
Faster Preprocessing for the Trip-Based Public
Transit Routing Algorithm
Vassilissa Lehoux1

NAVER LABS Europe, Meylan, France
https://europe.naverlabs.com/people_user/vassilissa-lehoux/
firstname.lastname@naverlabs.com

Christelle Loiodice
NAVER LABS Europe, Meylan, France
https://europe.naverlabs.com/people_user/christelle-loiodice/
firstname.lastname@naverlabs.com

Abstract
We propose an additional preprocessing step for the Trip-Based Public Transit Routing algorithm,
an exact state-of-the art algorithm for bi-criteria min cost path problems in public transit networks.
This additional step reduces significantly the preprocessing time, while preserving the correctness
and the computation times of the queries. We test our approach on three large scale networks and
show that the improved preprocessing is compatible with frequent real-time updates, even on the
larger data set. The experiments also indicate that it is possible, if preprocessing time is an issue, to
use the proposed preprocessing step on its own to obtain already a significant reduction of the query
times compared to the no pruning scenario.
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1 Introduction

In public transit networks, itineraries can combine public transit lifts with walking between
the stations. The schedules or timetables describe the arrival and departure times of the
vehicles at the public transit stations, also called stops. Information for transfers, on the
other hand, contains walking times between pairs of stops.

Given an origin, a destination and a start time, we consider the problem of finding optimal
compromise paths for two criteria to minimize: arrival time and number of transfers. Those
two criteria are of high practical relevance as they are important in the user’s choice of an
itinerary using public transportation.

In multicriteria optimization, the notion of Pareto dominance is often used to define the
optimality of the solutions. A solution s is dominated in the Pareto sense by a solution s′
for a set {c1, c2, . . . , cr} of criteria to minimize if ∀i ∈ {1, 2, . . . , r}, ci(s′) ≤ ci(s) and
∃i ∈ {1, 2, . . . , r} such that ci(s′) < ci(s). The optimal solutions are then the non-dominated
solutions. Those non-dominated solutions represent compromises between the different
criteria as the value of one cannot be improved without degrading the value of another. The
set of all the optimal criteria values of the non-dominated solutions is called Pareto front,
while the maximal set of non-dominated solutions is called Pareto set. For two or more
additive criteria to minimize, the Pareto set of the multi-objective shortest path problem
can be of exponential size [14], which makes the problem of generating it intractable. As
an alternative, many authors consider only complete optimal solution sets (we borrow the
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term from [21]), that is solution sets that contains only one optimal solution with this value
for each element of the Pareto front. Indeed, depending on the criteria, those sets can be
of polynomial size, or simply much smaller than the maximal set. Typically, if some of the
criteria can take only a bounded number of values, then it limits the number of elements in
the Pareto front. Several public transit routing algorithms such as RAPTOR [10], CSA [12]
or Public Transit Labeling [8], hence compute only a complete set for minimum number
of transfers and earliest arrival time at destination, while in more multi-criteria context,
authors go farther and prune the complete set to reduce its size [2, 7].

Over the years, many algorithms, dedicated to public transit networks have been designed.
In fact, even if multimodal or public transit networks can be modeled directly as a graph [13,
15, 20], where classical shortest path techniques for road networks can be applied, those
methods, if not adapted, are not as efficient on public transit networks, since the structure
of the public transit information is different [1]. As a consequence, dealing with large scale
graphs such as large metropolitan areas or small countries demands specific techniques in
order to obtain low computation times. It remains the case even for polynomial problems,
such as the problem of finding a complete solution set for earliest arrival time and minimum
number of transfers, where the number of values in the Pareto front is bounded by the number
of trips, as has been remarked in [16]. Many of those techniques rely on a preprocessing
step to compute information that will be used in the search phase in order to reduce the
query times compare to classical routing algorithms. There is often a trade-off between
preprocessing time, amount of auxiliary data and query times, different for each algorithm.
An overview of acceleration techniques can be found in [4].

