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Abstract
Planning a tourist trip in a foreign city can be a complex undertaking: when selecting the attractions
and choosing visit order and visit durations, opening hours as well as the public transit timetable
need to be considered. Additionally, when planning trips for multiple days, it is desirable to avoid
redundancy. Since the attractiveness of activities such as shopping or sightseeing depends on
personal preferences, there is no one-size-fits-all solution to this problem. We propose several realistic
extensions to the Time-Dependent Team Orienteering Problem with Time Windows (TDTOPTW)
which are relevant in practice and present the first MILP representation of it. Furthermore, we
propose a problem-specific preprocessing step which enables fast heuristic (iterated local search)
and exact (mixed-integer linear programming) personalized trip-planning for tourists. Experimental
results for the city of Berlin show that the approach is feasible in practice.
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1 Introduction

When planning a tourist trip to a foreign city, there are often many activities to choose
from. Selecting a subset of these, while keeping in mind their opening hours as well as
the alternatives to get from one point of interest (PoI) to the next, can be a daunting and
time-consuming task. Planning activities for multiple days (each day within a fixed time
horizon) is even more challenging because one probably wants to avoid redundancy.

Opening hours may have potentially zero (closed) to multiple different time windows
each day. While public statues and monuments can be visited anytime of the day, a special
place to enjoy the sunset should be visited when the sun goes down. Public transport
(containing regular as well as irregular services) is a popular option to move between PoIs.
Thus, the problem definition has to be time-dependent. In addition to time-dependent means
of transportation (public transit), many attractions are reachable by non-time-dependent
means of transportation such as walking.

While some PoIs, like a statue, can be experienced within minutes, others (like a zoo or
museum) can be entertaining for hours. Events like a theater or opera have a fixed start and
end time. Modeling these properties requires a duration dependent profit function for each
PoI. This profit function needs to be capable of enforcing a minimum required visit time

© Felix Gündling and Tim Witzel;
licensed under Creative Commons License CC-BY

20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2020).
Editors: Dennis Huisman and Christos D. Zaroliagis; Article No. 14; pp. 14:1–14:14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guendling@cs.tu-darmstadt.de
mailto:witzel@cs.tu-darmstadt.de
https://doi.org/10.4230/OASIcs.ATMOS.2020.14
https://github.com/motis-project/berlin-pois
https://github.com/motis-project/berlin-pois
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


14:2 Time-Dependent Tourist Tour Planning with Adjustable Profits

and be able to model a “saturation effect”. It should not only take into account the type of
PoI but also the personal preferences of the tourist: a family with children probably will not
want to spent the same amount of time at an art museum as an elderly person.

To realistically model PoIs, it is important to consider multiple locations for entries and
exits. The problem definition has to respect the time required to get from one entry/exit to
another. For example, a large zoo, park, or shopping street can have various entries where
each one can be reached with different public transport lines. Additionally, such areal PoIs
may contain further PoIs (like statues or famous shops, bars, cafes).

In this paper, we propose a mathematical formulation of the aforementioned problem in
the form of a mixed integer linear program (MILP). Furthermore, we present an iterated
local search (ILS) approach to solve the problem fast enough for practical planning purposes
(i.e. in a web-based or mobile planning service for tourists).

The remainder of this paper is organized as follows: Section 2 gives an overview over
related work. Section 3 outlines our contribution to the topic of realistic tourist trip planning.
In Section 4 we describe how we model the Time-Dependent Team Orienteering Problem with
Time Windows (TDTOPTW) with our problem specific extensions as a Mixed Integer Linear
Program (MILP). Section 5 contains a description of our approach to solve the problem. In
Section 6, we present the results of our experimental study with data from the city of Berlin.
Finally, Section 7 contains a conclusion and outlines ideas for future work.

