
Personnel Scheduling on Railway Yards
Roel van den Broek
Department of Computer Science, Utrecht University, The Netherlands
r.w.vandenbroek@uu.nl

Han Hoogeveen
Department of Computer Science, Utrecht University, The Netherlands
j.a.hoogeveen@uu.nl

Marjan van den Akker
Department of Computer Science, Utrecht University, The Netherlands
j.m.vandenakker@uu.nl

Abstract
In this paper we consider the integration of the personnel scheduling into planning railway yards.
This involves an extension of the Train Unit Shunting Problem, in which a conflict-free schedule of
all activities at the yard has to be constructed. As the yards often consist of several kilometers of
railway track, the main challenge in finding efficient staff schedules arises from the potentially large
walking distances between activities.

We present two efficient heuristics for staff assignment. These methods are integrated into a
local search framework to find feasible solutions to the Train Unit Shunting Problem with staff
requirements. To the best of our knowledge, this is the first algorithm to solve the complete version
of this problem. Additionally, we propose a dynamic programming method to assign staff members
as passengers to train movements to reduce their walking time. Furthermore, we describe several
ILP-based approaches to find a feasible solution of the staff assignment problem with maximum
robustness, which solution we use to evaluate the quality of the solutions produced by the heuristics.

On a set of 300 instances of the train unit shunting problem with staff scheduling on a real-world
railway yard, the best-performing heuristic integrated into the local search approach solves 97% of
the instances within three minutes on average.

2012 ACM Subject Classification Applied computing → Transportation; Computing methodologies
→ Planning for deterministic actions

Keywords and phrases Staff Scheduling, Train Shunting, Partial Order Schedule

Digital Object Identifier 10.4230/OASIcs.ATMOS.2020.12

1 Introduction

Passenger railway operators use only a subset of the available trains during off-peak hours.
Railway yards are used to store the surplus of rolling stock and often provide cleaning and
maintenance services for the parked trains.

To ensure that the yards are operating efficiently and that all trains leave the yard in
the correct composition and at their scheduled departure time, the Dutch passenger railway
operator NS requires that a shunting plan is created in advance. A shunting plan describes
the activities, such as coupling and decoupling train units, service tasks and train movements,
that need to be performed together with their time intervals and locations.

The activities in the shunting plan have to be performed by skilled staff members. Previous
work on algorithms for constructing feasible shunting plans assumes that sufficient staff is
available on the yard to complete all activities as planned. However, in practice personnel
is a scarce resource, and hence their availability has a large impact on the feasibility of a
shunting plan. Therefore, in this paper we consider the integration of the staff scheduling
into a yard planning approach.

© Roel van den Broek, Han Hoogeveen, and Marjan van den Akker;
licensed under Creative Commons License CC-BY

20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2020).
Editors: Dennis Huisman and Christos D. Zaroliagis; Article No. 12; pp. 12:1–12:15

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:r.w.vandenbroek@uu.nl
mailto:j.a.hoogeveen@uu.nl
mailto:j.m.vandenakker@uu.nl
https://doi.org/10.4230/OASIcs.ATMOS.2020.12
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


12:2 Personnel Scheduling on Railway Yards

Due to the sheer size of a shunting yard, the number of tasks that an employee can
perform is severely limited by the walking distances between the locations of consecutive
tasks. For example, if a driver is assigned to two train movements, and the destination of
the first movement is far away from the start of the second movement, then the walking
time between these two locations can easily be more than the total driving time of the two
train movements combined. Even in the case that a train has two consecutive movements in
opposite directions, and the driver continues to operate the same train, then the driver still
has to walk from one end of the train to the other to ensure that he or she is looking in the
driving direction.

As service and movement tasks take place at many locations on the yard, walking is
often unavoidable. However, ordering the tasks properly and carefully dividing the tasks
over the available employees can significantly reduce the walking time, which is essential in
constructing shunting plans in which all service and movement tasks can be performed on
time (while keeping the personnel satisfied).

In this paper we first give an overview of recent literature related to shunting and
staff rostering problems in Section 2, and continue with a formal introduction to the staff
assignment problem in Section 3. We then propose two solution methods for the staff
assignment problem, a list scheduling procedure and a decomposition approach, in Section 4.
In this section we further present several approaches to solve the staff scheduling problem to
optimality. We compare the two heuristic methods in Section 5 in an experimental study
and formulate some concluding remarks in Section 6.

2 Literature Overview

The train unit shunting problem (TUSP) was first introduced by [3] and consists of parking
passenger trains that arrive at a station or a railway yard on the available tracks and assigning
these trains to the scheduled departures in the timetable. The problem formulation was later
extended by [6] to include the paths taken by the trains over the yard.

To construct feasible solution to the TUSP, [5] decompose the problem into two sub-
problems that are solved sequentially with mixed integer programming techniques. In the
first sub-problem they match the arriving trains to the departure compositions and assign
the trains to the parking tracks. The second sub-problem consists of assigning paths and
start times to the train movements resulting from the solution of the first sub-problem.

The extension of the train unit shunting problem with service tasks is studied in [9].
These service tasks, such as maintenance checks and cleaning, can be performed at facilities
located on the railway yard and have to be completed before the train departs from the yard.
We presented a local search method that solves the train unit shunting problem with service
tasks by iteratively modifying the current solution to resolve conflicts.

