariant, T is the protocol’s
transition relation, and I ′ is the post-state version of I. Thus unstratified verification
conditions can arise because of the interaction between axioms, invariants, their negation,
and the protocol’s transition relation. It is thus wise to minimize the use of function symbols
and quantifier alternation when developing the EPR FBQS theory.

In our experience, stratification is nevertheless likely to become an issue during protocol
verification. However, Ivy has modular decomposition features specifically designed to help
keep verification conditions decidable. The process of structuring proof modularly to ensure
decidability is explained in details by Taube et al. [17]. In the case of liveness proofs, prophecy
variables also help keep verification conditions decidable [13].

3.2 The Unique Challenges Posed by FBQSs
Developing an EPR theory of FBQSs is challenging because the notions we presented
in Section 2, such as intact sets, slice-blocking sets, or the cascading theorem, are naturally
second-order concepts. I.e. they are naturally expressed by quantifying over sets. While we
cannot precisely capture the higher-order theory of sets in first-order logic, we can approximate
it by using a first-order uninterpreted sort nset, a membership relation member(N:node,
S:nset), and appropriate axioms.

The full first-order theory of FBQSs appears in Figure 1. We model an arbitrary but
fixed configuration, i.e. an arbitrary set of nodes with arbitrary slices and we consider a
fixed intact set I among those nodes as well as a superset S of I such that S is intertwined
(note that an intact set is inherently intertwined, so there is no inconsistency here). Instead
of modeling slices explicitly, we only model the notions of intact node, intertwined node,
quorum, and slice-blocking set.

Formally, in Figure 1, we introduce an uninterpreted sort node, denoting the set of all
nodes, and an uninterpreted sort nset, denoting the powerset of the set of nodes (lines 1
and 2). Well-behaved, intertwined, and intact nodes are identified by corresponding unary
relations (lines 3 to 5), and quorums of a node are identified by the binary relation quorum_of
(line 7). Finally, the binary relation member (line 6) denotes set membership, and the binary
relation slice_blocking identifies the slice-blocking sets of a node (line 8).

Given those sorts and relations, we obtain the first-order theory of FBQSs using the
following axioms. First, line 9, we assert that intact nodes are intertwined, and that
intertwined nodes are well-behaved. In line 10 and 11, we assert that quorums of well-

FMBC 2020



9:6 On the Formal Verification of SCP

behaved nodes are not empty. Then, line 12 to 15, we define two predicates to identify
quorums of intertwined nodes and quorums of intact nodes. Then, line 16 and 17, we assert
the quorum intersection property of intertwined nodes. Similarly, line 18 and 19, we assert
the quorum intersection property of intact nodes. Line 20 and 21, we assert that if N is intact
and S slice-blocks N, then S contains an intact node. Finally, line 22, we assert that the set
of intact nodes is a quorum.

The conjunction of all the axioms is an EPR formula because the associated quantifier-
alternation graph has a single dependency: sort node depends on sort nset. For example,
lines 16 and 17 in Figure 1, the quorum intersection axiom for intertwined sets creates a
dependency from sort node to sort nset. As explained in Section 3.1, this dependency may
create a quantifier-alternation cycle when the axioms are conjoined with other formulas in
a verification condition, and it is the user’s responsibility to make use of Ivy’s modularity
features to avoid such a cycle when verifying a protocol; this process is explained in [17].

The reader may notice that the Cascade Theorem is missing from the axioms, and instead
is expressed as an axiom schema in Figure 2. The reason is that we could not satisfactorily
express it in first-order logic. The theorem states that if p is a predicate on nodes (i.e.
a set of nodes) and Q is a quorum of an intact node whose intact members unanimously
satisfy p, then either a) all intact nodes satisfy p or b) there exists an intact node N that
does not satisfy p but that is slice-blocked by a set S whose members are exclusively intact
and unanimously satisfy p. While other axioms quantify over a restricted family of sets,
such as quorums or slice-blocking sets, the Cascade Theorem quantifies over all predicates p.
It is thus inherently second-order. Ivy allows to express it as an axiom schema, but Ivy’s
proof automation cannot reason about such a second-order formula. Instead, Ivy allows to
manually instantiate it, substituting p for a concrete predicate, to prove particular invariants.
We use this technique in the termination proof of SCP. Note that, also when instantiating
the Cascade Theorem, we must be careful not to introduce quantifier-alternation cycles.