2 Related Work

The (informal) problem description from Section 1 is close to the functionalities of the Next
Generation Mobile Tourist Guide (MTG) envisioned in [34], and can be formally defined
as a variation of the Orienteering Problem (OP) (also known as the selective traveling
salesman problem [24]) which is proven to be NP-hard [19]. There has been extensive
research regarding the OP and extensions thereof. In this section, we will discuss the general
algorithmic research regarding the OP as well as the literature that specifically deals with
tourist trip planning.

For a much more detailed overview of the state of the art, we refer to the mentioned survey
papers [17, 21, 33] as well as the recent textbook [31]. The first computationally feasible
mathematical formalization of the sport of orienteering [6] is given in [30]: participants have
limited time to visit predefined checkpoints starting and finishing at a specific control point.
Each checkpoint is associated with a score. The goal is to maximize the total score of all
visited checkpoints. From this basic problem definition, several variations evolved. In the
following, we will discuss those variants that are relevant for the problem introduced in
Section 1.

Optimizing multiple tours (each limited in time) with the requirement that every check-
point should still be visited only once is called the Team Orienteering Problem (TOP) which
was introduced in [7]. The restriction that checkpoints may only be visited within specified
time windows was first introduced in [5]. The multi-period OP with multiple (arbitrary) time
windows is presented in [29]; [27] shows an extension with extra knapsack constraints. The
combined problem is named (Team) Orienteering Problem with Time Windows (T)OPTW
which is closely related to the Selective Vehicle Routing Problem with Time Windows
(SVRPTW) [20]. The SVRPTW limits the vehicle capacity as well as the maximum distance
traveled. The Time-Dependent Orienteering Problem (TDOP) is presented in [12]. The
combination of the aforementioned problems is the Time Dependent Team Orienteering
Problem with Time Windows (TDTOPTW) which was first presented in [14]. As some PoIs
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require a specific continuous amount of time spent for the visit, this induces the OP with
Variable Profits (OPVP) which is studied in [11] and applied in [35] for the city of Istanbul
with 20 PoIs to maximize time at PoIs and minimize time spent to travel between PoIs.
However, the other extensions (time dependency, “team” version, time windows) are missing
here.

One of the practical applications of the OP besides vehicle routing is the Tourist Trip
Design Problem (TTDP). The basic OP can be regarded as the most simplistic TTDP
[33]. However, to model realistic tours, the variations described before are useful: the team
version to compute multiple tours with non-overlapping sets of activities, time-dependency to
support using public transport between points of interest, as well as time windows to consider
opening times of attractions. An overview of the latest research regarding the TTDP can
be found in [16, 21]. Most approaches used to solve realistic instances of the TTDP employ
heuristic algorithms such as evolutionary genetic algorithms [1, 3] ([1] was evaluated with
data of the city of Tehran; [3] was evaluated on 15 major cities in Iran – both employ a
shortest path routing routine as subroutine of the tour optimization), iterated local search
(ILS) [2, 13, 15, 32], or simulated annealing [25]. There are formulations in the form of a
Mixed Integer Linear Program (MILP) of some variations of the OP (e.g. the TDOP in [21]
and the OPVP [35]). The system proposed in [28] takes real-time information such as traffic
and queue length at the attractions (manually provided by administrators of the system)
into account.

3 Contribution

In this paper, we propose several realistic extensions to state-of-the-art variations of the
orienteering problem. These extensions are specifically relevant to compute practical solutions
when optimizing tourist trips. To the best of our knowledge, we present the first combination
of the TDTOPTW and the OPVP with arbitrary time windows. The profit functions
are personalized depending on the properties of each PoI as well as the preferences of the
respective tourist. Additionally, our formulation of the problem supports multiple entries and
exits for PoIs covering a widespread area. This is relevant in practice because especially for
large PoIs like a zoo or a park, each entry/exit may be served by different public transport
lines. Solutions computed by our approach respect the time required to walk from the
entry to the exit of the PoI. Existing models associate each PoI with exactly one geographic
coordinate which can lead to suboptimal routes in such cases.

