
The Standard Model for Programming Languages:
The Birth of a Mathematical Theory of
Computation
Simone Martini
Department of Computer Science and Engineering, University of Bologna, Italy
INRIA, Sophia-Antipolis, Valbonne, France
http://www.cs.unibo.it/~martini
simone.martini@unibo.it

Abstract
Despite the insight of some of the pioneers (Turing, von Neumann, Curry, Böhm), programming
the early computers was a matter of fiddling with small architecture-dependent details. Only in
the sixties some form of “mathematical program development” will be in the agenda of some of the
most influential players of that time. A “Mathematical Theory of Computation” is the name chosen
by John McCarthy for his approach, which uses a class of recursively computable functions as an
(extensional) model of a class of programs. It is the beginning of that grand endeavour to present
programming as a mathematical activity, and reasoning on programs as a form of mathematical
logic. An important part of this process is the standard model of programming languages – the
informal assumption that the meaning of programs should be understood on an abstract machine
with unbounded resources, and with true arithmetic. We present some crucial moments of this story,
concluding with the emergence, in the seventies, of the need of more “intensional” semantics, like
the sequential algorithms on concrete data structures.
The paper is a small step of a larger project – reflecting and tracing the interaction between
mathematical logic and programming (languages), identifying some of the driving forces of this
process.

to Maurizio Gabbrielli, on his 60th birthday

2012 ACM Subject Classification Social and professional topics → History of programming lan-
guages; Software and its engineering → General programming languages

Keywords and phrases Semantics of programming languages, history of programming languages,
mathematical theory of computation

Digital Object Identifier 10.4230/OASIcs.Gabbrielli.2020.8

Funding Simone Martini: Research partially conducted while on sabbatical leave at the Collegium
– Lyon Institute for Advanced Studies, 2018–2019. Partial support from French ANR project
PROGRAMme.

Acknowledgements I am happy to thank Edgar Daylight for mentioning me Strachey’s letter to the
Computer Journal, and for the many critical reactions to the main thesis of this paper.

1 Introduction

Statements like “the Java programming language is Turing-complete”, or “the C program
‘int x=0; while 1 {x++;}’ is divergent”, or even “the halting problem is undecidable for C
programs”, are common in most textbooks and in the practice of many computer scientists,
despite the fact that they are false, for any actual implementation. The finiteness of any such
implementation implies that the halting problem is decidable, being the system only a finite-
state automaton; that the increment x++ will produce after a finite time an overflow which will
be caught by some hardware interrupt; and that any Java implementation cannot compute

© Simone Martini;
licensed under Creative Commons License CC-BY

Recent Developments in the Design and Implementation of Programming Languages.
Editors: Frank S. de Boer and Jacopo Mauro; Article No. 8; pp. 8:1–8:13

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-9834-1940
http://www.cs.unibo.it/~martini
mailto:simone.martini@unibo.it
https://doi.org/10.4230/OASIcs.Gabbrielli.2020.8
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


8:2 The Standard Model for Programming Languages

functions requiring more resources than those of the universe. Of course, the statements
become true when they are applied to a model of C or Java programs allowing for true
unbounded arithmetic and unbounded (finite) resources. We propose to call standard model
of programming languages this (informal) assumption, where programs are interpreted on an
abstract machine with unbounded resources, and with true arithmetic. It is so “standard”
that its use is almost never esplicitated in the literature (scientific, or in textbooks) – on the
contrary, when another model is implied (for instance, one with finite arithmetic), that use
is instead acknowledged and remarked.

We are so used to the fact that a finite computer program could be regarded as the infinite
function it computes, that we tend to forget that this “double view” was not born together
with the general purpose electronic computer – it is rather the result of a deliberate research
agenda of the end of fifties and the early sixties of the last century, responding both to internal
and external forces of the discipline that was going to be called, also thanks to that agenda,
Computer Science. It is the beginning of that grand endeavour to present programming
as a mathematical activity, and reasoning on programs as a form of mathematical logic.
The paper will present some of the moments of this process, where the components of a
mathematical theory of computations are introduced as the technical, formal elements of the
informal standard model. Before delving into these developments, however, we cannot forget
the founding fathers of the discipline, who already realised this double nature of computer
programs, but whose insight did not pass, at that time, into the practice of computing.

2 The Pioneers

The two years from 1947 to 1949 are of particular interest for our story. First, it is when
Herman Goldstine and John von Neumann wrote the second part [20] of a series of reports on
the “mathematical and logical aspects of an electronic computing instrument”. Its aim is to
give an account of the “methods of coding and of the philosophy which governs it”. A major
methodological tool is the use of flow diagrams for expressing the dynamics of a computation.
Flow diagrams are made of four distinct classes of boxes: operation, alternative, substitution,
and assertion boxes. While boxes of the first two kinds contain operations that the machine
will ultimately perform, the contents of an assertion box “are one or more relations.” A box of
this kind “never requires that any specific calculation be made, it indicates only that certain
relations are automatically fulfilled whenever” the control reaches that point1. Assertion
boxes are “logical expressions” that remain invariant during the computation – their only
reason for being present in a diagram is that they are needed (or useful) in establishing that
the diagram correctly renders “the numerical procedure by which the planner has decided to
solve the problem”, which is expressed in the “language of mathematics”2. For this reason,
coding “has to be viewed as a logical problem and one that represents a new branch of formal
logics.” While the word “logic” (or “logical”) does not necessarily refer to mathematical
(formal, or symbolic) logic in the literature of that period3, the reference to a “new branch

1 Also substitution boxes do not specify any computation; they represent a change in notation, more
specifically in the relation between the internal and the external notation, a significantly different
perspective from the modern use of flow charts, see [29].

