Customizable Contraction Hierarchies
with Turn Costs

Valentin Buchhold
Karlsruhe Institute of Technology (KIT), Germany

Dorothea Wagner
Karlsruhe Institute of Technology (KIT), Germany

Tim Zeitz
Karlsruhe Institute of Technology (KIT), Germany

Michael Ziindorf
Karlsruhe Institute of Technology (KIT), Germany

—— Abstract

We incorporate turn restrictions and turn costs into the route planning algorithm customizable

contraction hierarchies (CCH). There are two common ways to represent turn costs and restrictions.
The edge-based model expands the network so that road segments become vertices and allowed
turns become edges. The compact model keeps intersections as vertices, but associates a turn table
with each vertex. Although CCH can be used as is on the edge-based model, the performance of
preprocessing and customization is severely affected. While the expanded network is only three
times larger, both preprocessing and customization time increase by up to an order of magnitude.
In this work, we carefully engineer CCH to exploit different properties of the expanded graph. We
reduce the increase in customization time from up to an order of magnitude to a factor of about 3.
The increase in preprocessing time is reduced even further. Moreover, we present a CCH variant that
works on the compact model, and show that it performs worse than the variant on the edge-based
model. Surprisingly, the variant on the edge-based model even uses less space than the one on the
compact model, although the compact model was developed to keep the space requirement low.
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1 Introduction

Motivated by computing driving directions, the last two decades have seen intense research
on speedup techniques [3] for Dijkstra’s shortest-path algorithm [15], which rely on a slow
preprocessing phase to enable fast queries. Almost all previous experimental studies (e.g.,
[20, 23, 24, 14, 22, 1, 2, 4]) are restricted to the simplified model, where vertices represent
intersections, edges represent road segments, and turn costs are ignored. While it has been
widely believed that turn restrictions and turn costs are easy to incorporate, Delling et
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al. [11] show that most algorithms have a significant performance penalty. For long-range
queries, one may argue that turn costs are negligible. When analyzing intracity traffic [8, 27)
or dispatching autonomous vehicles operating within a particular city [6, 7], however, taking
turn costs into account is of utmost importance.

A fairly recent development in the area of route planning are customizable speedup
techniques, which split preprocessing into a slow metric-independent part, taking only the
network structure into account, and a fast metric-dependent part (the customization), incor-
porating edge costs (the metric). Customizable route planning (CRP) [11] and customizable
contraction hierarchies (CCH) [14] are the most prominent among them, and are both used
in commercial and research software. While CRP was developed with turn costs in mind,
CCH was not. In this work, we incorporate turn restrictions and turn costs into CCH.

Related Work. Turns can be encoded into the network structure by expanding the network
so that road segments become vertices and allowed turns become edges [9, 28]. This is known
as the edge-based model [3]. While any speedup technique can work on an expanded network,
some are more robust than others [11]. We are aware of two algorithms that have been
tailored to handle turns. First, Geisberger and Vetter [18] present a turn-aware version of
(non-customizable) contraction hierarchies (CH) [17]. Second, Delling et al. [10] develop
CRP with turns in mind. Both independently proposed a different turn representation. The
compact model keeps intersection as vertices, but associates a turn table with each vertex.

Our Contribution. The contribution of this work is twofold. First, we propose several
optimizations that accelerate CCH on the edge-based model by exploiting properties of the
expanded network (Section 3). We reduce the increase in customization time from up to
an order of magnitude to a factor of about three (which is reasonable since the expanded
network is three times larger than the original network, which ignores turn costs). The
increase in preprocessing time is reduced even further.

Second, we introduce a CCH variant that works on the compact model, and discuss
various issues we found (Section 4). An extensive experimental evaluation shows that the
edge-based variant significantly outperforms the compact variant (Section 5). Surprisingly,
the variant on the edge-based model even uses less space than the one on the compact model.

Outline. Section 2 formally defines the problem we solve and has background information.
Section 3 presents optimizations that accelerate CCH on the edge-based model. Section 4
introduces a CCH variant that works on the compact model. Section 5 presents an extensive
experimental evaluation of both variants. Section 6 concludes with final remarks.

2 Preliminaries

We are given a directed graph G = (V, E) where vertices represent intersections and edges
represent roads. A cost function ¢ : & — R>( assigns an arbitrary cost to each edge. We are
also given two functions r : E x E — {0,1} and ¢: E x E — R U {oo}. If r(e, f) =0, the
head of e is the tail of f and the turn from e to f is allowed. The cost of the turn is given by
c(e, f). Note that r and ¢ have to be consistent, i.e., r(e, f) = 1 implies ¢(e, f) = co. Since r
depends on the network topology, it is part of the input to the preprocessing phase. The
turn cost function c is part of the input to the customization phase since it depends on the
current traffic situation and personal preferences.