We present the first Mixed Integer Linear Program (MILP) representation of the TD-
TOPTW with the aforementioned extensions. Furthermore, we present a iterated local search
(ILS) algorithm that solves the problem fast enough for practical purposes (e.g. as a backend
for a web-based or mobile app service for tourists). Approaches based on ILS have been
proven to be well suited to efficiently compute feasible solutions for the TDTOPTW and to
produce high quality results [2, 18, 32]. In our evaluation on data for the city of Berlin with
41 diverse PoIs we compare the results of the ILS-based approach with the results of a MILP
solver.

Visiting a park is worthwhile on its own. Therefore parks can be a PoI. However, parks
may as well contain more PoIs (e.g statues). Thus, our model also supports PoIs in parks or
other areal PoIs.

ATMOS 2020
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4 Modeling the Problem

4.1 Profit Function for Points of Interest
In this section, we define a generalized profit function which takes the visit time as input
and returns the profit gained when visiting the PoI for this amount of time. As mentioned
in Section 1, there are many different profit functions. Most PoIs require a certain amount
of time to achieve any profit. Then, the accumulation of profit will flatten out and finally
staying longer at a PoI will not yield any further profit. To model this behavior, we introduce
a piecewise linear function

p(t) =


0 t < tminvisit

pmin + (t− tminvisit) · ppt tminvisit ≤ t ≤ tmaxvisit

pmax tmaxvisit < t

where:
tminvisit is the minimum time a tourist needs to visit a PoI before profit can be gained
tmaxvisit is the maximum amount of time. Staying longer should not accumulate any
further profit.
pmin is the minimum profit a tourist gains when staying at least tminvisit at the PoI
pmax is the maximum profit a tourist can gain by visiting the PoI
ppt is the profit per time unit gained at the PoI after the minimum visit time is exceeded.
It can be calculated with the two points (tminvisit, pmin) and (tmaxvisit, pmax).

A movie theater would have pmin set equal to pmax to ensure the visit does not last
shorter but at the same time also not longer as the movie duration (plus some time buffer).
As the attractiveness of a PoI depends on the preferences of the user, we multiply the profit
values pmin, pmax with the preference value of the user for this PoI. For each category (e.g.
“shopping”, “museum” or “public monument”), the user rates their interest on a scale from
0 (not interested) to 10 (highly interested). Each PoI is tagged by at least one category.
The preference value of the user for each PoI is then calculated by dividing the sum of the
preference values given by the user for each category of the PoI by the total number of
categories of the PoI (as a normalization to not give weight to PoIs with multiple categories).

4.2 Mixed Integer Linear Program
In our definition of the MILP, we make use of the following notation. Inputs are noted
as capital letters, output variables are lower case. A “location” is used synonymously to
entry/exit of a PoI and is therefore associated with exactly one PoI. ` is used as an arbitrary
large number. As input variables we use:

P set of all PoIs
M set of all tours

Nm set of all locations for tour m

Zip 1 if location i belongs to PoI p, otherwise 0
Tm set of all discrete timeslots for tour m

Twalk
ij walking duration from location i to j

T travel
ijt travel time from location i to j departing in timeslot t

T slot
t starting time of timeslot t
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T start
m starting time for tour m

Tmax
m time limit for tour m

Fi(x) profit function for location i

Pmax
i maximum profit at location i

Pmint
i minimum visit time at location i

Wim set of time windows for location i and tour m

O/Ciwm opening/closing time for location i, tour m, time window w

As output variables we use:

pim profit accumulated at location i in tour m

yijmt location i is left to location j in timeslot t for tour m

xpm number of visits to PoI p in tour m

tpoi
im time spent visiting location i in tour m

sim arrival time at location i in tour m

jim helper variable for our piecewise linear profit function
giwm helper variable for modeling multiple time windows