When the preprocessing is based on the schedule information, the preprocessing time
is an important aspect for integrating easily real-time updates. If the chosen technique
has large preprocessing time, it will not be possible to rerun the preprocessing for each
network update. Several algorithms of the literature [10, 12, 23] have no or very short
preprocessing times and are well adapted to frequent network updates. It is not the case
of their accelerated versions [9, 22, 24] or of some faster algorithms based on computations
of optimal paths, such as Transfer Patterns [3, 5] where the preprocessing time takes 16.5
hours on a Germany network and can obviously not run fast enough. To be able to redo
frequently the preprocessing, its duration must be short, at most a few minutes. Note that
for some algorithms with large schedule dependent preprocessing, other solutions have been
proposed to deal with real-time updates. For instance, in [17], the authors make Transfer
Patterns robust to a chosen set of delays (while outside of the set, the optimality cannot be
granted), and in [11], the authors describe a dynamic version of the Public Transit Labeling
algorithm that can consider only positive delays.

In this article, we are more particularly focusing on the Trip-Based Public Transit Routing
algorithm [23] (TB). This algorithm is based on a graph representation of the network where
the nodes correspond to trips, i.e. a vehicle following a certain schedule, while the arcs
correspond to transfers between the trips, i.e to a user alighting at a stop of the origin trip
of the transfer, walking to a stop of the destination trip and boarding this destination trip.
In order to obtain a search graph, the information in the timetables is preprocessed and the
set of all the possible transfers is pruned to make the search more efficient. This algorithm
presents a good trade-off between preprocessing time, quantity of auxiliary data and query
times. The computation of the search graph is rather light, but can take several minutes
for large size networks. In order to make it compatible with more frequent updates of the
network, we propose here to accelerate significantly the preprocessing of [23] by adding a
new pruning step.
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This article is organized as follows. In Section 2, we introduce the necessary notations
and describe the preprocessing of the TB algorithm. Then Section 3 presents the new
preprocessing step that we propose to reduce the preprocessing time. Experimental results
are detailed in Section 4. Section 5 summarizes our contribution and suggests possible
extensions.

2 Preprocessing of the Trip-Based Public Transit Routing algorithm

The preprocessing step of the TB algorithm consists in the generation of the search graph
from the timetable and transfer time information. This section will state the necessary
notations and will explain the principles of this preprocessing.

2.1 Notations and search graph structure
In order to make it easier for the reader, we use notations similar to that of [23].

A trip t represents a vehicle, which, following a sequence −→p (t) = 〈p1
t , p

2
t , . . . 〉 of public

transit stops, arrives at stop pi
t at time τarr(t, i) and departs from it at time τdep(t, i). When

several trips share the same sequence and if they do not overtake each other, they can be
grouped into a line, which is a set of trips ordered according to the relations ≤ and < defined
by:{

t � u⇐⇒ ∀i ∈ [0, |−→p (t)|) , τarr(t, i) ≤ τarr(u, i)
t ≺ u⇐⇒ t � u and ∃i ∈ [0, |−→p (t)|) , τarr(t, i) < τarr(u, i)

when the trips u and t have the same sequence.
The sequence of stops of a line L is denoted −→p (L) = 〈p1

L, p
2
L, . . . 〉, similarly as that of its

trips. For two stops pi
t and pj

t with i < j of the stop sequence −→p (t) = 〈p1
t , p

2
t , . . . 〉 of trip t,

we denote by pi
t → pj

t the trip segment of t between stops pi
t and pj

t . This notation refers to
boarding the trip t at its ith stop and alighting it at its jth stop. A connection between two
stops is a trip segment pi

t → pj
t where j = i+ 1.

In the search graph, each trip is represented by a node while the arcs represent transfers
between trips. A transfer between the stop pi

t of trip t and the stop pj
u of trip u is

denoted pi
t → pj

u and has a transfer duration ∆τfp(pi
t, p

j
u), where ∆τfp(p, q) is the duration

of the walking itinerary between stop p and stop q. This transfer is feasible if it is possible to
alight trip t at stop pi

t at arrival time τarr(t, i) and reach stop pj
u of trip u before departure

time τdep(u, j), that is if τarr(t, i) + ∆τfp(pi
t, p

j
u) ≤ τdep(u, j). When transferring at a given

stop, it is possible to consider a positive change time ∆τfp(p, p), necessary to move within
the station p.

In the search graph, an arc between a trip t and a trip u represents a given feasible
transfer pi

t → pj
u. If several transfers are feasible between the two trips, it is possible to

have multiple arcs between the corresponding nodes, as on Figure 1. The left part of the
figure represents two trips, t and t′. The dashed lines represent some possible foot paths
between the stations of the two trips such that the corresponding transfers are feasible. In
the resulting search graph on the right, each transfer is represented by an arc.