A path P from a point along an edge eg to a point along an edge ey, is a triple that consists
of a sequence of edges (eg, ..., ex) with r(e;, e;41) = 0, a real-valued offset oy € [0, 1] on eg,
and a real-valued offset o € [0,1] on eg. The cost of a path is the sum of the costs of its
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Figure 1 Turn representations (from left): simplified model, edge-based model, compact model.

constituent edges and turns, i.e., £(P) = (1700)~€(60)+Zf:1(c(ei_l, ei)+0(e;))—(1—ok)-L(ex).

Given a source edge e, with offset o, and a target edge e; with offset o;, the problem we

consider is computing a shortest path from the start point along e, to the end point along e;.

For simplicity, we assume that os = 1 and o, = 1 in the rest of this paper.

In the following, we discuss both common ways to represent turn costs and restrictions.

After that, we describe Dijkstra’s algorithm and CH, both on standard graphs (simplified or
edge-based graphs) and on compact graphs. We also discuss CCH on the simplified model.

2.1 Turn Representation

The simplified model ignores turn costs and restrictions; see Figure 1 (left). To actually
incorporate them, there are two common ways. We explain each in turn.

Edge-based Model. The edge-based model [9, 28] expands the network so that road segments

become vertices and allowed turns become edges; see Figure 1 (middle) for an example.

More precisely, the edge-based graph G, = (V., E.) is obtained from G as follows. The
vertices of G, are the edges of G, i.e, V., = E. The edges of G, are the allowed turns of
G,ie, E.={(e,f) :e,f € E,r(e,f) = 0}. The cost of an edge (e, f) € E. is defined as
lo(e, f) = c(e, f) + £(f). The main advantage of the edge-based model is that most route
planning algorithms can be used as is on it, without further modifications.

Compact Model. The compact model [18, 11] keeps intersections as vertices, but associates
a p X q turn table T,, with each vertex v, where p and ¢ are the numbers of incoming and
outgoing edges, respectively. The entry T, (i, j) represents the cost of the turn from the i-th
incoming edge e to the j-th outgoing edge f, i.e., T, (i,j) = c(e, f). For each edge (v,w),

its tail corresponds to an erit point at v and its head corresponds to an entry point at w.

Note that the entry points in the compact model translate directly to the vertices in the
edge-based model; see Figure 1 (right) for an example. We denote by v|i the i-th exit (or
entry) point at v and by (v|i,w|j) the edge whose tail corresponds to the i-th exit point at
v and whose head corresponds to the j-th entry point at w. The main advantage of the
compact model is its low space overhead since turn tables can be shared among vertices (the
number of distinct turn tables for continental instances such as the road network of Western
Europe used in our experiments is in the thousands rather than millions [11]).

2.2 Dijkstra’s Algorithm

Dijkstra’s algorithm [15] computes the shortest-path distances from a source vertex s to all
other vertices. For each vertex v, it maintains a distance label d(v), which represents the
cost of the shortest path from s to v seen so far. Moreover, it maintains an addressable
priority queue @ [25] of vertices, using their distance labels as keys. Initially, d(s) = 0 for
the source s, d(v) = oo for each vertex v # s, and Q = {s}.
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The algorithm repeatedly extracts a vertex v with minimum distance label from the
queue and settles it by relazing its outgoing edges (v, w). To relax an edge e = (v, w), the
path from s to w via v is compared with the shortest path from s to w found so far. More
precisely, if d(v) + ¢(e) < d(w), the algorithm sets d(w) = d(v) + ¢(e) and inserts w into
the queue. It stops when the queue becomes empty. Note that Dijkstra’s algorithm has the
label-setting property, i.e., each vertex is settled at most once. Therefore, when computing a
point-to-point shortest path from a source s to a target ¢, we can stop when ¢ is settled.

On the Compact Model. For correctness, we must work on entry points instead of vertices.
That is, we maintain a distance label d(v|:) for each entry point v|i and a queue @ of
unsettled entry points. Initially, d(s|i) = 0 for the entry point s|i corresponding to the
head of the source edge, d(v|j) = co for all other entry points v|j, and @Q = {s|i}. To settle
an entry point v|i, we set d(w|k) = min{d(wl|k),d(v|i) + T,(i,5) + ¢(e)} for each outgoing
edge e = (v|j, w|k). Each entry point is settled at most once, however, each vertex can be
visited multiple times. Note that Dijkstra’s algorithm on the compact model essentially
simulates the execution on the edge-based model.