2 We will come back to this duality between the specification and the implementation (in the today’s
terminology, of course) at the end of Section 4.

3 “Logical” is usually opposed to “physical”, or “electronical”, like in “logical design of digital circuits”; or
in the very title of the series in which [20] appears: “mathematical and logical aspects of an electronic
computing instrument.”



S. Martini 8:3

of formal logics” is explicit. Assertions bring mathematical logic into the very notation for
writing programs; moreover, references to other notions of formal languages are present in
other places of [20], like the distinction between free and bound variables. “Formal logic”
is for Goldstine and von Neumann at the core of programming, as the discipline where
assertions may be written and proven.

An analogous use of assertions for “checking [the correctness of] a large routine” will be
proposed by Alan Turing two years later. In [54]4 he lucidly describes a proof of correctness
as consisting of three different steps. First, “the programmer should make assertions about
the various states that the machine can reach.” Then, “the checker [i.e., the one doing the
proof] has to verify that [these assertions] agree with the claims that are made for the routine
as a whole.” “Finally the checker has to verify that the process comes to an end.” Observe
the clarity by which full correctness (in today’s terms) is spelled out, the distinction between
specification (“claims that are made for the routine as a whole”) and implementation, and
the interplay between these two, where assertions play their role.

Turing brings us back to year 1947, when he also writes a paper with some remarks on
mathematical logic in computer programming. In the “Lecture on Automatic Computing
Engine” [53] he has already clear that programming a computing machine could be done, in
principle, with languages much more sophisticated than the machine instructions that were
available at the time. Indeed, “in principle one should be able to communicate [with these
machines] in any symbolic logic, provided that the machine were given instruction tables
which would allow it to interpret that logical system.” Like Goldstine and von Neumann,
also Turing sees a bright future for mathematical logic (to be understood, in this case, as
the discipline of artificial languages): “there will be much more practical scope for logical
systems than there has been in the past.”

Haskell B. Curry in those same years uses his logical apparatus in order to program the
new computing machines. Discussing an inverse interpolation routine and its correctness,
in [10] he introduces a notion of type for memory words: those containing instructions
(orders), and those containing data (quantities). Starting from this, as reconstructed by [15],
he builds a surprising, non-trivial mathematical theory of programs, containing theorems
analogous to the “well-typed expressions do not go wrong”5 of [38], and he uses them to
define classes of program transformations and compositions which are “safe” for the intended
operational semantics. The presence of mathematical logic is so explicit that Curry’s reports
will get a review on the Journal of Symbolic Logic6.

A lesser-known contribution is the early work of Corrado Böhm, a few years later. His
thesis at ETH Zurich7 esplicitely connects the new computing machines to the mathematical,
abstract analysis of Turing, up to the claim that “les calculatrices les plus évoluées sont
universelles, au sens spécifié par M. Turing.” Under this assumption, Böhm may assume
that all the general purpose, stored-program computers “sont, au point de vue logico-
mathématique, équivalentes entre elles,” so that he may choose a specific type of computer
(a three-address machine) without any loss of generality. These remarks, and the explicit

4 See also [39], for a reprint of the original paper, and a commentary.
5 “Suppose we have an initial type determination for the initial program”, that is an assignment of types
to words which assign type “order” to any instruction, and type “quantity” to any data, then the
memory “word at the control location is always [scil., at any time during execution] an order” [10],
number 26.

6 By G.W. Patterson, JSL 22(01), 1957, 102-103.
7 Written under the direction of E. Stiefel and P. Bernays, submitted in 1952, and published in 1954 [6];

see also Knuth’s [29].

Gabbrielli’s Festschrift



8:4 The Standard Model for Programming Languages

connection to Turing’s theory, that to most of us seem obvious, were not (yet) part of the
standard background of the people working in the field of automatic computing machines. Of
course, they were known to some of the other giants (von Neumann and his peers in primis;
Böhm’s advisor Paul Bernays is the probable source who mentioned Turing’s work to him),
but it will be only much later that Turing will become the iconic figure of father for computer
science [11]8. Another striking observation in Böhm’s thesis is that a program is seen under a
double interpretation: as a description of the behaviour of a computer, and as the description
of a “méthode numérique de calcul.” Without forcing the interpretation, we may read this
as one of the first explicit references to the duality between an operational description of
the behaviour of an (abstract) machine, and the numerical function that results from that
sequence of operations.