We define the objective function as: max
∑

m∈M

∑
i∈Nm

pim which sums up the profit
gained over all PoIs in all tours. The profit is 0 if the PoI is not visited on the tour. Otherwise,
the gained profit is the value of the profit function defined in Section 4.1. Locations 1 and N

are the starting and ending point provided by the user. These may differ for each tour. All
other locations are fixed. Constraint 1 ensures that the first location is left exactly once and
the last location is reached exactly once:∑

j∈Nm

∑
t∈Tm

y1jmt =
∑

i∈Nm

∑
t∈Tm

yiNmt = 1 : ∀m (1)

To ensure that every PoI is entered at most once and left the same number of times (i.e.
once or not at all), we introduce the following constraints (yijmt ·Zjp connects locations used
in y with their PoIs in p):∑

i∈Nm

∑
j∈Nm

∑
t∈Tm

yijmt · Zjp =
∑

i∈Nm

∑
j∈Nm

∑
t∈Tm

yijmt · Zip = xpm : ∀m, ∀p (2)

M∑
m=1

xpm ≤ 1 : ∀p, (3)

As we allow for entering and leaving PoIs at different locations, we introduce the following
constraint to ensure that the minimum walking time between the two locations of the PoI is
taken into account. The product of Zkp · Zip · Twalk

ik yields 1 only for locations of the same
PoI.

(1−
∑

l∈Nm

∑
t∈Tm

yklmt −
∑

x∈Nm

∑
t∈Tm

yximt) · Zkp · Zip · T walk
ik ≤ tpoi

i,m∀i, k, p, m (4)

The following constraint ensures that each tour duration is limited to Tmax
m given by the

user. The duration of each tour is the sum of the time spent at PoIs and the time required

ATMOS 2020
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to travel between PoIs. The time at the last location of the tour (e.g. the hotel) should be
smaller than the sum of the start time and the maximum travel time.

sNm ≤ T start
m + Tmax

m (5)

The following constraints are needed to ensure that the correct departure time is used at
each PoI - i.e. the PoI is left after the visit is finished (and not before). Both constraints are
automatically fulfilled by the right hand side (given any big number M), if the corresponding
y variable is 0 or in case of Constraint 6 if locations k and i do not belong to the same PoI.

sim + tpoiim ≤ T slot
t + `(1− ykjmt · Zip · Zkp) : ∀i, j, k, p, m, t (6)

T slot
t + T travel

ijt ≤ sjm + `(1− yijmt) : ∀i, j, m, t (7)

To ensure that the time-dependent travel times between PoIs are respected, the following
constraint is required. This constraint is automatically fulfilled by the right hand side (given
any big number `), if either k is never left towards j or if k and i are not locations of the
same PoI.

sim + tpoiim + T travel
kjt − sjm ≤ `(1− ykjmt · Zip · Zkp) : ∀i, j, k, p, m, t (8)

To model the profit function for each location, we use the following constraints. We
introduce j as helper variable which (due to Constraint 11) is 1 iff the visiting time is less
than the minimum visit duration. Therefore, Constraint 13 forces the gained profit to be 0 if
this is the case.

pim ≤ Fi(tpoiim ) + `jim ∀i, m (9)
pim ≤ Pmax

i xim ∀i, m (10)

tpoi
im + `jim ≥ Pmint

i ∀i, m (11)
pim ≥ 0 ∀i, m (12)
pim ≤ `− `jim ∀i, m (13)

To model multiple time windows per PoI/location and ensure that every visit of a PoI
takes place within a time window of this respective PoI, we introduce the following constraints.
Constraint 14 ensures, that a visit sim at location i in tour m starts after an opening time
Oiwm (w is the index of the specific time window) whereas Constraint 15 does this analogously
for closing times. Constraint 16 ensures only opening and closing times of the same time
window are matched by introducing variable giwm. Thus, either index i in Oiwm and Ciwm

matches or Constraints 14 and 15 are always true

Oiwm · giwm ≤ sim ∀i, w, m (14)
sim ≤ Ciwm + `(1− giwm) ∀i, w, m (15)∑

w∈Wim

giwm ≤ 1 ∀i, m (16)

Finally, we set the starting location and ensure positive visit times through the following
constraints:

s1m = T start
m (17)

tpoi
im ≥ 0 ∀i, j, m, t (18)

This form is suitable for MILP solvers and was programmed in Gurobi [23] for the experimental
study of this paper presented in Section 6.
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5 Approach

In this section, we will describe the preprocessing required to deliver real-time response
times for user queries as well as different heuristic approaches to solve the problem defined
mathematically in Section 4.2.