Together, the axioms appearing in Figure 1 and the axiom schema of Figure 2 form the
first-order theory of Federated Byzantine Quorum Systems.

3.3 Validating the Model
Asserting axioms instead of proving them as properties from basic definitions can be dangerous:
even benign-looking axioms can turn out to be contradictory, e.g. because of a typo, thereby
making any proof relying on them vacuous. To avoid this situation, we ask Ivy to find a
model of the axioms of Figure 1 conjoined with the instantiations of the cascade_thm axiom
schema that we use in the proof. Ivy confirms the existence of a model, which rules out any
contradiction.

Another risk is that, although the axioms are not contradictory, they do not accurately
model FBQSs. For instance, the first-order model abstracts over slices and instead considers
that a node’s quorums are fixed. This is limiting because, in reality, nodes are expected to
change their slices in response to observed failures or changes in how much they trust other
nodes. It is nevertheless interesting to prove that, under the assumption that well-behaved
nodes do not change their slices, SCP is safe and live.

Another issue is that, as we have noted in Section 2, FBQSs have the peculiar property
that, by crafting the slices they advertise, malicious nodes can dynamically influence a
well-behaved node’s notion of quorum. But in our model, the quorums of a well-behaved node
are fixed. This is in fact a form of abstraction. Given a FBQS where well-behaved nodes have
fixed slices and Byzantine nodes can advertise arbitrary slices, we defined its fixed-quorums
counterpart, where we assign to each well-behaved node the set of all quorums that could



G. Losa and M. Dodds 9:7

1: type node # the type of nodes; this is an uninterpreted, arbitrary non-empty type
2: type nset # the type of node sets
3: relation well_behaved(N:node)
4: relation intertwined(N:node)
5: relation intact(N:node)
6: relation member(N:node, S:nset) # this is the set membership relation
7: relation quorum_of(N:node, Q:nset)
8: relation slice_blocking(S:nset, N:node)
9: axiom ∀ N. (intact(N) → intertwined(N)) ∧ (intertwined(N) → well_behaved(N))
10 axiom (∃ N . well_behaved(N) ∧ quorum_of(N,Q))
11 → ∃ N . well_behaved(N) ∧ member(N,Q)
12: definition quorum_of_intertwined(Q) =
13: (∃ N. intertwined(N) ∧ quorum_of(N,Q))
14: definition quorum_of_intact(Q) =
15: (∃ N. intact(N) ∧ quorum_of(N,Q))
16: axiom ∀ Q1,Q2. quorum_of_intertwined(Q1) ∧ quorum_of_intertwined(Q2)
17: → ∃ N. intertwined(N) ∧ member(N,Q1) ∧ member(N,Q2)
18: axiom ∀ Q1,Q2. quorum_of_intact(Q1) ∧ quorum_of_intact(Q2)
19: → ∃ N. intact(N) ∧ member(N,Q1) ∧ member(N,Q2)
20: axiom ∀ S. (∃ N. intact(N) ∧ slice_blocking(S,N))
21: → ∃ N2. member(N2,S) ∧ intact(N2)
22: axiom ∃ Q. ∀ N. member(N,Q) ↔ intact(N) ∧ quorum_of(N,Q)

Figure 1 A model of Federated Byzantine Quorum Systems in the EPR fragment of first-order
logic.

possibly arise given arbitrary malicious behavior of Byzantine nodes. Intuitively, in this
new fixed-quorums model, it is harder to achieve consensus because the Byzantine adversary
has more choices of quorums to manipulate. Thus a consensus algorithm that works in the
fixed-quorums model will work in the model in which quorums can be dynamically shaped
by Byzantine nodes.

Finally, we prove in Isabelle/HOL that the fixed-quorums model satisfies all the properties
axiomatized in the first-order model; thus the first-order model is an abstraction of the
fixed-quorums model. We now describe the Isabelle/HOL fixed-quorums model.