The far-sight of these pioneers should not obfuscate the fact that the role of logic in the
early days of the digital computing machines (both their design and their programming) was
modest, if not absent (e.g., [11, 14]). Programming those machines was more a technological
affair, strictly coupled to the technology of the different computers. Despite the genial
recognition by Turing that “any symbolic logic” could be used as a programming language,
it is only during the fifties, and with graduality, that programming started to be perceived
as a “linguistic activity” [42]. As for the correctness of programs, Knuth’s recollection [28] is
that at the end of the fifties “the accepted methodology for program construction was [. . . ]:
People would write code and make test runs, then find bugs and make patches, then find
more bugs and make more patches, and so on. We never realized that there might be a way to
construct a rigorous proof of validity.” “The early treatises of Goldstine and von Neumann,”
and of Turing, and Curry, “which provided a glimpse of mathematical program development,
had long been forgotten.” In summary, while there are important relations with other parts
of mathematics, like numerical analysis (e.g., Jim Wilkinson’s backward error analysis), or
automata theory (from von Neumann, to Kleene’s regular events, to Rabin and Scott), or
cybernetics, at the macro scale little happens on the explicit border between logic and the
new field of computing, which at that same time struggled to be recognised as an autonomous
scientific discipline9. In this process, the availability of computer-independent (“universal,”
in the terminology of the time) programming languages allowed the expression of algorithms

8 Describing the relations between Turing’s work – and especially the notion of Turing machine, – the
modern digital computer, and computer programming, is well outside the scope of this paper. For some
of the relations between Turing and von Neumann, see Stanley Frankel’s letter to Brian Randell, quoted
in [45]. An argument on the equivalence of Turing machines and McCulloch and Pitts’s neuron nets
“supplied with an infinite blank tape,” can be found in von Neumann’s [58]. A balanced review of the
actual impact of Turing on computer science may found in Section 5 of Liesbeth De Mol’s entry on
Turing machines for the Stanford Encyclopedia of Philosophy [13], from which we quote the following.
“Recent historical research shows also that one should treat the impact of Turing machines with great
care and that one should be careful in retrofitting the past into the present.” Only “in the 1950s then
the (universal) Turing machine starts to become an accepted model in relation to actual computers and
is used as a tool to reflect on the limits and potentials of general-purpose computers by both engineers,
mathematicians and logicians.” See also [22, 11].

9 A struggle that was going to be long. The first Computer Science department of the US was established
in 1962 at Purdue University; Samuel D. Conte, first Head of that department, will recall in a 1999
Computerworld magazine interview: “Most scientists thought that using a computer was simply
programming – that it didn’t involve any deep scientific thought and that anyone could learn to program.
So why have a degree? They thought computers were vocational vs. scientific in nature” (quoted in
Conte’s obituary at Purdue University, 2002). Next computer science departments to be established
would be those at the University of North Carolina at Chapel Hill, in 1964, and at Stanford in 1965.
Still in 1967, Perlis, Newell and Simon (all of them will receive the Turing award; Simon will also be
a Nobel laureate in Economics) feel the need of a letter to Science [41] to argue “why there is such a
thing like computer science”.



S. Martini 8:5

in a machine neutral way, thus making algorithms and their properties amenable to a formal
study. Programming languages themselves were treated as an object of study, starting from
the formal definition of Algol’s syntax [1, 2]. For an entrance ticket to “science”, however, a
complete “theory” was needed, encompassing also semantics of programming languages and
their use in program development.

3 Towards a General theory

The construction of a “mathematical theory of computation,” (or a “mathematical science of
computation”) is the explicit goal of John McCarthy, starting from 1961 (when he was still at
MIT) and covering his first period at Stanford, where he moved in 1963. In [35]10 he sketches
an ambitious plan for a general theory, based on mathematical logic, that could serve as a
foundation for computation, in such a way that “it is reasonable to hope that the relationship
between computation and mathematical logic will be as fruitful in the next century as that
between analysis and physics in the last.” After having dismissed numerical analysis (for
being too narrow for a general theory), computability theory (for focussing on undecidability,
instead of positive results, and for being uninterested on properties of algorithms), and finite
automata theory (for being of no use in the treatment of computers, because they have too
many states), it proceeds to list the “practical” (sic) results of the theory. The first is “to
develop a universal programming language”: Algol is a good step in the right direction, but
it has several “weaknesses”, among which the impossibility to describe different kinds of
data11. Second, “to define a theory of the equivalence of computation processes,” to be used
to define and study equality preserving transformation. Let us esplicitate what McCarthy
leaves unsaid: once we have an accepted model for the behaviour of a program, we may study
under which transformations of (the syntactical presentation of) the program the behaviour
remains invariant (in the model). A third goal goes in the same direction: “To represent
computers as well as computations in a formalism that permits a treatment of the relation
between a computation and the computer that carries out the computation.” The models
for both the program and its executing agent should be expressed in the same conceptual
framework, in the same theory, so that one may express relations among the two, like the
fact that (the model of) the computer that carries out the computation is “sound” with
respect to (the model of) the program. Contrasting the lack of interest of recursive function
theory for the positive results and for the properties of algorithms, a fourth goal is “to give a
quantitative theory of computation [. . . ] analogous to Shannon’s measure of information.”
The paper does not elaborate further on this point; we may probably ascribe to this goal
the development of computational complexity. Finally, a last purpose of a general theory
would be “to represent algorithms by symbolic expressions in such a way that significant
changes in the behavior represented by the algorithms are represented by simple changes in
the symbolic expressions.” Once again the point will not be taken up again in the rest of
the paper, besides explaining that it is relevant for programs that “learn from experience”.
For our purposes, it suffices to stress the reference to the availability of (a model of) the
behaviour of a program and to the interplay between the syntactic representation of the
algorithm and that behaviour.