In this paper we address the integration of staff scheduling into the train unit shunting
problem. For a broad overview of staff scheduling problems and solution methods we refer to
[7]. A prominent feature of scheduling personnel at shunting yards is the (often large) walking
distance between consecutive tasks. [4] introduce the closely related service technician routing
and scheduling problem (STRSP), in which staff members have to be assigned to tasks that
have time windows, precedence constraints and geographic locations. The authors use an
adaptive large neighborhoods search to find solutions for the STRSP.

A survey on more general personnel scheduling and routing problems is given in [1]. They
provide an overview of common constraints, application domains and solution methods of
scheduling and routing problems. Furthermore, they performed numerical experiments to
measure the running times of several (mixed) integer programming formulations of these
problems.



R. van den Broek, H. Hoogeveen, and M. van den Akker 12:3

In contrast to the problems described by [1], the staff scheduling problem at railway yards
contains tasks, specifically train movements, that start and end at different geographical
locations. Furthermore, we do not consider the staff scheduling problem as an isolated
problem. Instead, the staff scheduling is only one component of the shunting process, and
the computational complexity arises mainly from the interactions of the strongly intertwined
sub-problems. Therefore, the primary contribution of this paper is that we develop solution
methods for the staff scheduling problem which can be embedded in a larger framework
to construct plans for the complete shunting problem. The integrated solution approach
that we propose in this paper is, to our knowledge, the first method capable of solving the
shunting problem with service activities and staff scheduling on real-world instances.

3 Problem Description

Shunting yards are a collection of tracks, connected by switches, where the rolling stock of
passenger railway operators are stored. Modern trains are typically electrical multiple unit
trains, which are self-propelled, permanently coupled carriages. We refer to a single electrical
multiple unit as a train unit. These train units can be coupled to transport more passengers.
A train is a group of one or more train units that are coupled. The train units are classified
by their train type.

Trains arrive at and depart from the railway yard according to the timetable, which
specifies for each arrival and departure the scheduled time and train types of which the train
is composed.

The shunting problem at railway yards consists of six components:
1. matching incoming train units to positions in outgoing trains;
2. (de-)coupling trains to form the correct train compositions for departure;
3. scheduling all required service activities such that they are completed before the trains

depart;
4. parking the trains on the yard;
5. finding conflict-free paths for all train movements;
6. assigning staff to all the train activities.

Earlier work focused primarily on the first five problem components. An in-depth
description of these components can be found in [8, 9].

Any solution to the problem – a shunting plan – can be represented by a set of activities
A, a partial order schedule POS imposing precedence constraints on A, and a scheduling
policy that assigns start times to the activities in A based on the POS. A solution is feasible
if

A contains a valid sequence of activities for each train unit with respect to their required
service activities and the infrastructure of the yard;
the split and combine activities in A induce a feasible matching;
the constraints in the POS ensure that no resource and routing conflicts occur;
the start times assigned to the activities by the scheduling policy satisfy both the
precedence constraints in the POS and the timetable constraints.

In this paper we focus on the sixth problem component, the staff scheduling sub-problem.
That is, we assume that the activities in A require one or more skilled staff members. Since
the staff assignment might impose additional precedence constraints on the activities, we now
consider the problem of assigning both staff members and start times to each of the activities,
given the partial order schedule obtained from solving the first five shunting sub-problems.

ATMOS 2020



12:4 Personnel Scheduling on Railway Yards

The staff members are grouped by their skill set, i.e., the activity types that they are
qualified to perform. Each activity a ∈ A has

a train ta,
a duration da,
a track τ inita on which the activity is initiated,
a track τfinala where the activity ends,
a staffing requirement of rTa staff members of type T .

Note that τ inita 6= τfinala if and only if the activity is a train movement. We have to assign
to each activity a sufficient staff members, as well as a feasible start time sta and completion
time cta = sta + da.

For every available staff member in the planning horizon, we are given their skill set type
T ∈ T . The skill sets are typically disjunct sets, i.e., train drivers may only move trains,
cleaners clean the trains and mechanics are limited to repairing and inspecting the trains.
Furthermore, for each pair (τi, τj) of tracks we have the walking duration ωτi,τj

, which is the
time required for a staff member to walk from track τi to track τj . Note that a more detailed
model of the walking durations can be used if the exact locations of the train activities on
the tracks (e.g. in meters) are known.

The staff assignment sub-problem is now to assign staff members and a start time to each
of the activities in the shunting plan such that

sufficient staff members with the correct skills are assigned to each activity;
all activities of a staff member are scheduled without overlap;
the start times of the activities satisfy the precedence constraints in the POS;
the time between activities in the schedule of a staff member is at least equal to the
necessary walking duration.

For train drivers there are additional constraints associated with the scheduling of train
movements. If a train driver is assigned to two consecutive movements of a train t in opposite
directions, then the driver has to walk to the driver’s compartment at the other end of
the train to reverse the movement direction of the train. This reversal occurs after the
completion of the first movement and before the start of the second movement. The duration
of the reversal, which we denote by dtreversal, depends linearly on the length of the train t.