The Isabelle/HOL model formalizes FBQSs from the notion of slice. It assumes that
well-behaved nodes have fixed slices, but it accounts for the situation in which malicious
nodes dynamically shape the quorums of well-behaved nodes. To do so, we define a quorum
Q of a node n as a set of nodes such that a) n has a slice included in Q and b) every
well-behaved member of Q has a slice included in Q. Note how this definition of quorum
subtly differs from the one of Section 2. By placing requirements only on well-behaved nodes,
we account for any possible slices that could be advertised by malicious nodes. We then prove
in Isabelle/HOL that all the axioms of the first-order model (Figure 1) and the Cascade
Theorem (Figure 2) hold. This Isabelle/HOL theory is purely definitional (i.e. it does not
use axioms).

There is no mechanically-checked connection between Isabelle/HOL and Ivy, and thus
the best we can do is to carefully check, by hand, that the Ivy axioms correspond to the
properties proved in Isabelle/HOL. Fortunately, the syntax and semantics of first-order
formulas in Isabelle/HOL is very close to that of Ivy. This can be seen by comparing the Ivy

FMBC 2020



9:8 On the Formal Verification of SCP

axiom [cascade_thm] {
function p(N:node):bool
property (∃ Q . quorum_of_intact(Q) ∧ (∀ N . intact(N) ∧ member(N,Q) → p(N)))
→ ((∀ N . intact(N) → p(N))

∨ (∃ N,S . intact(N) ∧ ¬p(N) ∧ slice_blocking(S,N)
∧ (∀ N2 . member(N2,S) → (intact(N2) ∧ p(N2)))))

}

Figure 2 The second-order Cascade Theorem as an axiom schema in Ivy.

axiom schema of Figure 2 with its Isabelle/HOL counterpart appearing in Figure 3.

theorem cascade:
fixes P
assumes "∃ Q . ∃ n . intact n ∧ quorum_of n Q ∧ (∀ n ∈ Q . intact n −→ P n)"
obtains "∀ n . intact n −→ P n" | "∃ n S . intact n ∧ ¬P n
∧ (∀ Sl ∈ slices n . S ∩ Sl 6= {}) ∧ (∀ n ∈ S. intact n ∧ P n)"

Figure 3 The Cascade Theorem in Isabelle/HOL.

4 Related Work

Lokhava et al [7] discuss the Stellar Network in the broader context of global payments; they
also describe at a high level the formal verification effort that is the subject of the present
paper. The purpose of the present paper is to dig into the technical details necessary to
apply this technique to future proofs of BFT protocols. Losa et al. [9] show that FBQSs are
an instance of the more general Personal Byzantine Quorum System model, and we reuse
some of the Isabelle/HOL theories developed for this work.

Other works verify safety properties of BFT consensus protocols using Dafny, Coq, or
Isabelle/HOL. For example, Alturki et al. verify safety properties of Algorand in Coq [2].
Palmskog et al.[15] and Nakamura et al.[11] verify properties of Ethereum’s Casper CBC
in Coq and Isabelle/HOL, respectively. Rahli verifies safety properties of PBFT in the
Velisarios framework [16], which is based on Coq. IronFleet [6] verifies safety and liveness of
a crash-tolerant implementation of Multi-Paxos using Dafny.

Isabelle/HOL, Dafny, and Coq are not restricted by decidable logics, but they lack the
specific features that allow Ivy users to restrict verification conditions to a decidable fragment
and in turn benefit from reliable proof automation. A series of papers describe the different
aspects of decidable reasoning about protocols in Ivy. [14] focuses on modeling and safety
verification of consensus protocols at a high level of abstraction. [3] presents a tool to
synthesize first-order axioms modeling threshold-based quorum systems.[17] present Ivy’s
modularity features, which enable decidable safety verification of more complex protocols
and their implementations. Finally, Ivy’s liveness-to-safety reduction [12] allows decidable
reasoning about liveness properties expressed in LTL. Ivy’s support for prophecy variables [13]
offers an additional tool that helps preserve decidability. In an extended version of this paper,
we plan to present the Ivy proofs of safety and liveness of SCP and compare with the works
cited above.



G. Losa and M. Dodds 9:9

References
1 Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Rama Kotla, and Jean-Philippe

Martin. Revisiting fast practical byzantine fault tolerance. arXiv preprint arXiv:1712.01367,
2017.