5.1 Preprocessing
Like in [14], we use an offline preprocessing step which does not have real-time requirements.
We precompute intermodal time-dependent shortest paths for public transport and walking
connections from every location to every other location for every timeslot. Our routing is
based on [22]1 and respects realistic transfer times, allows for walking between stations, and
does not assume periodicity of the timetable. We use a realistic pedestrian routing based on
OpenStreetMap data for the path between the PoI location and the next public transport
stop. Therefore, we precompute shortest paths from every PoI location to every public
transport stop and vice versa.

The fact that most shortest path algorithms for public transit routing (like RAPTOR
[8], Connection Scanning [9], and all graph-based Dijkstra variations like [10]) are inherently
computing shortest paths to all targets at the same time, can be exploited here. Here, each
shortest path problem is independent from every other shortest path problem. Thus, this
task is perfectly suited to be carried out in parallel.

The result is a time-expanded directed acyclic event-activity graph where every node
is either an arrival or a departure at a PoI location (in a discrete timeslot). Arrivals and
departures at the same location are connected by visit edges. To model entering and leaving
a PoI at different entries/exits, arrivals and departures at different locations of the same PoI
are connected by intra edges. Intra edges and inter edges need to conform to the computed
walking durations and travel times respectively. Visit edges and intra edges are only created
for visit times greater or equal the minimum visit time specified for the respective PoI profit
function. Finally, inter edges connect departure and arrival nodes of different PoIs.

Start and end location are both provided by the user. Thus, these can either be limited
to a set of known hotels and public transport stations where tourists typically start their
trip, which allows us to include them in the preprocessing. If this is not an option, four
additional queries need to be carried out online at query time: from the start location to
every location, using the start time as earliest departure time (forward search one to all)
and to the last location from every location, taking the start time plus the maximum trip
time as latest arrival time (backward search all to one). These two queries need to be done
for the pedestrian routing (to all locations and public transport stops) as well as the public
transport routing (initiating the labels with the results from the pedestrian routing). Both,
forward and backward direction can be computed in parallel. These nodes and edges are
added to the event-activity graph.

5.2 Heuristic Algorithm
To supplement computing solutions to problem using a MILP solver (which is time-consuming
as discussed in the Section 6), we develop heuristic algorithms: as a baseline, we present a
Basic Greedy Algorithm (BGA) and an Advanced Greedy Algorithm (AGA). As outlined in
Section 2, Iterated Local Search (ILS) based approaches were able to compute high-quality

1 The latest version is available as Open Source Software at https://motis-project.de/
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results in real-time. Therefore, we decided to implement an ILS approach to solve the
problem at hand on the graph described in Section 5.1. We present our Basic Iterated Local
Search (BILS) as well as our Specialized Iterated Local Search (SILS).

5.3 Basic Greedy Algorithm
This algorithm solves the problem sequentially, building a tour from start to end by adding
one greedily chosen activity at a time. For each expansion, the BGA has to choose the next
PoI, a visit time, and a location to exit the PoI at. This can be done efficiently on the
event-activity graph described in Section 5.1. To compute valid tours where no PoI is visited
twice, the algorithm has to keep a set of already visited PoIs and prevent expansions which
would result in revisiting PoIs which were already visited. This set is kept for all tours that
will be planned. Additionally, the algorithm requires a “dead-end protection”: there are PoIs
from where it is not possible to reach the end location within the maximum tour duration.
To prevent this, the graph can be pruned by removing nodes that have no transitive path to
the end location. A backward BFS starting from the end location nodes can mark all feasible
nodes. Nodes not marked within this run are omitted in the expansion step of the BGA.
Another solution would have been to introduce a backtracking step if the algorithm visited a
dead-end. The BGA chooses the next PoI based on a weight function p/(w·Ttravel+Tvisit) where
w controls the influence of the travel time. Note that this algorithm greedily selects only
steps that look locally promising. However, a globally optimal solution may contain steps
which will not be chosen with any w value.

