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Abstract
The BahnCard problem is an important problem in the realm of online decision making. In its
original form, there is one kind of BahnCard associated with a certain price, which upon purchase
reduces the ticket price of train journeys for a certain factor over a certain period of time. The
problem consists of deciding on which dates BahnCards should be purchased such that the overall
cost, that is, BahnCard prices plus (reduced) ticket prices, is minimized without having knowledge
about the number and prices of future journeys. In this paper, we extend the problem such that
multiple kinds of BahnCards are available for purchase. We provide an optimal offline algorithm,
as well as online strategies with provable competitiveness factors. Furthermore, we describe and
implement several heuristic online strategies and compare their competitiveness in realistic scenarios.
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1 Introduction

The original BahnCard problem [4] was inspired by the the railway pass system of the German
railway company. Buying a so called BahnCard 50 railway pass at the cost of 255e entitles
the holder to a 50% price reduction on all train ticket purchases in Germany within the next
year. Similar railway pass systems exist in many other countries as well. The BahnCard
problem consists of deciding on which dates a BahnCard should be purchased in order to
minimize the overall cost for train journeys (including BahnCard prices and ticket prices). In
the offline version of the problem, the stream of future journeys is known in advance. In the
more interesting online version of the problem, one only has knowledge about past journeys
but cannot foresee the future. The main goal is to come up with strategies for the online
problem variant such that the so called competitiveness factor, the ratio of the resulting cost
when using said online strategy and the best achievable cost of the corresponding offline
problem, is as small as possible.

A BahnCard BC can be formally defined as a triple (C, T, β) where C denotes the
BahnCard purchase cost, T the validity period (in days) and β ∈ [0, 1) the price reduction
factor for train tickets (a ticket with an original price of p costs β · p if the BahnCard is valid
on the journey date). The BahnCard 50 (BC50) mentioned above can hence be described as
(255, 365, 0.5). A BahnCard 25 (BC25) would be expressed as the triple (62, 365, 0.75). The
BahnCard problem is an archetype of an online problem with a multitude of applications
(e.g. TCP acknowledgment batching). It is also a generalization of the so called ski-rental
problem, where one has to decide whether to rent skis for a certain price per day or to buy
(unbreakable) skis at some point. In [4, 6], it was shown that there exists a deterministic
online strategy for the BahnCard problem which achieves a competitiveness factor of (2− β),
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and an e/(e− 1 + β) competitive randomized online strategy (with matching lower bounds
for both). Hence for β = 0.5, the expected online cost is only 1.2255 times the optimal offline
cost although the online strategy can only utilize incomplete information.

Several extensions of the BahnCard and the ski-rental problem have been proposed in
the literaure to model complex real-world scenarios better. In this paper, we introduce the
multi-kind BahnCard problem where instead of a single BahnCard we have the choice between
k BahnCards (with different costs and price reduction factors). Note that in Germany, there
are currently three types of BahnCards available for purchase and hence strategies for the
original BahnCard problem are not suitable to obtain sensible solutions.

In the following, we study the multi-kind BahnCard problem from a theoretical and
practical perspective.

1.1 Related Work
In the original introduction and discussion of the BahnCard problem [4], the BahnCard was
assumed to have no expiration date. In that paper, the above mentioned competitiveness
factors of (2−β) and e/(e−1+β) for a deterministic and a randomized strategy were proven,
respectively. In [6], it was shown that the same competitiveness results (and matching lower
bounds) hold if the BahnCard has a finite expiration date. In [1], risk-reward competitive
strategies were discussed, where an agent makes a forecast about his upcoming journeys
and – depending on a chosen risk level – is rewarded if that forecast is correct. The model
was further extended in [2], where risk and also interest rates were considered. In [3], a
problem variant with two kinds of BahnCards was studied. There, not all BahnCards are
available at the same time, though, but the second BC (with a better price reduction factor)
is introduced later. For this very restricted scenario an optimal 2− β2

β1
deterministic strategy

was presented. Note that this model differs significantly from the model that we study, as in
our case the BahnCards are all available for purchase at the same time and our model also
allows for more than two BahnCards.