Although a train movement only requires a single train driver, additional train drivers
are allowed to be in the train during the movement. This enables the drivers to move more
efficiently over the yard, but it creates additional dependencies between the schedules of the
drivers. Making a detour or stopping for (dis)-embarking is not allowed.

As an example, suppose that we have a sequence of five consecutive train movements,
a1, . . . , a5, in our shunting plan and two drivers x and y available at the yard. Movements a1,
a2, a4 and a5 are from track τ1 to τ2, and movement a3 is in the opposite direction, starting
at τ2 and ending at τ1. A possible assignment of the drivers to the movements is that x
performs a1, a3 and a5 and y operates movements a2 and a4. Then driver x moves between
tracks τ1 and τ2 by train, but driver y needs to get from τ2 to τ1 to perform a4. As train
movement a3 is going from τ2 to τ1 anyway, driver y can save some walking time by joining
x on a3.

The objective of the train unit shunting problem – and therefore the staff scheduling
sub-problem – is primarily to find a feasible shunting plan. However, in practice the solutions
have to be robust to small disturbances as well, such that a small delay earlier in the execution
will not make the plan infeasible. Therefore, we include the maximization of total free slack
in the objective as a measure of robustness of the solutions.



R. van den Broek, H. Hoogeveen, and M. van den Akker 12:5

4 Solution Methods

In [9] we present a local search framework that searches for feasible solutions to the first five
components of the shunting problem. To find shunting and service plans that satisfy the
additional staff scheduling constraints introduced in the previous section, we propose two
methods that can be integrated as sub-routines within the local search framework. These
methods use the information in the partial order schedules generated by the local search to
assign the train activities to their required resources, which includes the personnel.

The first method is a greedy list scheduling policy. Here we transform the POS in an
ordered list of activities and assign to each activity the earliest possible starting time given
the starting times of the earlier activities in the list and the availability of the staff.

In the first method we do not attempt to maximize the slack or minimize the walking
distances of the staff; we simply pick the first available person for each activity. In the
second method, we decompose the problem into the sub-problems of assigning activities to
the staff, with weights based on the walking distances and the slack between activities, and
then compute start times using the first method. If this does not result in a feasible solution,
then we re-assign the activities to the staff, etc.

To evaluate the quality of the solutions produced by these two heuristics, we compare
them to optimal staff assignments for the given partial order schedule with the objective of
maximizing total slack. To construct these exact solutions we present several mixed integer
linear programs.

In the remainder of this section we will describe the proposed methods in more detail.

4.1 List Scheduling Policy
In the list scheduling policy we use an ordered list L of the activities in the shunting plan. L
is a linearization of the partial order schedule, i.e., a total ordering of the activities. The list
L defines the order in which we will evaluate the activities to assign start times to them. See
Section 4.3 for a description of the construction and modification of the priority list.

When we evaluate activity ai in L = (a1, . . . , an), activities aj with j < i have already
been assigned a start time and staff member by the procedure. To compute the start time of
ai, we have to determine the availability of

the train tai ;
infrastructure: cleaning platforms or train movement tracks and switches;
staff: train drivers, mechanics or cleaners.

In the list scheduling approach we consider all the above as resources on which the activity
has to be scheduled.

For each resource R required by ai, we compute the set of feasible time windows TR in
which ai can start on R given the duration of ai and the activities aj with j < i that have
already been scheduled on R. For resources with a capacity larger than one, e.g. multiple
train drivers or cleaning crews, the set of feasible start time windows consists of all time
windows in which there is sufficient capacity available of the resource to process the activity.

Once we have the set of feasible start times of each resource, we compute the start time
of ai as the earliest time that is feasible for all resources. Note that list L only indicates the
priority of the activities, and not their actual order. Therefore, ai can start before activity aj
with j < i if the required resources allow this. We assign staff to activity ai by retracing the
staff members that contributed to the feasible time window at the computed start time of ai.

Recall that the walking time of a train driver can be decreased by riding along with
another train movement. To add this feature to the list scheduling policy, we take the
scheduled train movements into account when computing the minimum time lag between

ATMOS 2020



12:6 Personnel Scheduling on Railway Yards

two train movements assigned to the same driver. Let ai be the movement activity that we
are currently scheduling in our list scheduling policy. To determine when a train driver can
perform ai after the scheduled train movement ai′ , with i′ < i, we compute the minimum time
lag between ai′ and ai using a dynamic programming approach. Let M i

i′ = {m1, . . . ,mk} be
the set of movement activities mj with j < i that start after ai′ , ordered by their start time.
Then M i

i′ is the set of train movements that the driver can board to get faster from ai′ to ai.
Define Dj

τ as the earliest time that the driver can reach track τ with the possibility of traveling
with trips from {m1, . . . ,mj}. Similarly, let D0

τ be the time that the driver reaches track τ
after completing ai′ and walking from the destination of ai′ to τ , i.e. D0

τ = ctai′ + ωτfinal
a

i′ ,τ .
Then we compute Dj

τ for all 1 ≤ j ≤ k and all tracks τ as

Dj
τ =

D
j−1
τ if Dj−1

τ init
mj

> stj

min
{
Dj−1
τ , ctj + ωτfinal

mj
,τ

}
otherwise .