10The preliminary version is from 1961; the final 1963 version contains a new section on the “relations
between mathematical logic and computation.”

11Note, en passant, that the word “type” is still not used in this context, for a collection of homogeneous
values; see [32].

Gabbrielli’s Festschrift



8:6 The Standard Model for Programming Languages

The technical contents of the paper, of course, cannot match the grandeur of these goals.
The paper introduces a theory of higher order, partial computable functions on arbitrary
domains, defined by composition, conditional statements, and general recursion. Moreover,
a uniform way to define new data spaces is presented – data space constructors are the
Cartesian product, the disjoint union, and the power set, each of them equipped with its
canonical maps, which are used to define functions on the new spaces from functions on the
base spaces. Base data spaces could be taken as frugal as the single “null set”, since natural
numbers could be defined from it. The goal is to provide general, abstract mechanisms,
instead of choosing an arbitrary new palette of primitive types.

The picture sketched in [35] is further developed in [34] (to “be considered together
with my earlier paper”), which contains a first attempt for an epistemology for (the still
unborn) computer science12, and introduces again, after the pioneers, the problem of program
correctness: “Instead of debugging a program, one should prove that it meets its specifications,
and this proof should be checked by a computer program. For this to be possible, formal
systems are required in which it is easy to write proofs.” Of course, one needs first a
semantics for the behaviour of a program. This is an important contribution of the paper:
programs expressed as sequences of assignments and conditional go to’s are given meaning
as recursive functions acting on the set of current values of the variables (the “state vector”).
Each statement of the program corresponds to such a recursive function, the meaning of
a program being obtained by a suitable composition of these functions, in a compositional
approach which will be the cornerstone of formal program semantics. Moreover, the proof
technique of “recursion induction,” already introduced in [35], is extended, so that it could
be applied directly to programs without first transforming them to recursive functions. This
last contribution is particularly relevant for our story: the program is implicitly understood
as a representative for its meaning, so that one may argue on the program (a finite, textual
object) for obtaining results on its model (an infinite function over the set of possible data).

McCarthy will not develop the formal semantics introduced in his two papers, and the
creation of a mathematical semantics for programs is usually credited to Robert Floyd [18]13
and Tony Hoare [23]. Both are lucid on the need of a machine independent meaning of
programs, and the need of formal theories for reasoning on programs. For Hoare, “com-
puter programming is an exact science in that all the properties of a program and all the
consequences of executing it in any given environment can, in principle, be found out from
the text of the program itself by means of purely deductive reasoning.” Sola scripta are
normative for the behaviour of a program: a model for the semantics is implicit and implied.

In those same years, the construction of an explicit semantic model of a programming lan-
guage is the goal of Christopher Strachey, after ideas of Peter Landin [31]. Starting with [50],
presented at a working conference in 1964, and especially with the (then unpublished) notes
of a course at Copenhagen in 1967 [51], Strachey presents a full-blown account14 of a math-
ematical semantics of a programming language, introducing the notions of “abstract store”
and “environment,” for modelling assignments and side-effects. Commands are interpreted

12 “What are the entities with which the science of computation deals? What kinds of facts about these
entities would we like to derive? What are the basic assumptions from which we should start?”

13 “An adequate basis for formal definitions of the meanings of programs [. . . ] in such a way that a
rigorous standard is established for proofs about computer programs.” “Based on ideas of Perlis and
Gorn.” “That semantics of a programming language may be defined independently of all processors
[. . . ] appear[s] to be new, although McCarthy has done similar work for programming languages based
on evaluation of recursive functions.”

14 See, for instance, Figure 1 of [51], page 17 of the reprinted version.



S. Martini 8:7

as functions from stores to stores. The basic semantical domains for values are not discussed,
but in a later monograph Strachey will esplicitely refer to “abstract mathematical objects,
such as integers,” in such a way that “when we write a statement such as x := Sin(y + 3) in
ALGOL 60, what we have in mind is the mathematical functions sine and addition. It is true
that our machines can only provide an approximation to these functions but the discrepancies
are generally small and we usually start by ignoring them. It is only after we have devised a
program which would be correct if the functions used were the exact mathematical ones that
we start investigating the errors caused by the finite nature of our computer.”

We cannot treat in this paper how mathematical logic and programming languages
interacted from the end of sixties – a process much less linear than we may think from
today’s perspective. Even the relations between the notion of “type” in the two fields are
not as straightforward as they may seem [32, 33]. An important chapter of that story would
be that of logic programming languages (starting from Colmerauer in 1970 and Kowalski in
1974), where logic enters as a first-class actor (see [36]).