The ski-rental problem is a special case of the BahnCard problem. Here, the online
problem is to decide for each day whether renting skis for a certain fee is sensible or whether
skis should be bought at a given fixed price. As the skis are deemed unbreakable, there are
no more decisions to make once they are purchased. This is one of the main differences to the
BahnCard problem, where BahnCards expire over time and the decision when to buy a new
one has to be answered repeatedly. The other difference is that in the ski-rental problem the
price reduction factor can only be β = 0 as after the skis are purchased no rental fees occur
at all. The BahnCard problem offers more flexibility as any β-value in [0, 1) is possible there.
The original ski-rental problem was proposed in [8] in the context of caching in multiprocessor
systems. There, a simple optimal 2-competitive deterministic strategy was presented. In
[7], an optimal randomized strategy was designed with a competitiveness factor of e/(e− 1).
The multi-slope ski-rental problem is an extension where one has the choice between buying
skis as well as several lease options (e.g. after an initial fee of 100e, the skis can be leased
for 10e per day) which makes the problem more similar to the BahnCard problem. An
e-competitive online randomized strategy for this problem was presented in [9]. In [10], the
ski-rental problem with k discount options was discussed (the longer the rental duration
the larger the discount) and a 4-competitive deterministic online strategy was described.
Moreover, it was proven that no deterministic algorithm can have a smaller competitiveness
ratio for sufficiently large choices of k. An alternative analysis for the ski-rental problem
was conducted in [5], where not the worst case competitiveness ratio but the average-case
competitiveness ratio was considered.
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1.2 Contribution
We introduce the multi-kind BahnCard problem which is a generalization of the classical
BahnCard problem, and establish the following results:

We present an efficient graph-based algorithm for computing the optimal solution for the
offline problem variant, where the stream of future journeys is known in advance. This
enables us to experimentally evaluate the quality of online strategies.
In our theoretical analysis, we determine the competitiveness factors of three online
strategies. We show that there indeed exists a simple deterministic strategy that has
bounded competitiveness. (For example, for the BahnCards currently available in Ger-
many, the strategy is 4-competitive.)
We motivate and design several other deterministic and randomized online strategies,
and compare them in an experimental study. In our experiments, we consider real-world
BahnCards as well as artificial settings with up to k = 10 BahnCards. Furthermore, we
model different passenger profiles (e.g. commuter, business traveller) and empirically
determine the best online strategy for each of them.

2 Formal Problem Definition

In an instance of the multi-kind BahnCard problem, we are given k BahnCards BCi =
(Ci, T, βi) for i = 1, . . . , k where Ci ∈ R+ is the individual purchase price and βi ∈ [0, 1)
the ticket price reduction factor within the validity period T ∈ N. We assume Ci ≥ 1 for
i = 1, . . . , k, that is, BahnCards can not be arbitrarily cheap. Note that in compliance with
the current standard real-world BahnCards and for ease of exposition, we assume that all
BahnCards BC1, . . . BCk have the same validity period T (in days). W.l.o.g we assume that
Ci < Ci+1 and βi > βi+ 1. This can safely be assumed for uniform T as any BahnCard for
which another BahnCard with lower or equal cost and an equal or lower reduction factor
exists would never be a sensible purchase option.

The train journeys are given as a stream σ = σ1, . . . , σn, each represented by a tuple
σj = (tj , pj), j = 1, . . . , n where tj ∈ N denotes the departure date and pj ∈ R+ the price.
Again we assume pj ≥ 1 to exclude arbitrarily cheap journeys. We always assume that
tj < tj+1 holds, as multiple journeys on the same day can simply be accumulated into a
single one by summing up their prices.

The multi-kind BahnCard problem then consists of deciding which kinds of BahnCards
should be purchased on which dates. Hence the output is a set of tuples {(τ1, id1), . . . , (τl, idm)}
where τi ∈ N is the purchase date and idi ∈ {1, . . . , k} the index of the respective BahnCard.
The induced costs are the summed costs for purchasing the chosen BahnCards

∑m
i=1 Cidi

plus the summed (reduced) journey prices. We say a BahnCard BC is valid at time t if it was
purchased on date τ and t ∈ [τ, τ + T − 1] where T is the validity period of that BahnCard.
Accordingly, a journey σj with price pj induces a cost of pj if there is no valid BahnCard at
the departure date tj . Otherwise, let Bt ⊆ {1, . . . , k} be the set of BahnCards valid at time
t. Then journey σj has an induced cost of mini∈Bt βipj . That means, BahnCard reduction
factors do not stack but the reduced price is determined by the valid BahnCard with the
best reduction factor (as it is the case for real-world BahnCards as well).