(1)

That is, Dj
τ is the minimum of Dj−1

τ – the case in which the driver does not travel with
movement mj – and the completion time of mj plus the walking time from the destination
τfinalmj

of mj to τ . The latter is only possible if the driver can reach the initial location of mj

before mj departs.
The earliest time that the driver can start movement activity ai after ai′ is then Dk

τ init
ai

.
We take the minimum over all i′ < i to compute the earliest time that activity ai can start.

4.2 Decomposition Heuristic
With the decomposition heuristic, we first solve the problem of assigning activities to
personnel. The assignment gives us the schedules of the individual staff members, which we
will combine with the precedence constraints from the partial order schedule to compute the
start times of the activities in the second step.

We solve the staff assignment problem for each type of personnel T (train drivers,
mechanics and cleaners) separately. Let AT = {a1, . . . , an} be the set of activities that
require staff members of type T , and define kT as the number of staff members available.
We construct the following directed graph G = (V,A). We let each activity aj correspond to
a vertex vj in V , and we add the arc (vi, vj) if it is possible for a staff member to carry out
activities ai and aj consecutively in that order. Since the POS does not correspond to a full
order, G may contain cycles. To avoid this, we remove all arcs in A that do not comply with
the list L defined in the previous sub-section. Remark that this ordering only matters if the
tasks ai and aj are assigned to the same staff member.

A schedule for a staff member now corresponds to a path in the graph G. Given the
weights of the arcs (vi, vj), which we define later, we can then solve the assignment problem
as a min-cost max-flow problem with a minimum flow of 1 through each vertex and an upper
bound of kT on the size of the flow. We follow the approach of [2] to solve this problem as a
weighted matching problem in a bipartite graph.

To find a maximum matching that is likely to satisfy the departure time constraints, we
assign weights to the arcs in the bipartite graph. For each activity ai ∈ AT , we compute its
earliest completion time ecti and latest start time lsti in the original partial order schedule.
Then, for every arc (vi, vj) we set the weight of the arc to

wi,j = lstj − ecti −mtli,j , (2)

where mtli,j is the minimum time lag due to walking between ai and aj . With these weights,
matchings in which the staff has sufficient slack time between their scheduled activities



R. van den Broek, H. Hoogeveen, and M. van den Akker 12:7

are preferred. Note that we cannot guarantee that a maximum weighted matching causes
no departure delays, as the arc weights are only pair-wise indications of the feasibility of
performing two activities consecutively. From the solutions of the staff assignment problem
we obtain a set of minimum time lag constraints C between the activities that extend the
precedence relations in the partial order schedule POS. We can then find the starting times
of the activities using the dynamic programming approach from Section 4.1 in combination
with the priority list L.

If the resulting solution is not feasible with respect to the train departure times, then
we update the staff assignment problem by updating the weights of the arcs. We select
the matching variables that have their corresponding precedence relation on a critical path
causing the delays, and reduce their weight by the total amount of departure delay resulting
from the critical path. Then, we solve the two sub-problems again. This procedure is repeated
until we either find a feasible solution, fail to generate a new solution, or reach the predefined
maximum number of iterations.

4.3 Embedding in the Local Search
The two staff assignment heuristics are intended to extend a partial solution of the first five
problem components defined in Section 3 – generated by the local search – to a full shunting
plan including staff schedules. In addition to the POS, the input of the two methods consists
of a priority list L of the activities as well. Since the order of activities in the priority list
affects the solutions produced by the two staff assignment algorithms, we have to allow the
local search to modify the priority of the activities.

As described in [9], the local search method has several neighborhoods that change the
order of the activities in the partial order schedule. When the local search modifies the
ordering in the POS, we update the priority list such that it remains a linearization of the
partial ordering. Additionally, we introduce two new neighborhoods that change the ordering
of L without affecting the POS by shifting and swapping activities, respectively.

4.4 Exact Formulations
In addition to the two heuristic approaches, we propose three exact models based on
mathematical programming to construct the staff assignment of the train drivers based
on the POS and the priority list L. The first method is a mixed integer linear program
formulation and the other two methods are branch-and-price algorithms. Although the exact
methods will be computationally too intensive to be implemented within the local search
framework, it allows us to evaluate the quality of the solutions obtained with the heuristics
by comparing them to optimal staff assignments.

Our primary goal is to find a feasible solution. Since the shunting yard is a very dynamic
environment with many possible disturbances, we strive for robust solutions. We use the
free slack times – the maximum amount of time an activity can be delayed without affecting
other activities – as a measure for the robustness; we denote this by si and try to maximize
the sum in our objective function. Instead of just maximizing the sum, we can also maximize
a non-increasing piece-wise linear function of the slacks.

In the MIP model, we decide on the completion time ci ≥ 0 and the slack si ≥ 0 of
each activity ai ∈ L. Furthermore, we have to assign the activities to staff members. We
model the assignment as a flow problem in which the flow through the activities defines the
staff schedules. Let a0 and an+1 be dummy activities representing the start and end of the
shunting plan, respectively. For each pair of activities (ai, aj) with 0 ≤ i < j ≤ n + 1, we

ATMOS 2020



12:8 Personnel Scheduling on Railway Yards

define the decision variables

xi,j =
{

1 if ai directly precedes aj in the schedule of a staff member,
0 otherwise.