5.4 Advanced Greedy Algorithm
To improve upon the BGA, the AGA also makes (locally) suboptimal steps and keeps a list
of multiple active solutions. The basic properties of the BGA (duplicate PoI prevention and
dead-end protection) stay the same. However, it makes multiple expansions in each step -
each one with a different value for w. After each complete step, it cuts off all solutions with
a lower profit per time duration than the best solution times the cutoff threshold. A high
cutoff threshold implies many cut off paths and therefore a better computing time but also
a decreased chance to find better solutions (i.e. paths from the start location to the end
location in the event-activity DAG). A cutoff threshold of zero combined with a unlimited
list of active solutions would result in listing all feasible solutions. This would yield the
optimal solution but is not feasible in practice for realistic problem instances.

5.5 Basic Iterated Local Search
A ILS basically uses a Local Search to find a local optimum. After that, the local optimum
is perturbed sufficiently enough to be able to escape the previous local optimum and find
a local optimum. The algorithm terminates if the Local Search cannot find a new local
optimum after a certain number of perturbations.

In our case, the search can be either seeded with an empty route (respectively multiple
empty routes if we are planning more than one tour) from start to finish (without visiting
PoIs) or the result of one of the previously described greedy algorithms. We define our
neighborhood for the local search step as all solutions which can be produced by integrating
a visit to a new PoI while still keeping the solution feasible. All existing visits keep their
arrival and departure time. We decide to insert always the (locally) best PoI visit (i.e. the
PoI which has the best profit per time including travel time) using the maximum visit time.
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This will be done until it is not possible to add yet another PoI. The perturb step removes a
varying number of PoI visits from the current solution. The remaining PoIs are then shifted
forward in time (i.e. towards the start of the route) as much as possible. The number of
removed PoI visits is incremented (to improve the chance to find a new local optimum) if
the new solution is equal or worse (regarding the profit value) than the previous solution.

5.6 Advanced Iterated Local Search

Since the previously presented heuristic algorithms always select the maximum visit time (by
locally optimizing the profit value), it would be interesting to introduce options to lengthen
(in the local search) or shorten (in the perturb step) a visit at a PoI. We add options to
extend the visit of a PoI to the Local Search neighborhood. This is done by moving the
arrival time to an earlier point in time or by moving the departure time to a later point in
time. The visit time is extended by 5 minutes in each step. Since the extension step is called
repeatedly, the algorithm should eventually be able to find new optima. The perturbation
step is now capable of shortening all PoIs from the front or back. As previously noted, only
feasible solutions are allowed as Local Search and perturbation step result. Still, the best
neighbor is chosen and the Local Search step continues until the neighborhood does not
contain any improvement.

6 Experimental Results

In this section, we will present the results of our experiments. As MILP solver, Gurobi [23]
was used and executed on a computer with an Intel® Xeon® CPU E3-1245 V2 processor
(3.4GHz) and 32 GB of RAM. Everything else was run on a computer with an Intel® Core®

M i3-5005U processor and 8 GB of RAM. The greedy and ILS algorithms are implemented
in C++.

The test instance are 41 hand-picked PoIs in Berlin from various categories with manually
researched opening and closing times 2. The main categories were defined as “Museum”,
“Monument”, “Panorama”, and “Experience”. More details can be derived from the theme
category “Art”, “Nature”, “History”, “Famous”, and “Shopping”. Each PoI can have multiple
categories. It is also possible for a tourist to set a high preference value for only a single
category - e.g. if they are interested in a tour of famous landmarks of the city of Berlin (e.g.
the Brandenburger Tor, pieces of the Berlin Wall, etc.). This could also be used to generate
interesting ideas for theme tours for so called “Hop-On Hop-Off” buses (albeit with a street
routing algorithm to generate the event activity DAG).