In the offline multi-kind BahnCard problem, the journey stream is known in advance. In
the online multi-kind BahnCard problem, at any date t only the journeys j with tj ≤ t are
known and the decision about buying or not buying a BahnCard (and which kind) on this
date has to be made solely based on the known prefix of the journey stream and the past
BahnCard purchase decisions.

ATMOS 2020
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3 An Optimal Offline Algorithm

In the offline problem variant, the dates and prices of all upcoming journeys are available in
advance which allows to make fully informed decisions.

3.1 Graph-Based Algorithm for the One-Kind BahnCard Problem
For the classical BahnCard problem with only a single BahnCard (C, T, β), a graph-based
approach to deduce the best offline algorithm for any journey stream σ was described in [4].
The weighted journey-graph G(V,E) is constructed as follows. Each journey σj is represented
as a node vj ∈ V for j = 1, . . . , n. Furthermore, a dummy node vn+1 is introduced with
a corresponding dummy date tn+1 = ∞. Then consecutive journeys in the stream are
connected via directed edges in G; more precisely the edges (vj , vj+1) are contained in E for
j = 1, . . . , n with cost pj , respectively. To model the option to buy a BahnCard on every
date on which some journey happens additional edges are introduced. Observe that it does
never make sense to purchase a BahnCard on a date without a journey, as then shifting the
purchase to the next upcoming journey would allow to use the respective BahnCard further
into the future without increasing any costs. A BahnCard purchased on the departure date
tj of journey σj is valid up to date tj + T − 1. Let σq>j be the journey with the earliest
departure date that does exceed tj + T − 1, then the edge (vj , vq) with costs C +

∑q−1
l=j β · pl

is added to E. As for every journey node there are now two outgoing edges (one modelling
to not buy a BahnCard on the respective departure date and the other to buy it), the total
graph size is in O(n). The cost of a shortest path from v1 to vn+1 in this graph then equals
the optimal cost achievable for the offline BahnCard problem. As the graph is a directed
acyclic graph, this shortest path can be computed in linear time in the number of journeys.

3.2 Extension to Multi-Kind BahnCards
What changes if k different BahnCards are available for purchase? We make the following
crucial observation: In a solution for the multi-kind BahnCard problem, it can be optimal to
purchase a BahnCard while another BahnCard is still valid. An example is given in Table 1.

Note that this is a significant difference to the one-kind BahnCard problem, where it
never makes sense to purchase a new BahnCard before the old one expired. Accordingly,
it is not enough to simply extend the above described graph by one edge per journey and
BahnCard type. Instead, we also have to insert edges that model the decision to let a valid
BahnCard be replaced by a better one. For this purpose, we add for all BahnCards BCi for
i = 1, . . . , k and all journeys σj an edge (vj , vq>i) to all nodes where tq ∈ [tj + 1, tj + T − 1]
and to the first node where tq > tj + T − 1 with costs Ci +

∑q−1
l=i βi · pl, respectively. Note

that this introduces parallel edges of which of course only the cheapest one has to be kept in
the graph. Furthermore note, that for the BahnCard BCk with the best reduction factor,
it indeed never makes sense to buy another BahnCard before this one expires. Therefore,
for this BahnCard only the edges as described for the one-kind BahnCard model have to
be added. This makes our approach a valid generalization of the graph construction for the
one-kind BahnCard problem, i.e. for k = 1 we get the same graph as described in [4]. But
we can now deal with arbitrarily large values of k as well. In Figure 1, the graph for the
example discussed in Table 1 is shown before and after edge pruning.

In the worst case, graph construction takes O(kn ·min{T, n}) time and the number of
graph edges is in O(n ·min{T, n}) after pruning parallel edges. The latter is then also the
time to compute the shortest path.
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Table 1 Example with two BahnCards and three journeys. The optimal solution is to first buy
BC1 on date 1 and then BC2 on date 300, which induces a total cost of 10 + 0.75 · 60 + 100 + 0.25 ·
1000 + 0.25 · 1000 = 655. Note that at the moment BC2 is purchased, BC1 is still valid.