2 Musab A Alturki, Jing Chen, Victor Luchangco, Brandon Moore, Karl Palmskog, Lucas Peña,
and Grigore Roşu. Towards a verified model of the algorand consensus protocol in coq. arXiv
preprint arXiv:1907.05523, 2019.

3 Idan Berkovits, Marijana Lazić, Giuliano Losa, Oded Padon, and Sharon Shoham. Verification
of Threshold-Based Distributed Algorithms by Decomposition to Decidable Logics. In Isil
Dillig and Serdar Tasiran, editors, Computer Aided Verification, Lecture Notes in Computer
Science, pages 245–266, Cham, 2019. Springer International Publishing.

4 Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

5 Yeting Ge and Leonardo De Moura. Complete instantiation for quantified formulas in
satisfiabiliby modulo theories. In Computer Aided Verification, pages 306–320. Springer, 2009.

6 Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L.
Roberts, Srinath Setty, and Brian Zill. IronFleet: Proving Practical Distributed Systems
Correct. In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15,
pages 1–17, New York, NY, USA, 2015. ACM.

7 Marta Lokhava, Giuliano Losa, David Mazières, Graydon Hoare, Nicolas Barry, Eli Gafni,
Jonathan Jove, Rafał Malinowsky, and Jed McCaleb. Fast and secure global payments with
Stellar. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP
’19, pages 80–96, New York, NY, USA, October 2019. Association for Computing Machinery.

8 Giuliano Losa. https://github.com/stellar/scp-proofs, 2019.
9 Giuliano Losa, Eli Gafni, and David Mazières. Stellar Consensus by Instantiation. In Jukka

Suomela, editor, 33rd International Symposium on Distributed Computing (DISC 2019), volume
146 of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:1–27:15, Dagstuhl,
Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

10 Kenneth L. McMillan and Oded Padon. Deductive verification in decidable fragments with
Ivy. In International Static Analysis Symposium, pages 43–55. Springer, 2018.

11 Ryuya Nakamura, Takayuki Jimba, and Dominik Harz. Refinement and Verification of CBC
Casper. In 2019 Crypto Valley Conference on Blockchain Technology (CVCBT), pages 26–38,
June 2019.

12 Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, Mooly Sagiv, and Sharon
Shoham. Reducing Liveness to Safety in First-Order Logic. In 45th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL 2018), Los Angeles, 2018.

13 Oded Padon, Jochen Hoenicke, Kenneth L. McMillan, Andreas Podelski, Mooly Sagiv, and
Sharon Shoham. Temporal prophecy for proving temporal properties of infinite-state systems.
In 2018 Formal Methods in Computer Aided Design (FMCAD), pages 1–11. IEEE, 2018.

14 Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos Made EPR: Decidable
Reasoning About Distributed Protocols. Proc. ACM Program. Lang., 1(OOPSLA):108:1–
108:31, October 2017.

15 Karl Palmskog, Milos Gligoric, Brandon Moore, Lucas Peña, and Grigore Roşu. Verification
of Casper in the Coq Proof Assistant, 2018. URL: http://hdl.handle.net/2142/102075.

16 Vincent Rahli, Ivana Vukotic, Marcus Völp, and Paulo Esteves-Verissimo. Velisarios: Byzantine
Fault-Tolerant Protocols Powered by Coq. In Amal Ahmed, editor, Programming Languages
and Systems, Lecture Notes in Computer Science, pages 619–650, Cham, 2018 . Springer
International Publishing.

17 Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, Mooly Sagiv, Sharon
Shoham, James R. Wilcox, and Doug Woos. Modularity for decidability of deductive verification
with applications to distributed systems. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2018, pages 662–677, New York,
NY, USA, June 2018. Association for Computing Machinery.

FMBC 2020

https://github.com/stellar/scp-proofs
http://hdl.handle.net/2142/102075

	Introduction
	Solving Consensus in a Federated Byzantine Quorum System
	Intact and Intertwined Sets
	Termination and the Cascade Theorem

	Modeling Federated Byzantine Quorum Systems in EPR
	Enabling Decidable Reasoning
	The Unique Challenges Posed by FBQSs
	Validating the Model

	Related Work