2.2 Preprocessing
The main idea of the preprocessing proposed in [23] is to first generate feasible transfers
from the set of walking paths defined by ∆τfp. If there is a path between the stops of two
different lines, then transfers will be possible between those two lines at those stops. As
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trip t

pi
t pi+1

t

trip u

pj
u pj+1

u

trip t

trip u

pi
t → pj

u pi+1
t → pj+1

u

Figure 1 From the public transit data (represented on the left) to the trip-based graph (represented
on the right).

arrival time is optimized, when transferring from one stop of an origin trip to a given stop
of a destination line, it is possible to consider only the earliest trip such that the transfer
is feasible (when it exists). Indeed, the relation ≤ between the trips of the destination line
implies that such an earliest trip is well defined when there is at least one feasible transfer.

A large set of transfers is obtained when considering only the earliest feasible destination
trip for each origin trip and each walking path. Among those transfers, many are not necessary
when searching for a complete set of solutions for earliest arrival time and minimum number
of transfers. The initial transfer set is hence pruned to reduce its size, but in such a way
that it remains correct at the end of the pruning, i.e. in such a way that it is still possible to
compute a complete solution set for earliest arrival time and minimum number of transfers
using the search graph obtained based on the reduced transfer set.

This pruning is performed for each origin trip, removing transfers from its stations. It
can hence be easily parallelized, processing different trips on different threads. The proposed
pruning consists in two stages: first, removing so called U-turn transfers, i.e. transfers
pi

t → pj
u such that pj+1

u = pi−1
t if they cannot lead to improved arrival times; second,

removing transfers if they cannot improve arrival times at stops compared to arrival times
at the same stops considering previously checked feasible transfers. The idea is to start
from the last stop of the origin trip t and to move backward along it to check the transfers
from the current stop in decreasing stop sequence order. The minimum arrival time at this
current stop pi

t is updated with trip t’s arrival time. Then, arrival times and change times
are updated at all the stations that can be reached from pi

t. Then for each transfer pi
t → pu

j ,
the minimum arrival times and change times are updated at the stops of the destination trip
that are after pu

j in the stop sequence of trip u. Finally, foot transfers are also performed
from those stops to all reachable stops in order to try and improve their arrival times and
change times. If a transfer improves the arrival time or change time at any stop, it will be
kept. Otherwise, it is removed. The pseudo-code of the transfer set reduction step can be
found in Algorithm 3 of [23]. This pruning removes a large part of the transfers initially
present in the set (9 out of 10 on a Germany network and 8 out of 10 on a London network
in [23]), which speeds the search phase up by a factor 3.

While this preprocessing is fast enough for not so frequent real-time updates on many
networks, it can become too slow for larger graphs where the number of trips is important,
for very dense networks where a lot of stops are close to one another or for more frequent
updates.
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3 Speeding the preprocessing up

In order to speed-up the preprocessing, we propose to add a first reduction step, based this
time on the line structure of the public transit network.

For each line L, first compute all the lines L′ that can be reached by transfer, that is
such that

∃(i, j) ∈ [1 . . . |−→p (L)| − 1]× [0 . . . |−→p (L′)| − 2] , ∆τfp(pi
L, p

j
L′) is defined

Note that you do not transfer from the first stop of a trip or to the last stop of a trip.
When ∆τfp(pi

L, p
j
L′) is defined, (i, L′, j, ∆τfp(pi

L, p
j
L′)) is added to the set T (L) of possible

transfers for L.
First, u-turn transfers (i, L′, j, ∆τfp(pi

L, p
j
L′)) of line L where pj+1

L′ = pi−1
L , can be

removed if ∆τfp(pi−1
L , pj+1

L′ ) ≤ ∆τfp(pi
L, p

j
L′).

After that first step, the trips of L can be processed in such a way that we compare
transfers to trips of the same line L′ with later transfers (i.e. transfers leaving line L later or
at the same stop). Hence, the transfers of T (L) are sorted first by destination line. Then, as
for the arrival and change time based preprocessing, the transfers (i, L′, j, ∆) of the line L
are sorted first by decreasing origin index i, and then by increasing destination index j.

Instead of comparing arrival times and change times at stops for all the transfers of
one trip, we consider only one destination line at a time and we make a simpler and faster
comparison: we only compare the trips that can be boarded at the stops of the destination
line, using relation ≤. For this, it is sufficient to check the earliest trip so far passing at
the destination stop index and compare to the index of the current destination trip. The
transfers are pruned based on the absence of update at any stop. We denote by T (t, L′) the
resulting set of transfers between trip t and destination line L′. The union of all the sets
T (t, L′) is the set T of transfers which is returned at the end of the line-based pruning step.