Ci Ti βi

BC1 10 365 0.75
BC2 100 365 0.25

σ1 σ2 σ3

(1,60) (300,1000) (400,1000)

60 1000 1000

55 760 760

805 1510

115

365

350 350

600

55 760

365

350

600

Figure 1 Graph visualization for the example instance described in Table 1. In the upper image,
the thick black edges represent the individual journeys with their original prices. The blue edges
encode the possibilities to buy BC1 including edges that model premature expiration. The green
edges encode the respective possibilities for BC2. In the lower image, the pruned graph is shown.
Firstly, all edges which encode premature expiration of BC2 were discarded, as for the BahnCard
with the best reduction factor those are not necessary. Secondly, among the remaining parallel edges,
all but the cheapest one were discarded. The shortest path from the leftmost to the rightmost node
(with a cost of 655) is depicted in red.

4 Online Strategies with Provable Competitiveness

In this section, we will analyze three online strategies and investigate their competitiveness
with respect to the optimal offline solution. As the competitiveness usually depends on the
characteristics of the available BahnCards (similarly to the one-kind BahnCard problem), we
will discuss the implications of our results considering the real BahnCards currently available
in Germany. Their characteristics are summarized in Table 2.

For the standard BahnCard problem, the deterministic strategies ALWAYS, NEVER and
SUM were analzed in [4, 6]. The ALWAYS strategy is to buy a BahnCard whenever there is
a journey on the current date but the last BahnCard already expired. The NEVER strategy
is to never buy a BahnCard. The SUM strategy is to sum up the ticket prices of the journeys
until they exceed a certain theshold and to then buy a BahnCard. We will now consider
generalizations of these strategies for the multi-kind BahnCard problem.

ATMOS 2020
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Table 2 Characteristics of German BahnCards.

C T β

BC25 62 365 0.75
BC50 255 365 0.50
BC100 4395 365 0.00

4.1 Always-Top-Algorithm
The Always-Top-Algorithm (AT) always buys the BahnCard BCk (which has the best
reduction factor βk) if there is a journey on the current date but there is no valid BahnCard
at this moment.

I Lemma 1. The AT-algorithm is Ck + 1 competitive.

Proof. Let σ be the stream of journeys and let an interval I = [tj , tq] denote a time
period such that the AT algorithm bought a BCk at time tj , and the journey q is the
departure date of the last journey which is still within the validity period of that purchased
BahnCard. The induced costs of the AT algorithm in interval I can hence be expressed as
cIAT = Ck + βk ·

∑
tj∈I pj .

If the optimal offline solution also purchases a BCk somewhere within I, then cIAT ≤ cIOPT
holds. For the worst case analysis, we hence assume that the optimal strategy does not
include the purchase of BCk in I, but either the purchase of other BahnCards with a smaller
reduction factor or no BahnCard purchase at all. The competitiveness can be expressed as
Ck
cI
OPT

+
βk·
∑

tj∈I
pj

cI
OPT

. We observe that the second term cannot be bigger than 1 as the optimal
solution does only achieve a reduction factor ≥ βk−1. The first term cannot become larger
thank Ck as the denominator CIOPT either contains the purchase cost of a BahnCard or an
unreduced ticket price, and hence cannot be smaller than 1. Combining both terms, we get
an upper bound on the competitiveness of Ck + 1. J

Considering the real-world BahnCards given in Table 2, the algorithm would always buy
the BahnCard BC100 which reduces the ticket prices to 0. According to our analysis, this
results in a competitiveness factor of 4396.

4.2 Never-Algorithm
The Never-Algorithm never buys any BahnCard regardless of the journey stream σ. The
costs can thus be expressed as cNEV ER =

∑n
j=1 pi. In the worst case, the optimal solution

would be to use the Always-Top-Algorithm described above, i.e. the accumulated ticket
price are always large enough such that it is worth to buy the most expensive BahnCard
with the best reduction factor, resulting in cOPT = Ck + βk ·

∑n
j=1 pj . Accordingly, the

competitiveness factor is unbounded. Especially for βk = 0 the ratio of cNEV ER and cOPT
grows proportional to the summed unreduced ticket prices, and therefore a constant upper
bound on this ratio cannot be determined. Looking at the real-world setting from Table 2,
we observe that the worst case value βk = 0 indeed is assumed here for the BC100.