2.3 Contraction Hierarchies

Contraction hierarchies (CH) [17] is a two-phase speedup technique to accelerate point-to-
point shortest-path computations, which exploits the inherent hierarchy of road networks.
To differentiate it from customizable CH, we sometimes call it weighted or standard CH. The
preprocessing phase heuristically orders the vertices by importance, and contracts them from
least to most important. Intuitively, vertices that hit many shortest paths are considered
more important, such as vertices on highways. To contract a vertex v, it is temporarily
removed from the graph, and shortcut edges are added between its neighbors to preserve
distances in the remaining graph (without v). Note that a shortcut is only needed if it
represents the only shortest path between its endpoints, which can be checked by running a
witness search (local Dijkstra) between its endpoints.

The query phase performs a bidirectional Dijkstra on the augmented graph that only
relaxes edges leading to vertices of higher ranks (importance). The stall-on-demand [17]
optimization prunes the search at any vertex v with a suboptimal distance label, which can
be checked by looking at upward edges coming into v.

On the Compact Model. Recall that we must maintain and compute distance labels for
entry points (rather than vertices) in the compact model. Therefore, when contracting a
vertex v, we need to preserve the distances between all entry points in the remaining graph
(without v). In general, we cannot avoid self-loops and parallel edges. See Figure 2 for an
example. Contracting vertex v’ creates a self-loop at vertex v, because the through movement
from v’s left entry point to its right exit point is costlier than the path via v'. Analogously,
contracting v results in two parallel edges between vertices u and w. When entering v from
the west and leaving w to the east, the shortest path is via v. In contrast, when entering u
from the north and leaving w to the north, it is better to traverse the edge between u and w.

Self-loops make the computation of shortcuts more complicated. Each shortcut is no
longer a concatenation of exactly two edges, but can also include one or more self-loops at
the middle vertex. For example, in Figure 2, the shortcut between v and w includes the
self-loop at v. Therefore, Geisberger and Vetter [18] use the witness search not only to decide
whether a shortcut is necessary but also to compute the cost of the shortcut.

More precisely, to contract a vertex v, they run a witness search for each exit point u|:
such that there is at least one incoming edge (uli,v). Initially, they set d(v’|j) = £(e) for
each edge e = (u]i,v’|j). Moreover, each entry point v’|j is inserted into the queue. The
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Figure 2 Vertex contraction on the compact model. Original edges are shown in black, turn
edges are shown in green, and shortcut edges are shown in blue. Each original edge and each right-,
left- and U-turn movement has cost 1. Each through movement has cost 10. Left: A subgraph before
contraction. Middle: Contracting vertex v’ creates a self-loop at v (cost 3). Right: Contracting v
creates a shortcut edge between u and w (cost 7), resulting in two parallel edges between them.

witness search stops when each entry point w|l such that there is at least one edge (v, w|l)
has been settled. A shortcut s = (u|i,w|l) is only added if it is built from an edge (uli,v),
zero or more self-loops at v, and an edge (v, w|l). The shortcut has cost ¢(s) = d(w|l).

The query phase runs a bidirectional version of the turn-aware Dijkstra described above,
but does not relax edges leading to lower-ranked vertices. Note that the stall-on-demand
optimization can also be applied in the compact model [18].

2.4 Customizable Contraction Hierarchies

Customizable contraction hierarchies (CCH) [14] are a three-phase technique, splitting CH
preprocessing into a relatively slow metric-independent phase and a much faster customiza-
tion phase. The metric-independent phase computes a separator decomposition [5] of the
unweighted graph, determines an associated nested dissection order [19] on the vertices,
and contracts them in this order without running witness searches (which depend on the
metric). Therefore, it adds every potential shortcut. The customization phase computes the
costs of the edges in the hierarchy by processing them in bottom-up fashion. To process an
edge (u,w), it enumerates all triangles {v,u, w} where v has lower rank than w and w, and
checks if the path (u,v,w) improves the cost of (u,w). Alternatively, Buchhold et al. [8]
enumerate all triangles {u, w, v’} where v' has higher rank than u and w, and check if the
path (v, u,w) improves the cost of (v',w), accelerating customization by a factor of 2.