(3)

By assigning to each ai ∈ L a single predecessor and successor we construct the sequences of
the activities in the staff schedules. Each schedule starts with a0 and ends with an+1.

To formulate the staff assignment problem as a mixed integer linear program, we denote
the data following from the POS and the staff schedules as

ecti = earliest completion time of activity ai in POS
lcti = latest completion time of activity ai in POS

dij =
{
minimum time between ci and cj if ai ≺ aj ∈ POS
duration daj

of activity aj otherwise

Dij =
{
minimum time between ci and cj if ai ≺ aj ∈ POS
ectj − lcti otherwise

ωij = minimum walking time between ci and cj
m = number of available train drivers

The problem of finding a staff assignment that maximizes the slack of the activities can then
be formulated as

max
∑
i

si s.t. (4)

cj − ci − si −Qijxi,j ≥ Dij ∀i, j : 1 ≤ i < j ≤ n (5)
ci + si ≤ lcti ∀i (6)∑
j<i

xj,i = 1 ∀i ∈ {1, . . . , n} (7)

∑
j>i

xi,j = 1 ∀i ∈ {1, . . . , n} (8)

∑
j>0

x0,j ≤ m (9)

xi,j ∈ {0, 1}, ci ≥ ecti, si ≥ 0 (10)

where Qij is the additional time lag due to driver constraints,

Qij = max {ωij −Dij , 0} .

In this model, the minimum time lag between activities is enforced by (5). The driver
walking time Qij is included if and only if ai is the direct predecessor of aj in some staff
schedule. Inequalities (6) provide the upper bounds on the completion times including slack
of the activities. Each activity ai ∈ L is included in a single staff schedule due to the in-
and outflow constraints (7) and (8). Constraint (9) models the maximum number of staff
members available.

Our branch-and-price approaches are based on a covering formulation: we select for each
staff member a schedule. The main difference between the two methods is whether the
completion times of the activities are included in the schedules. In the sequence model the
pricing problem determines only the sequence of activities in the individual staff schedules;



R. van den Broek, H. Hoogeveen, and M. van den Akker 12:9

Figure 1 The “Kleine Binckhorst” shunting yard is situated near The Hague Central Station
and is operated by NS.

the times at which these are done are decided by the master problem. In contrast, the
completion time of activities in a staff schedule in the timestamp model are given by the
pricing problem. Detailed descriptions of the master and pricing problems of the two methods
are given in Appendix A.

Preliminary experiments have shown that the sequence model performs significantly better
than the timestamp model. The former is able to solve our test instances in half an hour,
whereas the latter takes several hours to compute an optimal staff assignment. The main
bottleneck in the timestamp model appears to be the schedule generation, as the pricing
problem takes far more time to solve when completion times have to be assigned to the
activities in a schedule. However, the preliminary experiments also show that neither of
the branch-and-price algorithms are competitive with the direct MIP formulation of the
personnel rostering problem on our test instances. The MIP model is able to solve most
instances within a few minutes, and, hence, we only use the mixed integer linear program
in the remainder of our computational experiments. For the sake of completeness we have
included the branch-and-price methods in the appendix.

5 Experimental Setup and Results

To compare the two solution methods, we will evaluate their performance on a set of instances
generated for a real-world shunting yard. The “Kleine Binkchorst (KBH)”, shown in Figure 1,
is a shunting yard of the NS near the central station of The Hague. For this location, we
have generated 300 instances in which 13 to 15 train units arrive during the evening and have
to depart the next morning. The arrival and departure times are sampled from an empirical
distribution. All trains have to be cleaned internally.

All 300 instances are solvable by the local search algorithm described in [9] when we
exclude the driver assignment component of the shunting problem. On average these solutions
contain 72 train movements that have to be operated by a train driver.

To model the staff assignment problem, we included three train drivers that will be
available during the entire planning horizon. The walking distances are provided by NS
based on real-world data and range from 2 to 20 minutes, depending on the physical location
of the tracks.

With the exact MIP model of the staff assignment problem, we have first determined
whether feasible staff schedules exist for the solutions without drivers. In only 23 of the 300
cases the solver was able to construct feasible staff assignments, all other instances were
infeasible. On average three activities remained unassigned in the infeasible instances, and
the average computation time over all instances was 62 seconds. These experiments show
that the staff assignment problem is not easily solvable as a post-processing step once a
feasible solution to the other shunting sub-problems has been found, which suggests that an
integrated solution method might perform better.

ATMOS 2020



12:10 Personnel Scheduling on Railway Yards

Table 1 The results for 300 instances of the Kleine Binckhorst yard in the Netherlands. The
average computation time of feasible solutions produced by the heuristics is listed in seconds. The
slack is denoted in minutes and is averaged over the feasible solutions as well.

Method Solved Instances Computation Time Heuristic Slack Optimal Slack
Complete LSP 276 54 403 557
Complete DH 196 414 476 579
Partial LSP 286 116 395 543
Partial DH 195 245 469 565

We tested four configurations of the local search on the 300 instances extended with the
staff requirements. In the first two configurations we call the staff assignment sub-routine
(either the list scheduling policy LSP or the decomposition heuristic DH) for every solution
that the local search explores. We will refer to these two configurations as the complete LSP
and the complete DH approaches.