4.3 B-SUM-Algorithm
The above considerations imply that to achieve some practically useful competitiveness, the
online strategy should make the decision when to purchase a BahnCard more carefully.
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We now investigate the so called B-SUM-algorithm which is an extension to the (2− β)-
competitive SUM-algorithm for the one-kind BahnCard problem. The idea behind this
algorithm is to always buy the most expensive BahnCard BCk once the accumulated costs
of the previous journeys (where we had no valid BahnCard) reach the critical value of said
BahnCard. The critical value is defined as critk = Ck

1−βk . The intuition is that if accumulated
ticket prices in an interval equal critk, the induced costs of not having a BahnCard and
having purchased BahnCard BCk at the beginning of the interval are the same.

I Theorem 2. The B-SUM algorithm is 2
βk−1

-competitive.

Proof. Let τ1, τ2, ..., τq bet the dates on which the optimal offline algorithm buys a BCk. This
induces consecutive intervals [0, τ1), [τ1, τ2), . . . [τq−1, τq), [τq,∞). If the optimal algorithm
never buys a BCk then there is only a single interval [0,∞).

We now want to compare the cost of the B-SUM algorithm in each interval I = [τi, τi+1)
with the optimal cost in that interval. In all but the first interval, the optimal solution buys a
BCk. Note that this can only be optimal if the accumulated ticket prices in interval I exceed
critk. Now we consider B-SUM. We subdivide interval I in four subintervals I1, I2, I3, I4
(some of them possibly empty). In I1, B-SUM still has a valid BCk purchased before τi.
In I2, B-SUM has no valid BahnCard. At the beginning of I3, B-SUM purchases a BCk.
Its expiration then initializes interval I4. Note that the optimal strategy does not have a
valid BCk in I4 as well as the optimal strategy purchased its BCk earlier than B-SUM and
another purchase of a BCk at time τi+1 marks the beginning of a completely new interval.

We first consider only the intervals I1, I2, I3. The cost of the optimal solution is lower
bounded by cOPT ≥ Ck + βk

∑
tj∈I1,I2,I3

pj . For B-SUM, we have cB−SUM = βk
∑
tj∈I1

pj +∑
tj∈I2

pj + Ck + βk
∑
tj∈I3

pj . Therefore, the ratio of cB−SUM and cOPT is maximized if∑
tj∈I2

pj is as large as possible. But as B-SUM buys a new BCk as soon as the accumulated
ticket price since the last expiration exceed critk, we conclude that

∑
tj∈I2

pj < critk = Ck
1−βk .

Plugging this in, we get a competitiveness of (2 − βk) in compliance with the one-kind
BahnCard problem. But we still have to consider I4. In I4, as observed above, the optimal
strategy does not have a valid BCk. Therefore, we can lower bound the optimal costs in I4
as cOPT ≥ βk−1

∑
tj∈I4

pj . In case the summed ticket prices in I4 are smaller than critk,
B-SUM will not purchase another BCk and hence its cost in I4 is

∑
tj∈I4

pj , leading to a
competitiveness ratio of 1

βk−1
. If the accumulated costs in I4 however exceed critk, then

B-SUM purchases BCk again. Let b ≥ 1 be the number of BahnCards B-SUM purchases in I4.
Then the critical value was exceeded b times, leading to a lower bound of cOPT ≥ βk−1 ·b· Ck1−βk .
The costs for B-SUM are upper bounded by cB−SUM ≤ bCk + b Ck

1−βk . The ratio of those two
is then upper bounded by 2−βk

βk−1
≤ 2

βk−1
. The same analysis applies to the very first interval

[0, τ1) in which the optimal strategy does not have a valid BahnCard BCk as well.
Therefore, the competitiveness of the B-SUM algorithm is max(2 − βk, 2

βk−1
) which is

dominated by the latter. J

As according to our model βk−1 > βk ≥ 0 holds, the competitiveness factor is finite for
all possible βk−1. Using values of the real-world BahnCards described in Table 2, we see that
βk−1 = 0.5 and hence the resulting competitiveness of B-SUM is 4.