There are two known query algorithms. First, one can run a standard CH search without
modification. In addition, Dibbelt et al. [14] describe a query algorithm based on the
elimination tree of the augmented graph. The parent of a vertex in the elimination tree
is its lowest-ranked higher neighbor in the augmented graph. Bauer et al. [5] prove that
the ancestors of a vertex v in the elimination tree are exactly the set of vertices in the CH
search space of v. Hence, the elimination tree query algorithm explores the search space
by traversing a path in the elimination tree, thereby avoiding a priority queue completely.
Buchhold et al. [8] propose further optimizations for the elimination tree search, which
achieve significant speedups for short- and mid-range queries.
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rank

Figure 3 Original graph and final preprocessing result. The dashed shortcut has always weight
oo in both directions and can be removed.

3 CCH on the Edge-based Model

CCH can be applied to the edge-based model without modifications. However, running times
suffer significantly. We therefore propose optimizations to reduce the slowdown.

Contraction Order. Obtaining the nested dissection order is the most expensive part of
preprocessing. We can apply the same ordering algorithms as for a nonturn CCH without
modification to the edge-based graph. We refer to this order as the edge-based order. Since
this approach is quite slow, we consider two additional ordering approaches.

Recall that the vertices of the expanded graph G, are the edges of G. The derived order
uses an order obtained on the nonturn graph and expands each vertex to all outgoing edges.
Formally, the derived order is obtained by ordering the vertices of V, by the rank of the tail
of their corresponding edge in F.

We can also exploit the fact that vertices in G, are edges in G and compute an edge
order on (G. Algorithms for obtaining separator decompositions in road networks like
InertialFlow [26] and InertialFlowCutter [21] compute separators by finding a small balanced
cut and deriving a separator from that cut. However, a cut in G corresponds directly to
separator in G.. Thus, we compute cut-based orders by computing a small balanced cut in
G, using the nodes corresponding to the cut edges as the highest ranked vertices in the order
for G, and recursing on the sides of the cut. We extend InertialFlowCutter with this schema.

Infinite Shortcuts. CCH algorithms do not work on the original directed graph G = (V, E),
but on the corresponding bidirected graph G’ = (V| E’) that is obtained from G by adding
all edges {(w,v) : (v,w) € EA (w,v) ¢ E}. This can lead to the insertion of unnecessary
shortcuts; see Figure 3 for an example. We denote these unnecessary shortcuts as infinite
shortcuts as the edges in both directions always have weight co. Infinite shortcuts can
be identified by customizing the graph with the weight of every original edge set to zero.
Afterwards, every bidirected edge that still has weight oo in both directions is an infinite
shortcut and can be removed. We identify and remove infinite shortcuts in an additional
preprocessing step, after obtaining the elimination tree.

Directed Hierarchies. In the simplified model, many edges have a corresponding reversed
edge. This changes in the edge-based model and the amount of edges without a corresponding
reversed edge increases. Then, the customized graph contains many edges with weight co but
a finite weight for the reversed edge. Like infinite shortcuts, these edges can be identified by
customization with the zero metric. We remove these edges after obtaining the elimination
tree. The result is a directed hierarchy. By enumerating lower triangles in both directions
separately, the customization can be accelerated. As the elimination tree was computed on
the bidirected graph before the edge removal, no adjustments are necessary for the query.
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Figure 4 On the left is a visualization of a cut in G. In the middle is an arbitrary contraction
order which results in no infinite edges after the first four contractions. On the right, the edges in
the order are grouped which results in three infinite edges after the first four contractions (shown by
the dotted edges).

Reordering Separator Vertices. In a nested dissection order, the vertices inside a separator
can be ordered arbitrarily. We exploit this to generate more infinite shortcuts. Separator
vertices in G correspond to cut edges in G. We order them by the side of their corresponding

cut edges tail vertex. For example consider a cut in G with a left and a right side (Figure 4).

Cut edges going from the left to the ride side (i.e. their respective vertices in G.) will get
the lower ranks, and cut edges from the right to the left will get the higher ranks. This way,
shortcuts between the lower ranked vertices (left to right in the example) can never have a
finite weight. Any directed path between them must use one of the higher ranked vertices
(to go back from right to left). As shortcuts get the weight of the shortest path through
lower ranked vertices, this will always be co and these shortcuts can be removed later.