Algorithm 1 describes the complete method. We call it line-based pruning and we denote
it LB for short. Note that this algorithm can be trivially parallelized as each origin trip is
processed separately.

After this transfer set building part, the arrival and change time based pruning might be
applied in order to reduced further the set. The resulting search graph keeps the optimality
of the search phase.

I Proposition 1. Algorithm 1 computes a correct set T of transfers for earliest arrival time
and minimum number of transfers.

Proof. Consider an optimal solution s with at least one transfer, that we define by the trip
segment sequence that composes it:
s =

〈
pj1

t1
→ pi1

t1
, pj2

t2
→ pi2

t2
. . . , p

jk+1
tk+1
→ p

ik+1
tk+1

〉
We denote by L1, L2, ..., Lk+1 the lines of the trips t1, t2, ..., tk+1 respectively. We need to
prove that it is possible to construct at least one solution with the same value those transfers
are all in T .

Consider the first transfer pi1
t1
→ pj2

t2
of s. If t2 is not the earliest trip of L2 such that

the transfer from t1 at pi1
t1

to L2 at pi2
L2

is feasible, we can replace it with a transfer to the
earliest trip such that the transfer is feasible. Now, we suppose that it is the case. There are
two possibility, either pi1

t1
→ pj2

t2
is in the transfer set T (t1, L2) or it has been pruned.

In the case where the transfer has been pruned, there exists a transfer pi
t1
→ pj

t of
T (t1, L2) such that i ≥ i1, j ≤ j2 and t ≤ t2.

ATMOS 2020
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Algorithm 1 Transfer set building with line-based pruning.

Input: Timetable data, transfer duration data
Output: Reduced transfer set T
T ← ∅
for each line L do
T (L)← LINE_TRANSFERS(L, transfer duration data)
for each trip t of L do

T ← ∅ . Transfer set for each target line
Lprev ← null
for each transfer (i, L′, j,∆) of T (L) do

if Lprev 6= L′ then
T ← T ∪ T
T ← ∅, Lprev = L′

R(.)←∞ . Earliest destination trip at index j
end if
t′ ← earliest trip of L′ at j such that τdep(t′, j) ≥ τarr(t, i) + ∆
if T = ∅ then

T ← {pi
t → pj

t′}
for each index j′ ∈ [j . . . |−→p (L′)| − 1] do

R(j′)← t′

end for
else

if t′ < R(j) then
T ← T ∪ {pi

t → pj
t′}

for each index j′ ∈ [j . . . |−→p (L′)| − 1] do
R(j′)← min{t′, R(j′)}

end for
end if

end if
end for
T ← T ∪ T

end for
end for
return T
procedure LINE_TRANSFERS(line L, transfer duration data)

T ← ∅ . Builds the line neighborhood
for i← |−→p (L)| − 1, . . . , 1 do

for each stop q such that ∆τfp(pi
L, q) is defined do

for each (L′, j) such that q = pj
L′ do

T ← T ∪
{

(i, L′, j,∆τfp(pi
L, p

j
L′))

}
end for

end for
end for
Sort T first by target line, then by decreasing origin line index, then by increasing

target line index, then by chosen sorting
return T

end procedure
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Table 1 Data sets used for the experiments.

stops trips lines foot paths connections
NL 48 694 332 164 2 773 439 129 6 144 380
IDF 42 325 319 151 1 869 846 246 7 031 782
Korea 180 948 446 741 31 708 4 195 659 22 346 975

Table 2 Preprocessing for the NL network.