5 Heuristic Online Strategies

In this section we will present further online strategies for the multi-kind BahnCard problem.
While those do not come with provable competitiveness guarantees, we will observe their
instance-based competitiveness in various scenarios in the experiments later on.

ATMOS 2020
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5.1 Choosing a BahnCard u.a.r in T (RU-INT)
The RU-INT algorithm either buys one of the k BahnCards or no BahnCard uniformly
at random in each time period T . Although this approach might produce arbitrarily bad
solutions, we expect it to be better than the Always-Algorithm and Never-Algorithm making
on average. In addition, RU-INT also offers a baseline for the other heuristics since we
obviously aim to be superior to random purchases.

5.2 Summing up in T (SUM-INT)
The SUM-INT algorithm sums up the costs for a journey stream σ over one validity period
T of the BahnCards and then buys the BahnCard with the highest critical value reached for
the next period T . Then the algorithm repeats. This means the algorithm will alternate
between buying a BahnCard and not buying any BahnCard each interval.

This algorithm is sensible if the traveller has similar travelling habits in consecutive years
as then every second year the perfect BahnCard is chosen.

5.3 Critical single journeys (S-CRIT)
The S-CRIT algorithm always checks if any BahnCard would be profitable for a single journey
(the current journey) and then buys the most fitting one according to the critical value, i.e.,
the one with the highest index out of those that have reached the critical value. Note that
it is not necessarily the case that the critical values are monotonically increasing with the
index i. Although we have Ci < Ci+1 and βi > βi+1, it could happen that Ci

1−βi >
Ci+1

1−βi+1
.

Accordingly, there might be BahnCards that the S-CRIT algorthm never purchases, as a
BahnCard with better price reduction factor and lower critical value exists. For the real-world
BahnCards described in Table 2, though, the critical values are 248e, 510e, 4395e in that
order and hence S-CRIT could choose any of them depending on the ticket price. If no
critical value is reached the algorithm does not buy a BahnCard and proceeds to the next
journey. This approach makes sense for travellers with very few but very expensive journeys.

5.4 Continuing with the reduced costs of the previous interval
(RED-CRIT)

The RED-CRIT algorithm sums up the journey costs as long as no critical value of any
BahnCard is reached. Once a critical value is reached it buys the most fitting BahnCard
according to the critical value (i.e., the one with the highest critical value that was reached),
sets the current costs to the summed up reduced costs of the journeys in the validity period
of the chosen BahnCard, and starts again by checking if a critical value is reached. This
approach makes sense because we buy a BahnCard once it would have been profitable to do
so and then use the costs during that period to take the traveller’s habits into consideration
for the next interval.

6 Experimental Evaluation

To evaluate the competitiveness of the algorithms we conduct experiments with different
traveller profiles comparing the results to the optimal offline solution. We begin by using the
real-world BahnCards and extend the experiments to randomly generated BahnCards. All
experiments are executed on a desktop PC with an Intel(R) Core(TM) i7-6700K processor
(4 cores @ 4.00Ghz) and 64GB DDR4 RAM.
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6.1 Profiles

We will consider three main train traveller types: commuters, occasional travellers, and
businessmen. The traveller profiles are realized as vectors where an entry represents the
number of journeys on that day, i.e., a zero on days where no journeys occur, a one on a
day where only one journey occurs and a two for the commuters accounting for the way to
work and the way back home. Note that multiple journeys happening on the same day are
just regarded as a single journey with aggregated costs in all our algorithms, as we assume
that a BahnCard is either valid for the full day or not valid at all on that day. Therefore,
more fine-grained information – as the exact time of the ticket purchase – is not relevant
here. The following profiles were used to create different scenarios:

The commuter. We distinguish between a low price, a mid price and a high price
commuter. Journeys happen on workdays and always cost 5e, 15e or 35e(one-way),
respectively. Thereby, each journey has a 95% chance to happen.
The occasional traveller. Journeys can happen on every day with a 1% chance and
costs range between 50e and 1000e.
The businessman. Journeys can happen on every day with a 10% chance and costs
range between 50e and 1000e.

6.2 Results for Real-World BahnCards

For each profile we created five vectors with the length of y ∈ {2, 5, 10, 20, 40} years (multiplied
by 365 to have an entry for each day), computed the BahnCard schedule for every heuristic
and calculated the competiveness ratios by comparing them to the optimal solution. This
process has been done 20 times for each parameter pair (year, profile) and the means of
the ratios has been taken to gain insight on the general performance of the algorithms in
different scenarios. We will now look at each profile’s results starting with the commuters.