4 CCH on the Compact Model

Recall that all CCH phases do not work on the original directed graph G = (V, E), but
on the corresponding bidirected graph G’ = (V, E’) that is obtained from G by adding all
edges {(w,v) : (v,w) € E, (w,v) ¢ E}. The cost of each edge in E' \ E is oo, and thus the
distance between any two vertices is the same in G and G’. Since most graph-theoretical
results for undirected graphs carry over to bidirected graphs, CCH can use algorithmic tools
for undirected graphs. In particular, CCH preprocessing exploits quotient graphs and CCH
queries exploit elimination trees, which are both concepts for undirected graphs.

The compact model, however, is inherently directed. We cannot make a compact graph
bidirected, since this would add edges that exit vertices at entry points and enter them at
exit points. Therefore, in the compact model, all CCH phases have to work on the original
(not necessarily bidirected) graph. This has undesirable consequences. First, we cannot use
the efficient CCH preprocessing algorithm based on quotient graphs. Second, we have to use
Dijkstra-based queries, since the faster elimination tree queries are also not applicable.

There is one additional issue. Recall that in the compact model, we generally cannot
avoid self-loops and parallel edges and that each shortcut is no longer built from exactly two
edges, but can also include one or more self-loops at the middle vertex. Standard CH (on the
compact model) deals with this by using the witness searches to determine shortcut costs.

9:7
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Figure 5 Creation of phantom shortcuts. We are about to contract the vertex in the center. Its
lower-ranked neighbors (light-colored) are already contracted. Original edges are shown in black,
turn edges are shown in green, and shortcut edges are shown in blue. Left: The vertex to be
contracted and its neighbors before the contraction. The order on the turns is given by the numbers.
Right: The shortcuts added while contracting the turns. Phantom shortcuts are drawn dotted.

During CCH customization, however, there is no notion of graph searches at all. We
enumerate triangles and perform one basic operation for each triangle: adding up the costs of
two edges to update the cost of the third edge. Hence, to determine the cost of a shortcut s
containing self-loops, we must insert phantom shortcuts. These are used during customization
to incrementally compute the cost of s by repeatedly combining two of its constituent edges.

Preprocessing. Given a nested dissection order on the vertices, we contract them in this
order. When contracting a vertex v, we have to add a shortcut between each exit point /i
with u # v and (uli,v) € E and each entry point w|l with w # v and (v,w|l) € E. In
addition, as already mentioned, we must add phantom shortcuts, so that the customization
phase is able to compute the costs of shortcuts built from more than two edges incrementally.

Our approach is as follows. To contract a vertex v, we pick an order on the turns at v and
contract them in this order. Consider a turn (j, k) at v. For each edge (u|i,v|j) entering v at
entry point j and each edge (v|k, w|l) leaving v at exit point k, we add a shortcut (u|i, w|l).
Note that these shortcuts are concatenations of two edges, and thus their costs can be
customized. If u = v or w = v, then the shortcut is a phantom shortcut.

Note that this approach adds shortcuts that are not necessary. A shortcut (uli,w|l) is
superfluous if v = v and all turns entering exit point ¢ are already contracted, or w = v
and all turns leaving entry point [ are already contracted. To decide whether a shortcut is
necessary, we maintain the number ¢(-) of uncontracted turns that enter or leave each exit or
entry point of v, respectively. Whenever we contract a turn (j, k), we decrement both ¢(j)
and t(k). A shortcut (u|i,w|l) is only inserted if u # v or (i) # 0, and w # v or t(I) # 0.
Figure 5 illustrates the creation of phantom shortcuts.

Different turn orders can lead to slightly different numbers of phantom shortcuts. We
thus tested some turn orders on various benchmark instances, however, the impact on the
performance of all phases was limited. Therefore, any turn order that is easy to implement
can be picked, in particular, the order in which the turns are stored in memory.

Customization. We recontract each turn, this time determining shortcut costs. Since we
have the CCH topology in place, all we need to do to recontract a turn is to enumerate
all triangles spanned by this turn and perform one minimum operation for each triangle.
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Figure 6 A triangle spanned by the turn (j, k) at v. Note that (u|i, w|l) is the shortcut edge, and
(uli,v|j) and (v|k,w|l) are the supporting edges of the triangle.

Consider a turn (j, k) at a vertex v and a triangle consisting of three edges (uli, v|j), (v|k, w|l)
and (uli, w|l); see Figure 6. We call (u]i, w|l) the shortcut edge and the other the supporting
edges of the triangle. Also, we say that the turn spans the triangle.