Preprocessing Nb kept Nb removed Graph size Mean proc. Mean save to
transfers (M) transfers (M) (MB) time (s) file time (s)

No pruning 246.17 0 4 620 32.9 51.5
LB 96.30 149.87 1 782 15.0 18.0
LB & Witt [23] 35.44 210.73 650 18.8 7.1
Witt [23] 35.20 210.97 645 25.8 6.8

In solution s, we replace pj1
t1
→ pi1

t1
by pj1

t1
→ pi

t1
, and pj2

t2
→ pi2

t2
by pj

t → pi2
t to obtain a

new solution s′. Note that transfer pi2
t → pj3

t3
is feasible, since transfer pi2

t2
→ pj3

t3
was feasible

and t ≤ t2.
The new solution has the same arrival time, and the same number of transfers as the

solution s, they are hence both optimal with the same value.
We can proceed iteratively with the next transfers to replace all the transfers that do not

belong to T by transfers belonging to T . We hence obtain an optimal solution equivalent
to s such that its transfers are all in T . J

4 Experiments

We perform our experiments on a 64 threads (4 sockets, 8 cores, 2 threads per core) 2.7 GHz
Intel(R) Xeon(R) CPU E5-4650 server with 20 MB of L3 cache and 504 GB of RAM. We
use 3 data sets of large size, two of which are public.

The first data set is open and provided by Ovapi [19]. It contains public transit information
for Netherlands and we denote it NL. The IDF data set is provided by Île-de-France
Mobilités [6] with permissive license, and covers the Île-de-France area in France. This data
set has been used in several previous publications, but note that the version used here might
be different from the one cited due to regular updates. The third data set is a proprietary
data set used in Naver Map [18] that covers the whole Korea. Table 1 summarizes the main
figures relative to the size of those data sets. Note that the footpaths are a mixture of the
provided transfer information (if any) and generated footpaths. The TB algorithm does not
require closure of the footpaths (as opposed to the initial version of RAPTOR [10] or to
CSA [12]) but we choose to generate additional footpaths as users are often willing to walk
between stations if the distance is limited. We set this bound to 600 m and set the walking
speed to 3.6 kph. Footpaths between any two stops such that their distance via the road
network is lower than 600 m are added to the public transit network. Note that the resulting
data sets are hence significantly larger than the ones in [23] in terms of number of footpaths
(the Germany network has only 100K footpaths), which impacts the computation times of
the preprocessing and search phases.

Tables 2, 3 and 4 give the preprocessing times for 4 versions of the search graph generation
step. We indicate for each version the number of transfers kept at the end of the preprocessing,
the number of transfers removed, the size in memory of the search graph obtained, the mean

ATMOS 2020
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Table 3 Preprocessing for the IDF network.

Preprocessing Nb kept Nb removed Graph size Mean proc. Mean save to
transfers (M) transfers (M) (MB) time (s) file time (s)

No pruning 876.27 0 16 782 115.1 197.3
LB 201.13 675.15 3 833 36.3 44.1
LB and Witt [23] 81.27 795.00 1 542 40.2 14.6
Witt [23] 86.78 789.49 1 650 99.6 18.7

Table 4 Preprocessing for the Korean network.

Preprocessing Nb kept Nb removed Graph size Mean proc. Mean save to
transfers (M) transfers (M) (MB) time (s) file time (s)

No pruning 2 795.59 0 53 339 307.6 686.1
LB 631.60 2 163.99 11 943 91.4 148.0
LB and Witt [23] 228.07 2 567.52 4 290 183.0 41.9
Witt [23] 234.76 2 560.83 4 410 448.1 47.7

processing time, and the time necessary to save the computed graph to file. Of course, the
saving step is not mandatory, as the search graph can be used directly once computed in
an end-to-end application. However, in a real-time update context, the preprocessing could
be performed by a preprocessing service while the query service is running, possibly on a
different server. We hence choose to indicate our mean save to file time as well, as it might
be relevant for practical applications.

The first preprocessing version that we test performs no pruning. It corresponds to the
transfer generation step of [23] and only computes the earliest possible trip for a transfer
from a trip at an origin index to a destination line at a destination index to be possible
and save the obtained graph structure for it to be loaded and used by the query server. As
so many transfers are generated and put into RAM, the computation time and the time
necessary to save them to file are significant. Indeed, the size of the graph is 4.6 GB for the
NL network, 16.8 GB for the IDF network and 53.3 GB for the larger Korean network. It is
hence time consuming to generate and save.

In the second version of the preprocessing, only the line-based pruning (LB) is applied.
We can see that the number of arcs in the search graph is already significantly reduced,
as it is divided by 2.55 for the NL data set, by 4.36 for the IDF data set and by 4.43 for
the Korean network. As a result, the total preprocessing time is also reduced significantly
compared to the no pruning version.

In the third version, the initial arrival and change time-based pruning is applied to the
reduced transfer set obtained after line-based pruning. This additional step increases the
preprocessing time for the larger Korean data set (it is nearly twice as long), but reduces
significantly the time necessary to save the search graph to file at the end of the process.