6.2.1 Low price commuter

For the the low price commuter profile RED-CRIT always performs the best with an average
competitiveness of 1.0653 while B-SUM always has the worst average competitiveness ratio
(on average 2.3196). For B-SUM this makes sense, because we always buy the most expensive
BahnCard and as mentioned before a journey for this profile always costs 5e meaning the
most expensive BahnCard will most likely be too expensive and a cheaper one would have
been more profitable.

6.2.2 Mid price commuter

Contrary to the low price commuter the B-SUM algorithm performs much better with higher
prices as explained before. Surprisingly the RU-INT algorithm does fairly well in this scenario.
Looking at the experiments more closely though, this can be explained by the fact that the
optimal solution actually buys the BahnCard 50 at the start of every year in the schedules of
the mid price commuter. Given the fact that there are only three BahnCards to choose from
with the BahnCard 50 being the best one in every year the chances of being significantly
worse than the optimal solution are not that high. Despite all that RED-CRIT prevails as
the best algorithm in this scenario as shown in Table 3.
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Table 3 Average competitiveness ratios for the mid price commuter scenario and real.world
BahnCards.

Years SUM-INT B-SUM S-CRIT RU-INT RED-CRIT
2 1.4969 1.4907 1.8737 1.3285 1.2961
5 1.5685 1.4150 1.8740 1.3080 1.1844
10 1.4943 1.4133 1.8738 1.3130 1.1468
20 1.4917 1.4418 1.8740 1.2800 1.1262
40 1.4921 1.3932 1.8742 1.3251 1.1159

6.2.3 High price commuter

In the case of the high price commuter we observe another increase in competitiveness for the
B-SUM algorithm (average 1.6831) which again makes sense because the overall costs have
increased as well. Likewise the competitiveness of the S-CRIT algorithm decreased heavily
from the low price to the high price commuter (average from 1.6642 to 3.9521). This is to be
expected though, since none of the journeys have a high enough price to reach the critical
value of any BahnCard, thus the algorithm never buys a BahnCard which will get worse as
the overall costs increase. Again the overall best choice is RED-CRIT (average 1.3602).

6.2.4 The occasional traveller

Due to the sparseness of journeys of the occasional traveller profile the S-CRIT algorithm
almost performs as well as the RED-CRIT algorithm (averages 1.0945 versus 1.0697) with
the latter again being the overall best choice. But as the journey streams are more diverse
for the occasional traveller than e.g. for the commuters, we also observe larger variations
in the performance of the different strategies. Figure 2 shows an example illustration for a
2-year period.

6.2.5 The businessman

For the businessman profile, RED-CRIT again was the best approach (average 1.3237).
Interestingly though, the second best strategy in this scenario appears to be B-SUM (average
1.7721). This is apparently the case because the high ticket prices make up for the lack
of journeys. The other heuristics performed worse compared to the previously considered
profiles. Figure 2 shows an example illustration for a 5-year period.

6.3 Results for Artificial BahnCards

After analyzing the competitiveness ratio of the algorithms in respect to the real-world
BahnCards we will now look at three different scenarios with randomly generated BahnCards:
1. BahnCards with evenly distributed β
2. BahnCards with similar β
3. BahnCards with heavily differing β

For each model we drew ten betas and computed the price by choosing a base price of
base = 40 and taking the result of base

β− β5
as the price of the respective BahnCard to gain

reasonably realistic costs.
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Figure 2 Compressed overview of the different strategies for the occasional traveller in a 2-year
and the business man in a 5-year period (for different journey streams). Each column indicates a
month. BahnCard purchases are marked by stars. A cell is coloured green if in the respective month
there was a valid BC25, yellow for BC50, and red for BC100.

Table 4 Average competitiveness ratios for the mid price commuter and evenly distributed
BahnCards.