4 The Standard Model

The previous section sketched the gradual proposal of (several) semantics for programming
languages that could abstract from specific processors and their limitations. While general
semantical theories of programming languages had limited impact outside the research
communities, the natural approach to a program as the description of a computation
happening on an abstract (and largely unspecified) computational device had a major
impact. True arithmetic and (in principle) unbounded resources is all that is required of
such an abstract processor, that in the Introduction we identified as the standard model: the
naturalness of assuming these simple hypotheses, gave the standard model the momentum
it needed to establish itself as a permanent fixture in programming language theory and
education15. Several reasons cooperate for the establishment of such standard model. One is
certainly the need to validate computing as a science – -a mathematical theory is always the
entrance ticket to science. Several successes of the use of mathematics into computing were
already present at the end of the sixties, like the theory of deterministic parsing (LL and
LR), the application of formal language theory, complexity theory, and of course numerical
analysis. Despite the large body of results (and relevant problems) in these areas, it is
mathematical logic that, as we have seen, dominate the field of programming languages, up to
the view (or dream) of McCarthy that logic will be for computation what analysis has been
for physics. But a theory of program correctness (which, as we have seen, is deeply connected
to the emergence of the standard model) is needed also by other reasons, internal to the

15This is not to say that other perspectives were absent. In a 1965 letter to the Computer Journal [49]
Strachey proves the undecidability of the halting problem for his Algol-like language CPL, assuming
(without saying it!) the standard model. Among the reactions to the letter, the one by W.D. Maurer
(27 August 1965) clearly doesn’t share the “common ground”: Strachey’s “letter was of particular
interest to me because I had, several months ago, proved that it is indeed possible to write such a
program,” evidently by assuming a finite automaton as a processor. We find different views also among
the founders of the mathematical theory of programs. In the same year of Strachey’s [52], Edsger W.
Dijkstra writes: “We are considering finite computations only; therefore we may restrict ourselves to
computational processes taking place in a finite state machine – although the possible number of states
may be very, very large – and take the point of view that the net effect of the computation can be
described by the transition from initial to final state.” “One often encounters the tacit assumption that
[. . . ] the inclusion of infinite computations leads to the most appropriate model.” “However, we know
that the inclusion of the infinite computation is not a logically painless affair.” “It seems more effective
to restrict oneself to finite computations.” [16].

Gabbrielli’s Festschrift



8:8 The Standard Model for Programming Languages

discipline, and probably more important. As an applied discipline – at the end, programs
will be used in the real world by real people – computing needs a way to ensure that what it
delivers satisfies the requirements on its use. McCarthy’s remark on the relations between
physics and mathematics seems to suggest that the model here is structural engineering,
where mathematical physics laws and empirical knowledge are used together to understand,
predict, and calculate the stability, strength and rigidity of structures for buildings. The
mathematical theory of computation and its standard model are instrumental for reaching
an analogous standard of rigor, so that “when the correctness of a program, its compiler,
and the hardware of the computer have all been established with mathematical certainty,
it will be possible to place great reliance on the results of the program, and predict their
properties with a confidence limited only by the reliability of the electronics,” as Hoare writes
in his landmark paper on program correctness [23]16. In this, computing has a big advantage
over structural engineering – only the very last layer of the deployment of a system (“the
reliability of the electronics”) is left out of reach of the formal approach. Since all levels
in the hierarchy of a computing system are of the same, abstract nature, all levels could
be subject (at least conceptually) to the same analysis. When a formally proved chain of
compilers will be availabile, a proof that a model of the higher level program satisfies a
certain condition, transfers automatically to a proof that a model of the low level program
satisfies some other condition, also obtained automatically from the higher level one. No
concrete, no iron, no workmanship is involved.

In this context, the standard model is to programming languages what movement without
friction is to mechanics. And this is why it is so important. It is not that it implies Turing-
completeness that matters, but its simplicity and the fact that, indeed, one may do some
mathematics with it. The analogy with the Galilean effort for physics is illuminating – no
bodies of different masses reach the ground at the same time when they actually fall from
the leaning tower of Pisa, like there is no true unbounded arithmetic inside any laptop; or
there is no true isochronous pendulum in nature. Yet, you do not understand a single bit of
mechanics if you don’t abstract away friction, and don’t approximate to small oscillations.

The standard model comes with three features, deeply connected among them. First,
compositionality – the meaning of a complex construct is obtained from the meaning of
its constituents, by composing them in a way that only depends on the construct under
consideration. Second, extensionality – two constructs with the same input-output behaviour
(on their intended domains) have also the same meaning. Finally, referential transparency
– “if we wish to find the value of an expression which contains a sub-expression, the only
thing we need to know about the sub-expression is its value. Any other features of the
sub-expression, such as its internal structure [. . . ] are irrelevant to the value of the main
expression” [51]17.

Other subtle ingredients are present, but mostly hidden, the most important one being
continuity, which is the abstract characterization of the finitary character of the operations
which occur during a computation18. In recursive function theory, continuity was implicit in
Kleene’s first recursion theorem [27], and then exploited in a beautiful set of results, whose
apex are the Rice-Shapiro and Myhill-Shepherdson theorems (see [46]), of the second half

16Verification of a concrete system, of course, is not the same as verifying its (mathematical) model. A
full literature exists on the limitations of formal verification, e.g. [21, 17, 12, 56].

17For this use of the expression “referential transparency”, Strachey quotes Quine [44] (it is in §30), who
in turn refers to Whitehead and Russell’s Principia Mathematica.

18See [8] for a historical reconstruction of the relevance of continuity in early programming language
semantics.