In the two other configurations, we first search for a feasible solution without any staff
assignment, similar to the baseline case where we did not include the train drivers in the
instances. Once a feasible solution without personnel has been found, we run either one of
the staff assignment heuristics. If the resulting solution contains delays, we continue the
local search algorithm with the staff assignment sub-routine. These two configurations are
listed in Table 1 as the partial LSP and partial DH methods. On each instance we ran the
four local search variants until a feasible solution was found, or the maximum computation
time of 1800 seconds was reached. In each iteration of these runs we used the basic walking
durations and not the more sophisticated dynamic programming approach in Equation (1).

In Table 1 we list the average slack of the feasible solutions produced by the heuristics.
To evaluate the quality of these solutions, we have computed the optimal staff assignments
of the feasible partial ordering schedules using our MIP formulation. The optimal slack can
be found in the last column of the table.

Table 1 shows the computational results of our experiments. All instances with train
drivers have been solved successfully by at least one of the local search configurations. The
average time required by the MIP to construct the optimal staff assignments is close to one
minute regardless of the methods used to find the initial solutions.

The list scheduling policy outperforms the decomposition heuristic for both the complete
and partial local search variants. The decomposition heuristic fails to find feasible solutions
for one-third of the instances, whereas the list scheduling algorithm solves most of the
instances relatively fast. This might indicate that the decomposition approach is not able to
update the edge weights properly to converge to a good schedule for the train drivers.

Although fewer instances are solved by the decomposition heuristic, the solutions it
produces have almost 20% more slack than the schedules constructed by the list scheduling
policy. However, the exact solutions obtained with the MIP model are significantly more
robust, and the computation times of the decomposition heuristic variants are higher than
the average computation time of LSP plus the MIP. The longer computation time of the
decomposition approach is most likely due to constructing and solving the matching problem
in every iteration.

The differences between starting directly with the staff assignment or first searching for a
feasible solution without staff are much smaller. In the case of the LSP approach, starting
from a feasible solution without staff increases the number of instances that can be solved at
the cost of doubling the computation time. This suggests that adapting the solution without
staff to the staffing constraints might require either many small modifications, or several
high-cost intermediate solutions that are unattractive for the local search to explore.



R. van den Broek, H. Hoogeveen, and M. van den Akker 12:11

Of the four local search configurations, scheduling the staff with the list scheduling policy
for every candidate solution shows the best performance. The computation time of this
configuration is close to the local search without staff assignment, and 95% of the instances
are solved. When we allow in each iteration the drivers to travel as passengers with planned
train movements using the dynamic program in Equation (1), then the best configuration is
capable of solving 292 instances. Although with the dynamic program we are able to solve
97% of the instances, it comes at the cost of a moderate increase in computation time to,
on average, 162 seconds. The average slack in these solutions drops slightly to 382 minutes.
As our MIP model does not support drivers as passengers, we have not not computed the
optimal slack of these instances.

6 Conclusion

In this paper, we have studied the extension of the train unit shunting problem with staffing
constraints. We proposed two methods that construct staff schedules for a given partial
ordering of the activities on the shunting yard. The first method implements a list scheduling
policy to distribute the activities of the available personnel, whereas the second approach
decomposes the problem into a staff assignment and a time assignment sub-problem that are
solved iteratively. These methods can be used in conjunction with the local search presented
in [9] to find feasible shunting plans that fully integrate all components of the planning
problem at the railway yards. Additionally, we presented a MIP model to compute the
staff assignment that maximizes the total free slack in the complete shunting plan given the
partial order schedule.

We studied the performance of the solution methods on a set of 300 realistic instances of the
“Kleine Binckhorst” shunting yard. The experiments show that the list scheduling approach
outperforms the decomposition heuristic, and that the former solves 97% of the instances
in reasonable time when combined with a dynamic programming approach to minimize the
walking time. Furthermore, once a shunting plan with a feasible staff assignment has been
constructed, the MIP model can be used as a post-processing step to significantly improve
the robustness of a shunting plan in one minute of computation time.

References

1 J Arturo Castillo-Salazar, Dario Landa-Silva, and Rong Qu. Workforce scheduling and
routing problems: literature survey and computational study. Annals of Operations Research,
239(1):39–67, 2016.

2 Richard Freling, Dennis Huisman, and Albert PM Wagelmans. Models and algorithms for
integration of vehicle and crew scheduling. Journal of Scheduling, 6(1):63–85, 2003.

3 Richard Freling, Ramon M Lentink, Leo G Kroon, and Dennis Huisman. Shunting of passenger
train units in a railway station. Transportation Science, 39(2):261–272, 2005.

4 Attila A Kovacs, Sophie N Parragh, Karl F Doerner, and Richard F Hartl. Adaptive large
neighborhood search for service technician routing and scheduling problems. Journal of
scheduling, 15(5):579–600, 2012.

5 Leo G Kroon, Ramon M Lentink, and Alexander Schrijver. Shunting of passenger train units:
an integrated approach. Transportation Science, 42(4):436–449, 2008.