Years SUM-INT B-SUM S-CRIT RU-INT RED-CRIT
2 2.9744 3.1245 4.3332 3.0584 1.8038
5 3.2434 2.5167 4.3330 3.1507 1.6830
10 2.9712 2.5191 4.3323 3.1763 1.6460
20 2.9732 2.3736 4.3300 3.0469 1.6284
40 2.9723 2.3686 4.3317 2.9640 1.6155

6.3.1 BahnCards with evenly distributed β

For this model we choose k = 10 intervals of same size, e.g., for i ∈ {0, . . . , k− 1} the interval
is
(
1− i+1

k , 1− i
k

]
and pick a β from each of the intervals uniformly at random. This results

in evenly distributed betas in (0, 1].
Overall this model produced results very similar to the real-world BahnCards with the

exception that the competitiveness ratios were generally worse. This is illustrated by the
mid price commuter example in Table 4. While the S-CRIT algorithm performed the worst
in the real-world counterpart it did not perform nearly as bad as in this model. Even with a
BahnCard having a β of 0.9149 the journeys of the mid price commuter did not reach the
critical value and thus the S-CRIT algorithm again performed like the Never-Algorithm not
buying any BahnCard at all.

This leads to the conclusion that the wider variety of BahnCards causes the ratios to be
worse overall as the optimal solution has even more profitable choices than in the real-world
example.

6.3.2 BahnCards with similar β

For this model we choose k intervals of same size, e.g., for i ∈ {0, . . . , k − 1} the interval is(
1− i+1

k , 1− i
k

]
and choose one interval uniformly at random to draw k betas from. This

results in very similar BahnCards. In this model the solutions provided by the algorithms
are very close to the optimal solution across all the traveller profiles, the worst ratio being
1.0740 meaning the choice of BahnCard has very little impact on the competitiveness ratio
(as to be expected for BahnCard with only minor differences).
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Table 5 Average competitiveness ratios for the businessman scenario and heavily differing
BahnCards.

Years SUM-INT B-SUM S-CRIT RU-INT RED-CRIT
2 9.7906 9.7523 2.0797 8.1918 4.7597
5 9.7403 9.6896 2.5465 8.5503 4.9725
10 9.8425 9.7971 2.7149 8.1206 5.8743
20 9.7691 9.7239 2.3683 8.3782 7.4911
40 9.8559 9.8106 2.6068 8.5319 8.8573

6.3.3 BahnCards with heavily differing β

For this model we choose k intervals of same size, e.g., for i ∈ {0, . . . , k − 1} the interval
is
(
1− i+1

k , 1− i
k

]
and draw

⌈
k
2
⌉
betas from the first interval and

⌊
k
2
⌋
betas from the last

interval. This results in a bimodal distribution of BahnCards with a heavy gap between the
two partitions.

Of all the models this one produced the worst competitiveness ratios almost reaching an
average of 10 in some cases as can be seen in Table 5 regarding the businessman scenario. In
this scenario S-CRIT seems to be the best algorithm with a competitiveness ratio of around
2.5 on average. Contrary to all the other algorithms S-CRIT buys cheap BahnCards just like
the optimal solution leading to a fairly good competitiveness while buying one of the more
expensive BahnCards (drawn from the first interval) has a very detrimental effect.

7 Conclusions and Future Work

In this paper, we have extended the classical BahnCard problem to the multi-kind BahnCard
problem. We presented a simple online strategy with provable competitiveness but showed
that in practical scenarios custom-tailored heuristic strategies are often superior. An obvious
open question is whether there are other strategies with provably better competitiveness. In
particular, a strategy that ensures a constant competitiveness independent of the purchase
costs and price reduction factors of the BahnCards would be worth investigating. Further,
the scenario where the validity periods of the BahnCards are allowed to differ would be of
theoretical and practical interest. Indeed, bus tickets valid for a week or a month could also
be seen as realizations of a Bahncard with a price reduction factor of β = 0. Incorporating
different validity periods in the optimal offline algorithm is straightforward. But the design
and analysis of the onine strategies would be affected. In addition, it would be interesting to
extend the model even further. For example, in Germany, certain special offer discounts can
only be combined with the BahnCard 25 but not with the BahnCard 50, which affects the
competitiveness of our proposed strategies. There are also non-standard types of BahnCards
where the validity period depends on certain events (e.g. the so called Sieger BahnCard
was only valid during the soccer championship and only as long as the German team was
not eliminated). Flexible validity periods would add yet another level of uncertainty to the
model and would demand the development of novel online strategies.
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