We recontract the vertices in the given nested dissection order, and within each vertex,
we recontract the turns in the same order as during preprocessing. If we pick the order in
which the turns are stored in memory, we do not have to store the turn order for each vertex
explicitly. For each turn at a vertex v, we enumerate the triangles spanned by the turn where
v is the lowest-ranked vertex, and for each triangle, we add the costs of the two supporting
edges and the turn between them, and update the cost of the shortcut edge if needed.

We now show how to efficiently enumerate all triangles spanned by a turn (j, k) where
the shortcut edge does not point downwards. The other case is symmetric. We maintain
a |V| x A array W, where A is the maximum indegree of the original graph. All values in
the array are initialized to oo. First, we loop over all non-downward edges e; = (v|k, w|l)
leaving v at k and set Ww,l] = T,(j,k) + £(e2). Then, we loop through all non-downward
edges e; = (uli, v|j) entering v at j. For each such e;, we loop through all non-downward edges
e = (uli,w'|l') leaving w at ¢. If £(e1) + Ww',l'] < £(e), then we set £(e) = £(er) + W[w',1'].
Finally, we loop over all edges es again and reset Ww, ] to oco.

Interestingly, a nonturn version of this customization algorithm outperforms the original
customization by Dibbelt et al. [14] by a factor of four, and is twice as fast as the engineered
customization by Buchhold et al. [8]. The drawback is the increase in space consumption.

Queries. Dijkstra-based queries work as in standard CH on the compact model, however,
they do not need to follow phantom shortcuts. Elimination tree queries are not applica-
ble, since elimination trees are defined only for undirected graphs (and their bidirected
counterparts).

5 Experiments

In this section, we present our experimental evaluation. Our benchmark machine runs
openSUSE Leap 15.1 (kernel 4.12.14), and has 192 GiB of DDR4-2666 RAM and two Intel
Xeon Gold 6144 CPUs, each of which has eight cores clocked at 3.5 Ghz and 8 x 64 KiB
of L1, 8 x 1 MiB of L2, and 24.75 MiB of shared L3 cache. Hyperthreading was disabled
and parallel experiments use 16 threads. Our code is written in C++ and compiled with
GCC 8.2.1 using optimization level 3.

We implement our algorithms on top of the existing open-source libraries. For CCH, we
use the implementation from RoutingKit!. We extend it by implementing customization for
directed hierarchies and the removal of infinite edges. For the computation of contraction

! https://github.com/RoutingKit/RoutingKit
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Table 1 Road networks used for the evaluation our algorithms. The turns column contains the
number of allowed turns. It corresponds to the number of edges in the edge-based model. The
number of vertices in the edge-based model is equal to the number of edges in the original graph.

Source Vertices Edges Turns Turn
[10%] [-10%] [10°] data
Chicago TransportationNetworks 13.0 39.0 135.3 100s U-Turns
London PTV 37.0 85.5 137.2  Costs, Restrictions
Stuttgart PTV 109.5 252.1 394.2  Costs, Restrictions
Europe DIMACS 17350.0 39936.5 106371.3 100s U-Turns

orders, we use InertialFlowCutter? [21] and implement the computation of cut-based orders
and the reordering of separator vertices. We publish our extensions to these projects as pull
requests on Github®4. RoutingKit includes an implementation of InertialFlow [26] for the
computation of contraction orders. We perform experiments with both InertialFlow and
InertialFlowCutter. As InertialFlow is outperformed by InertialFlowCutter, our evaluation
focuses on contraction orders obtained by InertialFlowCutter.

Inputs and Methodology. We perform experiments on several graphs with synthetic and
real turn cost data. See Table 1 for an overview. We use three city-sized instances of the road
networks of Chicago [16], London and Stuttgart. The London and Stuttgart instances were
provided by PTV® with real turn restrictions and cost data. Our biggest benchmark instance
is a graph of the road network of Western Europe made publicly available for the Ninth
DIMACS implementation Challenge [13] with synthetic turn costs. To generate synthetic
turn costs, we assign a travel time of 100s to all U-turns. This number does not model a
realistic time but a heavy penalty. All other turns are free. This model has been suggested
in [11] and found to approximate real-world turn cost effects on the routing sufficiently well.

We perform experiments on the biggest strongly connected component of edge-based model
representation of each graph and the induced subgraph on the original graph. Preprocessing
running times are averages over 10 runs, customization running times averages over 100 runs.
We utilize parallelization only for the preprocessing. All other phases are run sequentially.
For the queries, we perform 1000 000 point-to-point queries where both source and target
are edges drawn uniformly at random. In the edge-based model, these edges correspond to
vertices, which we select as source and target. For the original and compact graph, we use
the head vertices of these edges.