6 Ramon M Lentink, Pieter-Jan Fioole, Leo G Kroon, and Cor Van’t Woudt. Applying operations
research techniques to planning of train shunting. Planning in Intelligent Systems: Aspects,
Motivations, and Methods, pages 415–436, 2006.

ATMOS 2020



12:12 Personnel Scheduling on Railway Yards

7 Jorne Van den Bergh, Jeroen Beliën, Philippe De Bruecker, Erik Demeulemeester, and Liesje
De Boeck. Personnel scheduling: A literature review. European journal of operational research,
226(3):367–385, 2013.

8 Roel van den Broek, Han Hoogeveen, Marjan van den Akker, and Bob Huisman. Train
shunting and service scheduling: an integrated local search approach. Master’s thesis, Utrecht
University, 2016. URL: https://dspace.library.uu.nl/handle/1874/338269.

9 Roel van den Broek, Han Hoogeveen, Marjan van den Akker, and Bob Huisman. A local
search algorithm for train unit shunting with service scheduling. Transportation Science, 2020.
Manuscript submitted for publication.

A Branch-and-Price Formulations

A.1 Sequence Model
In the master problem of the sequence model we decide on the completion time ci ≥ 0 and
the slack si ≥ 0 of each activity ai ∈ A. Furthermore, we have to assign the activities to staff
members. We model the schedules of individual staff members as sequences of the activities
in A. Let Πseq be the set of all possible individual staff schedules, then we can construct a
feasible staff assignment by selecting for each staff member a schedule πk ∈ Πseq such that
all activities are covered and completed before their deadline. We represent the decision of
selecting staff schedule πk ∈ Πseq by the binary decision variable yk, where

yk =
{

1 if staff schedule πk is chosen,
0 otherwise.

(11)

We denote the following properties of the staff schedule πk ∈ Πseq as

aik =
{

1 if ai is in staff schedule πk
0 otherwise

rijk =
{

1 if ai directly precedes aj in schedule πk
0 otherwise

The problem of finding a staff assignment that maximizes the slack of the activities can then
be formulated as

max
∑
i

si s.t. (12)∑
k

aikyk = 1 ∀i (αi) (13)

cj − ci − si −Qij
∑
k

rijkyk ≥ Dij ∀i, j (βij) (14)

ci + si ≤ lcti ∀i (15)∑
k

yk ≤ m (γ) (16)

yk ∈ {0, 1}, ci ≥ ecti, si ≥ 0. (17)

In this model, constraint (13) ensures that all activities are performed by a staff member.
The other constraints are similar to the constraints of the mixed integer linear program

https://dspace.library.uu.nl/handle/1874/338269


R. van den Broek, H. Hoogeveen, and M. van den Akker 12:13

discussed earlier in this section. The dual variables of the constraints are denoted between
the braces. The pricing problem is then to find a staff schedule that minimizes∑

i

αiai,k +
∑
i,j

βi,jQi,jri,j,k (18)

subject to the feasible completion time intervals [ecti, lcti], the minimum time lag constraints
between activities derived from the POS, and the walking time of the staff member.

To solve the pricing problem, we construct the staff schedules with dynamic programming
over subsequences of the priority list L = (a1, . . . , an). For any ai ∈ L, we can either
1. create a schedule πi consisting only of activity ai, or
2. extend a schedule π′ ending at activity ai′ with i′ < i to schedule ππ′→i by appending ai

to the sequence.
The costs of these staff schedules in the pricing problem are

cost(πi) = αi, (19)

cost(ππ
′→i) = αi + βi′,iQi′,i + cost(π′). (20)

The reduced cost of a schedule π can be determined solely from the cost and last activity of
the schedule π′ that it extends. However, not all schedules are feasible due to deadlines and
minimum time lag constraints of the activities. A schedule π is feasible if all activities can
be completed on their deadline without violating the time lag constraints in the POS and
the additional constraints resulting from π.

To verify whether schedules satisfy both the walking time and the deadline constraints, it
is sufficient to keep track of the (earliest) completion times of the schedules, which we denote
by ect(π). We compute this completion time of a schedule as

ct(πi) = ecti, (21)

ct(ππ
′→i) = max {ecti, ct(π′) + max{ωi′,i, di′,i}} . (22)

Staff schedule π ending with activity ai is feasible with respect to the walking time and
deadline constraints if activity ai and all its successors aj in the POS can be completed before
their deadlines. That is, the constraints ct(π) ≤ lcti and, for all j > i, ct(π) + di,j ≤ lctj are
satisfied.

While the walking constraints only affect consecutive activities in the schedule, the POS
can impose minimum time lag constraints on activities that are not direct successors in the
schedule. As a result, storing the earliest completion time of a schedule is no longer sufficient
if we want to determine whether the schedule satisfies the minimum time lag constraints as
well. Therefore, we extend our characterization of a schedule π with a vector ~ect(π) of the
earliest completion times of all activities aj with j ≥ i. With this vector we can propagate
the minimum time lag constraints in the schedule and check if the schedule violates a deadline
constraint. For any j > i, its earliest completion time with respect to the schedule is

~ect(πi)j = ectj , (23)

~ect(ππ
′→i)j = max

{
~ect(π′)j , ct(ππ

′→i) + di,j

}
, (24)

with the completion time of an extended schedule equal to

ct(ππ
′→i) = ~ect(ππ

′→i)i = max
{
~ect(π′)i, ct(π′) + ωi′,i,

}
. (25)

ATMOS 2020



12:14 Personnel Scheduling on Railway Yards

A schedule π with last activity ai satisfies all deadline, walking and minimum time lag
constraints if, for all j ≥ i, it holds that ~ect(π)j ≤ ectj .