S. Martini 8:9

of of the fifties. Programming language semantics has a problem analogous to those solved
by Kleene’s recursion theorem – how to give meaning to (multiple) recursive definitions.
In his PhD thesis at MIT, Morris [40] uses the fixed-point combinator of the λ-calculus to
link recursion in programming languages to recursive function theory. He shows that the
fixed-point operator, applied to a recursive definition, gives the least solution with respect to
a certain operational order. It was then Dana Scott to put continuity under spotlight [47],
and to make it one of the cornerstone of the denotational semantics approach (also to solve
those recursive equations between domains which are needed in Strachey’s approach.)

One of the most important characteristics of a good semantic definition is that it allows
for multiple concrete realisations (“implementations”) – it must not anticipate those choices
that should only be made when the language is implemented. One possible approach to
the definition of a language, in fact, could be to define the meaning through a particular
interpreter: “This used to be quite common: languages would be “as defined by” some
particular compiler” [48]. In this way, however, all the details of that “particular compiler”
are needed in order to understand a program. Even more important, to what level of detail is
this canonical implementation normative? Is the computation time of a program part of its
definition? Is the reporting of errors? The difference between definition and implementation
is crucial in the literature we have cited in the previous section. The proposed models are a
possible result of the difficult quest for the happy medium between exactness and flexibility,
in such a way as to remove ambiguity, still leaving room for implementation (see [19]).

Finally, the explicit availability of models (and especially of the standard model) allows
for a clear separation between specification (normative, expressed in the explicit or implicit
model), and implementation (that it be abstract or concrete has little importance in this
context). Programs are not only abstract mathematical objects living in the theory of
computation; nor are only textual, concrete objects embodied in a processor, and thus living
in the physical world. The specification defines their function19, while implementation realises
that function – it is only in the interplay among these two aspects that programs get their
ontology as technical artifacts [55].

5 More Intensional Models

What we have called the standard model is in reality a plurality of abstractions, depending
on the language which is modelled. They all share the fact that the numerical functions on
the integers are the true arithmetical ones, and that computation happens on an (abstract)
processor with unlimited resources (in storage, and time). Coping with real languages
required, since the beginning, the introduction of several complications, for instance to deal
with side effects (which needed environments and stores), or unrestricted jumps (which
required continuations to be used). Still, much effort was in ensuring that the “internal
structure” of a program didn’t influence its meaning: two different algorithms for the same
functions (with the same side-effects, if any), should give rise to the same semantics. This
is, after all, what extensionality is about. But this is also an important simplification,
or abstraction, that at some point one needs to overcome – real movement happens with
friction. Moreover, the fact that the domains involved in the semantics should have “the
usual mathematical properties” is something that called for a subtler investigation.

One of the first questions to be tackled, was how to characterise (express, study) se-
quentiality, an important, intensional aspect of certain computations. For this, some notion
of “event” seemed essential, to be the elementary building block to serialize. In one of

19 See, for instance, [30, 57]

Gabbrielli’s Festschrift



8:10 The Standard Model for Programming Languages

the first papers attempting to model parallel programming, Gilles Kahn [24] described a
network of sequential processes, communicating through unbounded queues; together with
Dave MacQueen, he constructed an operational model for such processes, which, in response
to a request, consume data to produce output [25]. Is there a reasonable mathematical
(denotational) model for such processes?

Almost at the same time, Gérard Berry studied bottom-up computations, where recursion
is understood as a production of “events” [3]; he soon discovered [4] that computation in
λ-calculus is intrinsically sequential20. Are there models built only with sequential functions,
thus “closer” to the operational behaviour21?

The answer to these questions came in a series of contributions by Kahn, Berry, Plotkin,
and Pierre-Louis Curien (in several configurations as co-authors). The outcome were the
notions of concrete data structure, concrete domain, and sequential algorithms. Sequential
algorithms [5] are (Kahn-Plotkin [26]) sequential functions, equipped with a strategy for
their computation, expressed in a demand-driven way, as in [25]22. The model of sequential
algorithms is “intensional”: there are programs with the same input-output behaviour which
are separated in the model. It is not a surprise that a similar notion of intensionality is found
in Glynn Winskel’s event structures [59], developed almost at the same time than sequential
algorithms, and which may be seen as a generalization of concrete domains (which already
contains a notion of incompatibility between elements)23.

From there, semantics of programming languages strived to cope also with intensional
phenomena, trying, at the same time, to not abandon the power and simplicity of extensional
reasoning.

But telling that story would require another paper. Which I shall write for Maurizio’s
seventieth birthday.

References

1 John W. Backus. The syntax and semantics of the proposed international algebraic language
of the Zurich ACM-GAMM conference. In Proceedings Int. Conf. on Information Processing,
UNESCO, pages 125–132, 1959.

2 John W. Backus, F. L. Bauer, J. Green, C. Katz, J. McCarthy, A. J. Perlis, H. Rutishauser,
K. Samelson, B. Vauquois, J. H. Wegstein, A. van Wijngaarden, and M. Woodger. Report on
the algorithmic language ALGOL 60. Commun. ACM, 3(5):299–314, 1960.

20The function “parallel or” (or “parallel if”):

por(x, y) =

{
tt if x = tt or y = tt
ff if x = y = ff
⊥ otherwise

is not λ-definable, although it is clearly computable: simultaneously evaluate x and y (e.g., by dove-
tailing) until one of the two terminates. The parallel or is also a continuous function present in the
Scott models for the λ-calculus, and hence it is a “spurious” element of these models, being undefinable
by syntactic means. Gordon Plotkin re-discovered the same result for Milner’s PCF [43].