We manually picked 25 different queries covering a diverse set of combinations of maximum
duration (between 2-10 hours), number of tours (one or two) with four possible start and
end locations. We chose to evaluate the algorithms with a balanced profile as a single high
preference value for one category eliminates all but a few PoIs which produces unvaried tours
and makes the problem much easier to solve. This would not make for a good benchmark.

The timetable for the city of Berlin was kindly provided by Deutsche Bahn for research
purposes.

ATMOS 2020
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Table 1 Preprocessing Computation Times.

Preprocessing Step Computing Time
Data Initialization 46 ms
Calculating Walk Times between PoIs 11.5 min
Calculating Travel Times between PoIs 2.5 min
Building Event-Activity DAG 6,6 s
Precomputing Paths for Query Positions 3.5 min
Integrate Query Data 12 ms
Total 15 min 23 s

Table 2 Graph Information for Different Granularity Settings.

Granularity 1 min Granularity 5 min Granularity 10 min
Arrival Nodes 81,452 67,963 58,815

Departure Nodes 88,470 17,694 8847
Inter Edges 9,382,766 1,877,691 939,597
Visit Edges 5,130,816 929,892 438,198
Intra Edges 4,044,902 727,959 329,015

Preprocessing

In Table 1, we report the time it takes to finish the preprocessing step described in Section 5.1.
The total duration (approximately 15min) is in a range where the preprocessing can even be
repeated with minimal effort when the timetable or pedestrian routes change.

Table 2 shows the size of the event-activity DAG for different granularities of the timeslots.

MILP Solver

We ran every query with the MILP solver for 10 hours each. The solver was seeded with
the best greedy solution. For the simplest query (a two hour tour), the solver did find an
optimal solution. For all other queries, the solver provided the best solution known so far as
well as an upper bound for the profit of the best solution possible. The difference between
the upper bound and the currently known best solution ranges between 6% and 20%.

Greedy Algorithm

The BGA from Section 5.3 was evaluated using 13 different travel time weights (0-10, 15,
and 20). In general, extreme travel time weights such as 0, 15, and 20 performed badly as
it is not reasonable to chose only very close PoIs or only high profit PoIs (ignoring travel
time completely). For long tours, lower travel time values seem to outperform higher values
whereas for short tours, the opposite is the case. This makes sense because for short tours,
long travel times leave not much time for the actual visits. Therefore, it could be useful to
select the travel time weight depending on the tour length. The BGA from Section 5.3 takes
about 2-4ms to complete. Comparing the result with those from the MILP solver, we see
that the MILP solver consistently outperforms the BGA by 5-10 pp. For one query, the gap
is even 16 pp. The gap is especially high for queries with long maximum travel times or even
multiple tours because the solution space increases drastically.

2 The data is freely available at https://github.com/motis-project/berlin-pois.

https://github.com/motis-project/berlin-pois
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Figure 1 Improvement over Gurobi Results for the Combined Algorithms: the highest profit
solution in blue and the highest solution which can be computed in real-time in red.

The AGA from Section 5.4 was tested with different numbers of active solutions (100,
1.000, 10.000), different cutoff thresholds (0.25 and 0.5) as well as different numbers of chosen
candidates (1, 3, 5). This yields 18 variations which we supplemented with one further
combination: 100.000 active solutions, cut-off threshold 0.5 and 3 chosen candidates. The
best solutions were found with the latter parameterization (15 times), closely followed by
10.000/0.25/5 (active solutions / threshold / chosen candidates). The best configuration
with 1.000 active solutions was 1.000/0.25/5 which produced the best known solution in 12
cases. The main driving factor for the processing time is the number of active solutions: the
AGA takes around 1 second for 100 solutions, 10 seconds for 1.000 solutions, 50 seconds
for 10.000 solutions, and 500 seconds for 100.000 solutions. The other parameters do not
influence the processing time significantly. Comparing the AGA with the MILP solver, the
solver still outperforms the result quality of the greedy algorithm by a huge margin of up to
15 pp. Interestingly, for five queries, the AGA was able to compute slightly better solutions
(2-3 pp) than the MILP solver (which was halted after 10 hours).