The pricing problem can now be solved by selecting a feasible schedule π with minimal
cost. If the reduced cost of this schedule, which is −γ − cost(π), is greater than zero, then
the schedule is added to the restricted master problem.

We reduce the number of schedules that have to be evaluated in our dynamic programming
approach by applying a domination criterion. For two schedules π1 and π2 ending with
activity ai, if both cost(π1) ≤ cost(π2) and, for all j ≥ i, ~ect(π1)j ≤ ~ect(π2)j , then π1 is at
least as good as π2. This allows us to safely discard π2 in our dynamic program.

Although the domination criterion removes many redundant schedules, the number of
schedules evaluated in the dynamic programming approach can still become very large. To
efficiently find a schedule with positive reduced cost or determine that no such schedule
exists, we solve a relaxation of the pricing problem. In this relaxation, we only keep track of
the cost and the completion time of a schedule in our dynamic program, ignoring the earliest
completion time vector ~ect, and thus the minimum time lag constraints. By simplifying the
characterization of the schedules the number of potential non-dominated solutions is reduced
drastically. If the reduced cost of the optimal solution to the relaxed pricing problem is
non-positive, then the optimal schedule in the original pricing problem is non-positive as well.
Furthermore, if the optimal solution, or any other solution constructed in the relaxation, has
a positive reduced cost and is feasible with respect to the minimum time lag constraints,
then we can add it to the restricted master problem. In the case that the relaxed pricing
problem has solutions with positive reduced cost, but all are infeasible, then we have to solve
the original pricing problem to determine if there are any schedules that can be added to the
master problem.

When we cannot find any new staff schedule with positive reduced cost, then we solve
the restricted master problem to optimality. In the case that the optimal solution contains
fractional staff schedules, we search for an integral solution by branching on the fractional
properties of the solution. We identify a pair of activities (ai, aj) that appears as direct
successors in a fraction of the staff schedules in the optimal solution. Based on this pair we
create two branches: one in which we exclude all staff schedules in which ai directly precedes
aj , and another branch in which we exclude all staff schedules that contain ai or aj , but not
the direct precedence relation ai → aj . We then solve the pricing problem subject to this
constraint. In general we use a best-bound search to explore the nodes, and a depth-first
search if we have improved our best solution in a node.

A.2 Timestamp Model
In the timestamp model we do not model the completion times of the activities as decision
variables. Instead, we decide on the slack times si and the selection of staff schedules with
activity completion times zl, where

zl =
{

1 if staff schedule πl ∈ Πtime is chosen,
0 otherwise.

(26)

We denote for staff schedule πl ∈ Πtime

al =
{

1 if ai is in schedule πl
0 otherwise

cil = completion time of ai in schedule πl
sil = slack of ai in schedule πl.



R. van den Broek, H. Hoogeveen, and M. van den Akker 12:15

The master problem of the timestamp model can then be formulated as

max
∑
i

si s.t. (27)∑
k

ailzl = 1 ∀i (αi) (28)∑
k

cjlzl −
∑
k

cilzl − si ≥ Dij ∀i, j (βij) (29)∑
k

cilzl + si ≤ lcti ∀i (φi) (30)

si −
∑
k

silzl ≤ 0 ∀i (ψi) (31)∑
k

zl ≤ m (γ) (32)

zl ∈ {0, 1}, si ≥ 0. (33)

The model is similar to the formulation of the master problem of the sequence model presented
earlier. The exception is constraint (31), which ensures that the slack of activity ai does not
exceed the slack that ai has in the staff schedules. The objective of the pricing problem of
the timestamp model is to maximize

γ +
∑
i

αi +

φi +
∑

aj≺ai∈POS+

βji −
∑

ai≺aj∈POS+

βij

 ci − ψisi

 ai. (34)

Similar to the pricing problem of the sequence model, we can construct the staff schedules
by dynamic programming over subsequences of the priority list L = (a1, . . . , an). However,
the main difference of the two pricing problems is that we have to assign completion times
to the activities in the schedule as well in the timestamp model. Therefore, for each schedule
ending with activity ai, we have to label the completion time of ai in the state variables of
the dynamic programming algorithm to determine the optimal completion times. Due to the
large number of state variables, the pricing problem of the timestamp model requires more
computation time to construct solutions than the sequence model formulation. Therefore, we
expect that the sequence model will outperform the timestamp model.

ATMOS 2020


	Introduction
	Literature Overview
	Problem Description
	Solution Methods
	List Scheduling Policy
	Decomposition Heuristic
	Embedding in the Local Search
	Exact Formulations

	Experimental Setup and Results
	Conclusion
	Branch-and-Price Formulations
	Sequence Model
	Timestamp Model