21And are there models where any element is definable, thus excluding the parallel or? Definability, as it
was soon discovered, is related (indeed, for PCF it is equivalent) to full-abstraction [37] (which we do
not treat here; see [9].)

22The detailed story of the discovery of sequential algorithms is told by Stephen Brookes [7] in the
introduction to the journal version (1993) of the technical report (1978) by Kahn and Plotkin [26] on
concrete domains and sequential functions.

23 See Cardone [8] for the relevance of the notion of continuity in this context, and for some of the relations
of event structures to Scott’s theory and to Carl Adam Petri’s analysis of concurrency.



S. Martini 8:11

3 Gérard Berry. Séquentialité de l’évaluation formelle des lambda-expressions. In B. Robinet,
editor, Program Transformations, 3eme Colloque International sur la Programmation, pages
67–80, Paris, 1978. Dunod.

4 Gérard Berry. Modèles complètement adéquats et stables des lambda-calculs typés. Thèse de
Doctorat d’État, Université Paris VII, 1979.

5 Gérard Berry and Pierre-Louis Curien. Sequential algorithms on concrete data structures.
Theor. Comput. Sci., 20:265–321, 1982.

6 Corrado Böhm. Calculatrices digitales. Du déchiffrage des formules logico-mathématiques par
la machine même dans la conception du programme. Annali di matematica pura e applicata,
IV-37(1):1–51, 1954.

7 Stephen D. Brookes. Historical introduction to “Concrete Domains” by G. Kahn and Gordon
D. Plotkin. Theor. Comput. Sci., 121(1&2):179–186, 1993.

8 Felice Cardone. Continuity in semantic theories of programming. History and Philosophy of
Logic, 26(3):242–261, 2015.

9 Felice Cardone. Games, full abstraction and full completeness. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
winter 2017 edition, 2017.

10 Haskell B. Curry. On the composition of programs for automatic computing. Technical Report
Memorandum 10337, Naval Ordnance Laboratory, 1949.

11 Edgar Daylight. Towards a historical notion of ‘Turing — the father of computer science’.
History and Philosophy of Logic, 36(3):205–228, 2015.

12 Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. Social processes and proofs of
theorems and programs. Commun. ACM, 22(5):271–280, 1979.

13 Liesbeth De Mol. Turing Machines. In Edward N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, winter 2019 edition, 2019.

14 Liesbeth De Mol, Maarten Bullynck, and Edgar G. Daylight. Less is more in the fifties.
Encounters between logical minimalism and computer design during the 1950s. IEEE Annals
of the History of Computing, 2018.

15 Liesbeth De Mol, Martin Carlé, and Maarten Bullyinck. Haskell before Haskell: an alternative
lesson in practical logics of the ENIAC. Journal of Logic and Computation, 25(4):1011–1046,
2015.

16 Edsger W. Dijkstra. A simple axiomatic basis for programming language constructs. Indaga-
tiones Mathematicae, 36:1–15, 1974.

17 James H. Fetzer. Program verification: The very idea. Commun. ACM, 31(9):1048–1063, 1988.
18 Robert W. Floyd. Assigning meanings to programs. Mathematical aspects of computer science,

19:19–32, 1967.
19 Maurizio Gabbrielli and Simone Martini. Programming Languages: Principles and Paradigms.

Undergraduate Topics in Computer Science. Springer, 2010.
20 Hermann Goldstine and John von Neumann. Planning and coding of problems for an electronic

computing instrument. Technical Report Part II, Volume 1-3, Institute of Advanced Studies,
1947.

21 Solomon W. Golomb. Mathematical models: Uses and limitations. IEEE Transactions on
Reliability, R-20(3):130–131, 1971.

22 Thomas Haigh. Actually, turing did not invent the computer. CACM, 57(1):36–41, 2014.
23 C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM, 12(10):576–

580, 1969.
24 Gilles Kahn. The semantics of a simple language for parallel processing. In Jack L. Rosenfeld,

editor, Information Processing 74, Proceedings of IFIP Congress, pages 471–475. North-Holland,
1974.

25 Gilles Kahn and David B. MacQueen. Coroutines and networks of parallel processes. In
Information Processing 77, Proceedings of IFIP Congress, pages 993–998. North Holland, 1977.

Gabbrielli’s Festschrift



8:12 The Standard Model for Programming Languages

26 Gilles Kahn and Gordon D. Plotkin. Concrete domains. Theor. Comput. Sci., 121(1&2):187–
277, 1993. Reprint of the IRIA-LABORIA rapport 336 (1978).

27 Stephen C. Kleene. Introduction to Metamathematics. Van Nostrand, New York, 1959.
28 Donald E. Knuth. Robert W Floyd, in memoriam. SIGACT News, 34(4):3–13, December

2003.
29 Donald E. Knuth and Luis T. Pardo. The early development of programming languages. In

N. Metropolis, J. Howlett, and Gian-Carlo Rota, editors, A History of Computing in the
Twentieth Century, pages 197–273. Academic Press, New York, NY, USA, 1980.