The last version is the initial preprocessing proposed by Witt [23], those figures are
provided in order to compare with the proposed method. Note that to make the comparison
more meaningful, we have slightly modified it in order to make it more efficient: instead
of generating all the transfers and then applying the reduction steps, we generate transfers
for each trip separately and prune them on the flight. This avoids saving all transfers into
memory at once, as in the no-pruning version, since the non-useful transfers will be removed
online. In the original article, it is proposed to first compute all the transfers and then
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Table 5 Bi-criteria queries for different levels of pruning for the NL network.

Preprocessing Graph size Mean nb of Mean duration Mean queue
(MB) solutions (ms) size (k)

No pruning 4 620 1.60 150 96.53
LB 1 782 1.60 103 49.97
LB and Witt [23] 650 1.60 63 35.55
Witt [23] 645 1.60 66 35.16

Table 6 Bi-criteria queries for different levels of pruning for the IDF network.

Preprocessing Graph size Mean nb of Mean duration Mean queue
(MB) solutions (ms) size (k)

No pruning 16 782 1.48 330 68.16
LB 3 833 1.48 113 37.77
LB and Witt [23] 1 542 1.48 79 29.65
Witt [23] 1 650 1.48 86 30.46

prune them, but as the no pruning version of the preprocessing indicates, this would make
the preprocessing step significantly and unnecessarily longer. It might be what the author
suggested in [23] by proposing to “merge the two steps” at Section 3.1.

The third and forth versions give similar results in terms of number of transfers in the
search graph. It is expected as the order of the transfers to check for each trip is similar in
both cases in our implementation. However, the complexity of the pruning step proposed
in [23] is linearly dependent of the initial number of transfers to which it is applied. Hence,
applying it on a reduced set leads to improved computation times. For the NL network,
the processing time part of the preprocessing is divided by 1.4, that of the IDF network by
2.48 and that of the Korean network by 2.45. With the proposed improvement, the total
preprocessing is below 4 minutes for the largest data set, which makes it suitable for frequent
real-time updates.

We then tested the different search graphs with an implementation of the standard TB
algorithm in order to observe the impact on query times. We performed bi-criteria earliest
arrival time queries between randomly chosen stops of the public transit networks. The
corresponding solutions are computed along with the Pareto front values. For each network,
we generated 100 such queries.

As is shown in Table 5, Table 6 and Table 7, the query times are very similar for the last
two versions of the preprocessing. It is of course linked to the fact that the obtained search
graphs are very similar.

Table 7 Bi-criteria queries for different levels of pruning for the Korean network.

Preprocessing Graph size Mean nb of Mean duration Mean queue
(MB) solutions (ms) size (k)

No pruning 53 339 1.73 2 211 173.87
LB 11 943 1.73 642 90.41
LB and Witt [23] 4 290 1.73 399 75.68
Witt [23] 4 410 1.73 332 76.93

ATMOS 2020
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However, it is interesting to see that the line-based pruning on its own already provides
a significant reduction of the query times. Indeed, compared to the no pruning case,
computation times are divided by 1.5 for Netherlands, by 2.9 for Île-De-France and by 3.4
for Korea. It could hence be an alternative in the case where the search graph doesn’t need
to be saved to file at the end of the preprocessing. Indeed, in some cases, trading slower
queries for lesser preprocessing time might be useful in practice, for instance to allow more
frequent network updates.

5 Conclusion and perspective

In this article, we propose an additional preprocessing step for the Trip-Based Public Transit
Routing algorithm. This pruning step reduces significantly the total preprocessing time,
while keeping the optimality of the search phase. It has been tested on 3 data sets of different
sizes and reduces their preprocessing time by a factor 2.5 on the two largest and 1.4 on the
smallest one compared to an improved version of the initial pruning.

Reducing the preprocessing time of routing algorithms is particularly relevant in real-time
network update contexts, but also when adding additional features to the algorithm, such
as the mode customization described in [16], that increases the preprocessing time. This
reduction step could hence allow for integrating new constraints or customization of the
search phase in the algorithm while keeping the preprocessing times compatible with real-time
updates on some large networks.

As a perspective, in a context where constraints or search customization would make the
preprocessing time too long for real-time updates, adapting the preprocessing to make it
compatible with dynamic changes of the networks could be considered.
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