Iterated Local Search

The BILS presented in Section 5.5 was not able to improve upon the seeds from the best
greedy algorithm except in one case, where the profit was marginally improved (from 1231
to 1235 profit). As the best greedy algorithms are also very slow, we differentiate more
between the different greedy algorithm parameterizations and observe that the BILS is quite
capable of improving upon bad seeds from extreme travel time weights (0, 15, and 20) for
the BGA. Although the improvement upon the highest quality seeds is marginal, the BILS is
nonetheless interesting due to its fast computation times averaging around 1.5 seconds.

The AILS described in Section 5.6 was not able to improve upon the previously known
best solutions of our heuristic algorithms except for a slight improvement for one query (1402
to 1403). Compared with the basic ILS, the query runtime of 5 seconds on average does not
yield a worthwhile benefit.

ATMOS 2020
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Overall Comparison

Figure 1 shows an overall comparison of the heuristic algorithms with the best solution found
by the MILP solver after 10 hours. For simple queries (1-5), the solutions do not differ much.
However, there are queries where the best solution found by a heuristic algorithm is not even
close (more than 10 pp difference) to the solution found by the solver. Interestingly, in some
cases, the heuristic algorithms were able to find slightly better solutions (2-3 pp) in some
cases.

Granularity Analysis

Previous instances were reported with a 5 minute granularity for timeslots. Now, we also
vary the granularity and test the values 1 minute, 5 minutes, and 10 minutes. The results
show a strong correlation between query runtime and granularity: computing results with a
one minute granularity takes about 5 times as long as for the 5 minute granularity while at
the same time, the 10 minute granularity made the processing about twice as fast as the 5
minute granularity. The profits for the 1 minute granularity only improve between 0.5 pp to
1 pp (depending on the query) compared to the 5 minute granularity. However, the increase
of profit value from the 10 minute granularity compared to the 5 minute granularity ranges
from 0.5 pp to 5 pp. All in all, the 5 minute granularity seems to be a good trade-off between
result quality and processing time.

7 Conclusion and Future Work

In this paper, we presented several realistic extensions to the previously known definition of
the TDTOPTW (a variation of the TTDP) to make tourist trip planning more feasible in
practice and combine the TDTOPTW with the OPVP to account for variable personalized
PoI profit functions. For instance, the problem definition presented in this paper supports
multiple entries and exits for each PoI. We presented the first MILP modeling of the
TDTOPTW including the described realistic extensions. The approach is split into two
phases: the preprocessing phase has no real-time requirements and computes a time-expanded
event-activity DAG by routing optimal public transport and walking connections from every
PoI entry/exit to every other PoI entry/exit at every time with different granularity (here,
we used 1, 5, and 10 minutes). This allows for efficient trip planning at query time and
eliminates the need for repair steps as required by most previous approaches.

As the MILP solver takes quite long with the current definition, an interesting research
direction would be to search for ways to improve the representation in order to solve the
problem online in real-time.

In the future, the system could be extended to support adaptions of the profit functions
of PoIs depending on the weather forecast (i.e. prefer indoor activities for rainy days).
Additionally, the tour can be split further into smaller parts to allow for lunch and/or dinner.
Note that both of these extensions neither require any adjustment of the MILP nor any
changes to the ILS algorithm but can be encoded into the input. Furthermore, the algorithm
described and implemented in this paper could be used as a backend service for interfaces
presented in [4]. Combining our approach with [26] to guess preferences based on previous
ratings and activities can make for an even more satisfying tourist experience.
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