30 Peter Kroes. Engineering and the dual nature of technical artefacts. Cambridge Journal of
Economics, 34(1):51–62, 2010.

31 Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal, 6:308–320,
1964.

32 Simone Martini. Several types of types in programming languages. In Fabio Gadducci and
Mirko Tavosanis, editors, HAPOC 2015, number 487 in IFIP Advances in Information and
Communication Technology, pages 216–227. Springer, 2016.

33 Simone Martini. Types in programming languages, between modelling, abstraction, and
correctness. In Arnold Beckmann, Laurent Bienvenu, and Nataša Jonoska, editors, CiE 2016:
Pursuit of the Universal, volume 9709 of LNCS, pages 164–169. Springer, 2016.

34 John McCarthy. Towards a mathematical science of computation. In IFIP Congress, pages
21–28, 1962.

35 John McCarthy. A basis for a mathematical theory of computation. In P. Braffort and
D. Hirschberg, editors, Computer Programming and Formal Systems, volume 35 of Studies in
Logic and the Foundations of Mathematics, pages 33–70. Elsevier, 1963. A preliminary version
presented at the Western Joint IRE-AIEE-ACM 1961 Computer Conference, pp. 225–238.
ACM, New York, NY, USA (1961).

36 Dale Miller. Reciprocal influences between proof theory and logic programming. Philosophy &
Technology, 2019. doi:10.1007/s13347-019-00370-x.

37 Robin Milner. Processes: a mathematical model of computing agents. In H.E. Rose and
J.C. Shepherdson, editors, Logic Colloquium ’73, number 80 in Studies in the Logic and the
Foundations of Mathematics, pages 157–174, Amsterdam, 1975. North-Holland.

38 Robin Milner. A theory of type polymorphism in programming. J. Comput. Syst. Sci.,
17(3):348–375, 1978.

39 Francis Lockwood Morris and Cliff B. Jones. An early program proof by Alan Turing. Annals
of the History of Computing, 6:139–143, 1984.

40 James H. Morris. Lambda-calculus models of programming languages. PhD thesis, MIT, 1968.
41 Allen Newell, Alan J. Perlis, and Herbert A. Simon. Computer science. Science, 157(3795):1373–

1374, 1967.
42 David Nofre, Mark Priestley, and Gerard Alberts. When technology became language: The

origins of the linguistic conception of computer programming, 1950–1960. Technology and
Culture, 55:40–75, 2014.

43 Gordon D. Plotkin. LCF considered as a programming language. Theor. Comput. Sci.,
5(3):223–255, 1977.

44 Willard Van Orman Quine. Word and Object. MIT Press, 1960.
45 B. Randell. On Alan Turing and the origins of digital computers. Machine Intelligence, pages

3–20, 1972.
46 Hartley Rogers. Theory of Recursive Functions and Effective Computability. McGraw Hill,

New York, 1967.
47 Dana Scott. Outline of a mathematical theory of computation. In Proc. Fourth Annual

Princeton Conference on Information Sciences and Systems, pages 169–76, Also Tech. Mono.
PRG-2, Programming Research Group, University of Oxford., 1970.

48 Joseph E. Stoy. Denotational semantics: The Scott-Strachey approach to programming language
theory. MIT Press, 1977.

https://doi.org/10.1007/s13347-019-00370-x


S. Martini 8:13

49 Christopher Strachey. An impossible program. The Computer Journal, 7(4):313, 1965.
50 Christopher Strachey. Towards a formal semantics. In T.B. Jr. Steel, editor, Formal Language

Description Languages for Computer Programming, pages 198–220. North-Holland, 1966.
51 Christopher Strachey. Fundamental concepts in programming languages. International Summer

School in Computer Programming; Copenhagen. Reprinted in Higher-Order and Symbolic
Computation, 13, 11–49, 2000, August 1967.

52 Christopher Strachey. The varieties of programming language. Technical Report PRG-10,
Oxford University Computing Laboratory, 1973.

53 Alan M. Turing. Lecture to L.M.S. Feb. 20 1947. In Turing archive, AMT/B/1, 1947.
54 Alan M. Turing. Checking a large routine. In Report of a Conference on High Speed Automatic

Calculating Machines, pages 70–72. University Mathematical Laboratory, Cambridge, 1949.
55 Raymond Turner. Programming languages as technical artefacts. Philosophy and Technology,

27(3):377–397, 2014.
56 Raymond Turner. Computational Artifacts. Springer, 2018.
57 Raymond Turner and Nicola Angius. The philosophy of computer science. In Edward N. Zalta,

editor, The Stanford Encyclopedia of Philosophy (Winter 2014 Edition). Stanford University,
2017. URL: http://plato.stanford.edu/archives/win2014/entries/computer-science.

58 John von Neumann. Rigorous theories of control and information. Published in Theory of
Self-Reproducing Automata, A. W. Burks (Ed.), University of Illinois Press, 1966, pages 42–56,
1949.

59 Glyn Winskell. Events in Computation. PhD thesis, University of Edinburgh, 1981.

Gabbrielli’s Festschrift

http://plato.stanford.edu/archives/win2014/entries/computer-science

	Introduction
	The Pioneers
	Towards a General theory
	The Standard Model
	More Intensional Models