Edge-based model. We evaluate the impact of different contraction orders on the perfor-
mance of the different phases and the size of the augmented graph. Preprocessing includes
both computing the order and the contraction but is dominated by the ordering. Table 2
depicts the results. Incorporating turns has a significant impact on the running time of all
phases of CCH. The number of edges in the hierarchy grows at least by a factor of four to up
to more than an order of magnitude. The derived order performs the worst on all instances.

https://github.com/kit-algo/InertialFlowCutter
https://github.com/RoutingKit/RoutingKit/pull/77
https://github.com/kit-algo/InertialFlowCutter/pull/6
https://ptvgroup.com
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Table 2 Performance results for different con- Table 3 Performance impact of different
traction orders on each graph. We report the optimizations on each graph. We report the
number of edges in the augmented graph and run- number of triangles enumerated during the
ning times for preprocessing, customization, and  customization as well as customization and
queries. Orig. denotes the baseline on the non- query running times. All configurations use a
turn/compact graph. The other three orders are  cut-based contraction order. Directed hierar-
for the edge-based model. Deri. indicates the chies imply the removal of infinite shortcuts
derived order, Edge the order computed on the ex- and reordering separator vertices builds on
panded graph, Cut the order obtained by ordering  both directed hierarchies and the removal of

edges in the original graph. infinite shortcuts.
CCH Edges Prepro. Custom. Query Triangles Custom. Query
[10%] [s] [ms]  [us] [10°%] [ms]  [ps]
5 Orig. 118 0.2 6 18 5 None 21.6 51 57
%0 Deri. 1439 0.2 155 150 %" Infinity 19.6 48 56
5 Edge 819 1.1 50 60 g Directed 13.3 28 41
Cut 852 0.2 51 57 Reorder 8.2 20 31
- Orig. 182 0.3 7 20 - None 12.9 40 51
S Deri. 1199 0.3 85 111 S Infinity 11.0 36 51
§ Edge 767 1.1 37 52 § Directed 7.7 23 40
Cut 840 0.3 40 51 Reorder 4.8 18 30
. Orig. 362 0.5 11 16 . None 114 60 37
§o Deri. 2145 0.6 94 79 gb Infinity 8.5 53 37
E Edge 1607 2.4 58 41 E Directed 6.2 36 30
9 Cut 1680 0.9 60 37 “? Reorder 4.4 32 22
Orig. 53521  182.3 2349 187 None 3955.7 14751 577

[ [}

2 Deri. 414615 202.1 29787 1561 & Infinity 3413.6 13942 582
S Edge 311213 2321.1 14787 524 S Directed 2319.7 9590 407
Cut 331794  256.3 14751 577 Reorder 1514.2 8180 306

On Chicago, the customization slows down by a factor of 25. On the other instances, the
slowdown is about an order of magnitude. The slowdown for queries is not as strong but
still significant (by a factor of 5 to 8). Only the preprocessing stays comparatively fast as it
is dominated by the order computation, which can run on the unmodified original graph.
We conclude that this approach is not feasible.

With the edge-based order, we achieve a better order at the cost of additional prepro-
cessing time. The slowdown compared to a nonturn CCH is reduced to a factor of five
for the customization phase, for queries to 2.5 to 3. However, preprocessing takes up to
an order of magnitude longer. Orders computed by InertialFlow are generally worse than
InertialFlowCutter orders (the customization is a factor 1.3 to 1.5 slower) and on graphs
of the edge-based model this difference becomes even more pronounced (factor 1.3 to 2.8).
Consequentially, we focus on InertialFlowCutter orders.

Cut orders achieve the best trade-off between the running times of the different phases.
Customization and query performance is roughly the same as with an edge-based order. The
preprocessing slowdown is well below a factor of two for all graphs. InertialFlowCutter has
certain optimizations which find optimal vertex orders for certain subclasses of graphs. We
did not implement these optimizations for cut-based orders. We expect that implementing
them would close the gap in quality between edge-based and cut-based orders.

9:11
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In Table 3, we report performance results depending on the additional optimizations
applied. All configurations use cut-based orders. We also report the number of triangles
enumerated during the customization as the triangle enumeration dominates the customization
running time. The impact of the optimizations is similar across all instances. All optimizations
combined roughly achieve a speedup of two on both customization and queries. Removing
undirected infinite shortcuts alone yields only small improvements. Combining this with
directed hierarchies and removing all directed infinite shortcuts has a much bigger impact.
This impact can be further amplified by reordering separator vertices, which produces even
more infinite shortcuts. Note that the work per triangle is different for directed hierarchies.
For undirected hierarchies, each triangle will be enumerated once and both directed triangles
will be relaxed at once. For directed hierarchies, however, both directions will be enumerated
separately. Thus, for undirected hierarchies, the number of relaxation operations is twice
the number of enumerated triangles and the reduction achieved by directed hierarchies
even greater. It is noteworthy that even though our optimizations primarily aim for the
customization running time, we also achieve a significant speedup for query running times.
The removal of infinite edges also reduces the number of edges in the query search space.

Compact Model. We also evaluate the performance of CCH with the compact model. The
implementation is considerable more complex than our optimizations for the edge-based model
and sadly does not deliver competitive performance. As we cannot use the efficient quotient
graph based contraction routine, preprocessing slows down by an order of magnitude as
previously observed in [14]. For the Europe instance, the augmented graphs in the compact
model and in the edge-based model contain a similar number of edges. The number of
triangles, however, increases by a factor of 43. This leads to a slowdown of the customization
by a factor of 34. Queries are even worse. The running time increases by a factor of 53. The
reason for this slowdown are vertices with high degrees (several thousand edges) in high-level
separators. This happens because we get shortcuts between almost all pairs of entry and
exit nodes of separator vertices. When an entry node is popped from the queue, all outgoing
edges of that vertex are relaxed. This leads to a tremendous amount of edge relaxations and
the observed slowdown. On Stuttgart and London, the slowdowns are around factor 20.

Comparison with related work. Table 4 summarizes our results and depicts them in
comparison to running times achieved by competing approaches as reported in [11]. The
experiments were performed on the publicly available Europe instance which is the only
instance also considered in related work. Our experiments were conducted on a newer
machine. Thus, the absolute numbers are not perfectly comparable. Using the comparison
methodology from [3], the numbers from [11] should scaled down by a factor of 0.79. We
observe that incorporating turns has a strong impact on all algorithms except CRP. Dijkstra
becomes at least 2.5 times slower. CH queries remain comparatively fast (at least on the
edge-based model), but preprocessing slows down by more than an order of magnitude.
The CRP nonturn variant is realized as free turns in the compact model which explains
why incorporating turns leaves the performance unaffected. While CCH achieves faster
running times than CRP in all phases on nonturn graphs, without our modifications, it is
outperformed by CRP on graphs with turns. However, when using cut-based orders and all
optimizations, CCH again outperforms CRP. CCH with the compact model is outperformed
by the optimized edge-based variant in all phases. Note that both the CRP and CCH
customization times can be further decreased through parallelization and by two related
techniques known as microcode [12] (for CRP) and triangle preprocessing [14] (for CCH).
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Table 4 Performance of Dijkstra, CH, CRP and CCH in the compact model, in the edge-
based model as is and with our optimizations (Edge-based*) on Europe with and without turns.
Preprocessing was executed in parallel, customization and query sequentially. For CH and CRP we
list unscaled results as reported in [11].

No turns Turns

Prepro. Custom. Queries Repr. Prepro. Custom. Queries
[s] [s] [ms] [s] [s] [ms]
Edge-based - - 2674.72

Dijkstra - - 106152 8ePAe
Compact - - 12699.32
Edge-based 1392 - 0.19

CH  [11] 109 - 0.11 8o
Compact 1753 - 2.27
CRP [11] 654 10.55 1.65 Compact 654 11.12 1.67
Edge-based 2321 14.79 0.52
CCH 182 2.35 0.19 Edge-based* 256 8.18 0.31
Compact 2542 281.56 16.51

However, both techniques require significantly more space, and we choose not to use them to
keep the space requirement low.

6 Conclusion

We incorporated turn costs and restrictions into CCH. We presented several straightforward
yet effective optimizations that bring preprocessing and customization times on the expanded
graph close to those achieved on the simplified graph. Preprocessing now takes similar time
on the simplified and expanded graph, and customization on the expanded graph is only
roughly three times slower (down from up to an order of magnitude, e.g., on Chicago).

Adapting CCH to the compact model was much harder. We observed that CCH and the
compact model do not match well. CCH relies heavily on concepts for undirected graphs,
whereas the compact model is inherently directed. Moreover, shortcuts built from more than
two edges are an issue for CCH customization, where there is no notion of graph searches.
Consequently, our experiments showed that the CCH implementation tailored to expanded
graphs significantly outperforms the one for compact graphs.
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